Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel...

81
Ramanujan Graphs of Every Degree Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Transcript of Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel...

Page 1: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Ramanujan Graphs of Every Degree

Adam Marcus (Crisply, Yale) Daniel Spielman (Yale)

Nikhil Srivastava (MSR India)

Page 2: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Expander Graphs

Sparse, regular well-connected graphs with many properties of random graphs.

Random walks mix quickly.

Every set of vertices has many neighbors.

Pseudo-random generators.

Error-correcting codes.

Sparse approximations of complete graphs.

Page 3: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Spectral Expanders Let G be a graph and A be its adjacency matrix

a  

c  

d  

e  b  

         0          1          0          0          1            1          0          1          0          1            0          1          0          1          0            0          0          1          0          1            1          1          0          1          0  

Eigenvalues   �1 � �2 � · · · � �n

If d-regular (every vertex has d edges),   �1 = d

“trivial”

Page 4: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Spectral Expanders If bipartite (all edges between two parts/colors)

eigenvalues are symmetric about 0  

“trivial”

a  

c   d  

f  

b  

e  

If d-regular and bipartite, �n = �d

           0          0          0                1          0          1            0          0          0                1          1          0            0          0          0                0          1          1              1          1          0                0          0          0            0          1          1                0          0          0            1          0          1                0          0          0  

Page 5: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Spectral Expanders

0  [   ]  -­‐d   d  

G is a good spectral expander if all non-trivial eigenvalues are small

Page 6: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Bipartite Complete Graph Adjacency matrix has rank 2, so all non-trivial eigenvalues are 0

a  

c   d  

f  

b  

e  

           0          0          0                1          1          1            0          0          0                1          1          1            0          0          0                1          1          1              1          1          1                0          0          0            1          1          1                0          0          0            1          1          1                0          0          0  

Page 7: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Spectral Expanders

0  [   ]  -­‐d   d  

Challenge: construct infinite families of fixed degree

G is a good spectral expander if all non-trivial eigenvalues are small

Page 8: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Spectral Expanders

G is a good spectral expander if all non-trivial eigenvalues are small

0  [   ]  -­‐d   d  

Challenge: construct infinite families of fixed degree

Alon-Boppana ‘86: Cannot beat 2pd� 1

)  (  2pd� 1�2

pd� 1

Page 9: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

G is a Ramanujan Graph if absolute value of non-trivial eigs

0  [   ]  -­‐d   d  

)  (  

Ramanujan Graphs: 2pd� 1

2pd� 1

2pd� 1�2

pd� 1

Page 10: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

G is a Ramanujan Graph if absolute value of non-trivial eigs

0  [   ]  -­‐d   d  

)  (  

Ramanujan Graphs: 2pd� 1

2pd� 1

Margulis,  Lubotzky-­‐Phillips-­‐Sarnak’88:  Infinite  sequences  of  Ramanujan  graphs  exist  for      

2pd� 1�2

pd� 1

d = prime + 1

Page 11: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

G is a Ramanujan Graph if absolute value of non-trivial eigs

0  [   ]  -­‐d   d  

)  (  

Ramanujan Graphs: 2pd� 1

2pd� 1

 Friedman’08:  A  random  d-­‐regular  graph  is  almost  Ramanujan  :    2

pd� 1 + ✏

2pd� 1�2

pd� 1

Page 12: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Ramanujan Graphs of Every Degree

Theorem: there are infinite families of bipartite Ramanujan graphs of every degree.

Page 13: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Theorem: there are infinite families of bipartite Ramanujan graphs of every degree. And, are infinite families of (c,d)-biregular Ramanujan graphs, having non-trivial eigs bounded by p

d� 1 +pc� 1

Ramanujan Graphs of Every Degree

Page 14: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Find an operation that doubles the size of a graph without creating large eigenvalues.

0  [   ]  -­‐d   d  

Bilu-Linial ‘06 Approach

2pd� 1�2

pd� 1

(   )  

Page 15: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

0  [   ]  -­‐d   d  

Bilu-Linial ‘06 Approach

2pd� 1�2

pd� 1

Find an operation that doubles the size of a graph without creating large eigenvalues.

(   )  

Page 16: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

2-lifts of graphs

a  

c  

d  

e  b  

Page 17: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

2-lifts of graphs

a  

c  

d  

e  b  

a  

c  

d  

e  b  

duplicate every vertex

Page 18: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

2-lifts of graphs

duplicate every vertex

a0  

c0  

d0  

e0  

b0  

a1  

c1  

d1  

e1  

b1  

Page 19: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

2-lifts of graphs

a0  

c0  

d0  

e0  

b0  

a1  

d1  

e1  

b1  

c1  

for every pair of edges: leave on either side (parallel), or make both cross

Page 20: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

2-lifts of graphs

for every pair of edges: leave on either side (parallel), or make both cross

a0  

c0  

d0  

e0  

b0  

a1  

d1  

e1  

b1  

c1  

Page 21: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

2-lifts of graphs

         0          1          0          0          1            1          0          1          0          1            0          1          0          1          0            0          0          1          0          1            1          1          0          1          0  

Page 22: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

2-lifts of graphs

         0          1          0          0          1              0          0          0          0          0            1          0          1          0          1              0          0          0          0          0            0          1          0          1          0              0          0          0          0          0            0          0          1          0          1              0          0          0          0          0            1          1          0          1          0              0          0          0          0          0              0          0          0          0          0              0          1          0          0          1            0          0          0          0          0              1          0          1          0          1            0          0          0          0          0              0          1          0          1          0            0          0          0          0          0              0          0          1          0          1            0          0          0          0          0              1          1          0          1          0  

Page 23: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

2-lifts of graphs

         0          0          0          0          1              0          1          0          0          0            0          0          1          0          1              1          0          0          0          0            0          1          0          0          0              0          0          0          1          0            0          0          0          0          1              0          0          1          0          0            1          1          0          1          0              0          0          0          0          0              0          1          0          0          0              0          0          0          0          1            1          0          0          0          0              0          0          1          0          1            0          0          0          1          0              0          1          0          0          0            0          0          1          0          0              0          0          0          0          1            0          0          0          0          0              1          1          0          1          0  

Page 24: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Eigenvalues of 2-lifts (Bilu-Linial)

Given a 2-lift of G, create a signed adjacency matrix As with a -1 for crossing edges and a 1 for parallel edges

         0        -­‐1          0          0          1          -­‐1          0          1          0          1            0          1          0        -­‐1          0            0          0        -­‐1          0          1            1          1          0          1          0  

a0  

c0  

d0  

e0  

b0  

a1  

d1  

e1  

b1  

c1  

Page 25: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Eigenvalues of 2-lifts (Bilu-Linial)

Theorem: The eigenvalues of the 2-lift are the union of the eigenvalues of A (old)

and the eigenvalues of As (new)

         0        -­‐1          0          0          1          -­‐1          0          1          0          1            0          1          0        -­‐1          0            0          0        -­‐1          0          1            1          1          0          1          0  

a0  

c0  

d0  

e0  

b0  

a1  

d1  

e1  

b1  

c1  

Page 26: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Eigenvalues of 2-lifts (Bilu-Linial)

Conjecture: Every d-regular graph has a 2-lift in which all the new eigenvalues

have absolute value at most 2pd� 1

Theorem: The eigenvalues of the 2-lift are the union of the eigenvalues of A (old)

and the eigenvalues of As (new)

Page 27: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Eigenvalues of 2-lifts (Bilu-Linial)

Conjecture: Every d-regular graph has a 2-lift in which all the new eigenvalues

have absolute value at most 2pd� 1

Would give infinite families of Ramanujan Graphs: start with the complete graph, and keep lifting.

Page 28: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Eigenvalues of 2-lifts (Bilu-Linial)

Conjecture: Every d-regular graph has a 2-lift in which all the new eigenvalues

have absolute value at most 2pd� 1

We prove this in the bipartite case.

a 2-lift of a bipartite graph is bipartite  

Page 29: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Eigenvalues of 2-lifts (Bilu-Linial)

Theorem: Every d-regular graph has a 2-lift in which all the new eigenvalues

have absolute value at most 2pd� 1

Trick: eigenvalues of bipartite graphs are symmetric about 0, so only need to bound largest

Page 30: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Eigenvalues of 2-lifts (Bilu-Linial)

Theorem: Every d-regular bipartite graph has a 2-lift in which all the new eigenvalues

have absolute value at most 2pd� 1

Page 31: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

First idea: a random 2-lift

Specify a lift by

Pick s uniformly at random

s 2 {±1}m

Page 32: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

First idea: a random 2-lift

Specify a lift by

Pick s uniformly at random

s 2 {±1}m

Are graphs for which this usually fails

Page 33: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

First idea: a random 2-lift

Specify a lift by

Pick s uniformly at random

s 2 {±1}m

Are graphs for which this usually fails

Bilu and Linial proved G almost Ramanujan, implies new eigenvalues usually small. Improved by Puder and Agarwal-Kolla-Madan

Page 34: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

The expected polynomial

Consider Es[ �As(x) ]

Page 35: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

The expected polynomial

Consider Es[ �As(x) ]

max-root (�As(x)) 2pd� 1

Conclude there is an s so that

Prove max-root

⇣Es[ �As(x) ]

⌘ 2

pd� 1

Prove is an interlacing family �As(x)

Page 36: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

The expected polynomial

Es[ �As(x) ] = µG(x)

Theorem (Godsil-Gutman ‘81):

the matching polynomial of G

Page 37: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

The matching polynomial (Heilmann-Lieb ‘72)

mi = the number of matchings with i edges

µG(x) =X

i�0

x

n�2i(�1)imi

Page 38: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

µG(x) = x

6 � 7x4 + 11x2 � 2

Page 39: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

µG(x) = x

6 � 7x4 + 11x2 � 2

one matching with 0 edges

Page 40: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

µG(x) = x

6 � 7x4 + 11x2 � 2

7 matchings with 1 edge

Page 41: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

µG(x) = x

6 � 7x4 + 11x2 � 2

Page 42: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

µG(x) = x

6 � 7x4 + 11x2 � 2

Page 43: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Proof that Es[ �As(x) ] = µG(x)

Es[ det(xI �As) ]

x ±1 0 0 ±1 ±1! ±1 x ±1 0 0 0! 0 ±1 x ±1 0 0! 0 0 ±1 x ±1 0! ±1 0 0 ±1 x ±1! ±1 0 0 0 ±1 x!

Expand using permutations

Page 44: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Proof that Es[ �As(x) ] = µG(x)

Es[ det(xI �As) ]

x ±1 0 0 ±1 ±1! ±1 x ±1 0 0 0! 0 ±1 x ±1 0 0! 0 0 ±1 x ±1 0! ±1 0 0 ±1 x ±1! ±1 0 0 0 ±1 x!

Expand using permutations

same  edge:    same  value  

Page 45: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Proof that Es[ �As(x) ] = µG(x)

Es[ det(xI �As) ]

x ±1 0 0 ±1 ±1! ±1 x ±1 0 0 0! 0 ±1 x ±1 0 0! 0 0 ±1 x ±1 0! ±1 0 0 ±1 x ±1! ±1 0 0 0 ±1 x!

Expand using permutations

same  edge:    same  value  

Page 46: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Proof that Es[ �As(x) ] = µG(x)

Es[ det(xI �As) ]

x ±1 0 0 ±1 ±1! ±1 x ±1 0 0 0! 0 ±1 x ±1 0 0! 0 0 ±1 x ±1 0! ±1 0 0 ±1 x ±1! ±1 0 0 0 ±1 x!

Expand using permutations

Get 0 if hit any 0s

Page 47: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Proof that Es[ �As(x) ] = µG(x)

Es[ det(xI �As) ]

x ±1 0 0 ±1 ±1! ±1 x ±1 0 0 0! 0 ±1 x ±1 0 0! 0 0 ±1 x ±1 0! ±1 0 0 ±1 x ±1! ±1 0 0 0 ±1 x!

Expand using permutations

Get 0 if take just one entry for any edge

Page 48: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Proof that Es[ �As(x) ] = µG(x)

Es[ det(xI �As) ]

x ±1 0 0 ±1 ±1! ±1 x ±1 0 0 0! 0 ±1 x ±1 0 0! 0 0 ±1 x ±1 0! ±1 0 0 ±1 x ±1! ±1 0 0 0 ±1 x!

Expand using permutations

Only permutations that count are involutions

Page 49: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Proof that Es[ �As(x) ] = µG(x)

Es[ det(xI �As) ]

x ±1 0 0 ±1 ±1! ±1 x ±1 0 0 0! 0 ±1 x ±1 0 0! 0 0 ±1 x ±1 0! ±1 0 0 ±1 x ±1! ±1 0 0 0 ±1 x!

Expand using permutations

Only permutations that count are involutions

Page 50: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Proof that Es[ �As(x) ] = µG(x)

Es[ det(xI �As) ]

x ±1 0 0 ±1 ±1! ±1 x ±1 0 0 0! 0 ±1 x ±1 0 0! 0 0 ±1 x ±1 0! ±1 0 0 ±1 x ±1! ±1 0 0 0 ±1 x!

Expand using permutations

Only permutations that count are involutions

Correspond to matchings

Page 51: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

The matching polynomial (Heilmann-Lieb ‘72)

µG(x) =X

i�0

x

n�2i(�1)imi

Theorem (Heilmann-Lieb) all the roots are real

Page 52: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

The matching polynomial (Heilmann-Lieb ‘72)

µG(x) =X

i�0

x

n�2i(�1)imi

Theorem (Heilmann-Lieb) all the roots are real and have absolute value at most

2pd� 1

Page 53: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

The matching polynomial (Heilmann-Lieb ‘72)

µG(x) =X

i�0

x

n�2i(�1)imi

Theorem (Heilmann-Lieb) all the roots are real and have absolute value at most

2pd� 1

Implies max-root

⇣Es[ �As(x) ]

⌘ 2

pd� 1

Page 54: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Interlacing

Polynomial

interlaces

if

q(x) =Qd�1

i=1 (x� �i)

p(x) =Qd

i=1(x� ↵i)

↵1 �1 ↵2 · · ·↵d�1 �d�1 ↵d

Page 55: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

p1(x)

Common Interlacing

and have a common interlacing if can partition the line into intervals so that each interval contains one root from each poly  

�1

�2

�3

p2(x)

�d�1

Page 56: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

p1(x)

Common Interlacing

and have a common interlacing if can partition the line into intervals so that each interval contains one root from each poly  

�1

�2

�3

p2(x)

�d�1

)  )  )  )  (   (   (  (  

Page 57: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

If p1 and p2 have a common interlacing,

for some i.

max-root (pi) max-root (Ei [ pi ])

Largest root of average  

Common Interlacing

�1

�2

�3

�d�1

Page 58: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

If p1 and p2 have a common interlacing,

for some i.

max-root (pi) max-root (Ei [ pi ])

Largest root of average  

Common Interlacing

�1

�2

�3

�d�1

Page 59: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

is an interlacing family

If the polynomials can be placed on the leaves of a tree so that when put average of descendants at nodes siblings have common interlacings

Ei [ p1,i ]

Ei,j [ pi,j ]

Interlacing Family of Polynomials {ps}s2{±1}m

p1,�1 p�1,�1p�1,1

Ei [ p�1,i ]

p1,1

Page 60: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

is an interlacing family

Interlacing Family of Polynomials

If the polynomials can be placed on the leaves of a tree so that when put average of descendants at nodes siblings have common interlacings

{ps}s2{±1}m

p1

p;

p1,�1 p�1,�1p�1,1

p�1

p1,1

Page 61: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Interlacing Family of Polynomials There is an s so that

Theorem:

max-root (ps(x)) max-root

⇣Es[ ps(x) ]

p1,1

p1

p;

p1,�1 p�1,�1p�1,1

p�1

Page 62: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

An interlacing family Theorem: Let ps(x) = �As(x)

is an interlacing family {ps}s2{±1}m

Page 63: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Interlacing

p1(x) and have a common interlacing iff p2(x)

�p1(x) + (1� �)p2(x) is real rooted for all  0 � 1

�1

�2

�3

�d�1

Page 64: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

To prove interlacing family

Let ps1,. . . ,sk(x) = Esk+1,. . . ,sm

[ ps1,. . . ,sm(x) ]

Page 65: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

To prove interlacing family

Let

Need to prove that for all , s1, . . . , sk

�ps1,. . . ,sk,1(x) + (1� �)ps1,. . . ,sk,�1(x)

� 2 [0, 1]

is real rooted  

ps1,. . . ,sk(x) = Esk+1,. . . ,sm

[ ps1,. . . ,sm(x) ]

Page 66: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

To prove interlacing family

Let

Need to prove that for all , s1, . . . , sk

�ps1,. . . ,sk,1(x) + (1� �)ps1,. . . ,sk,�1(x)

� 2 [0, 1]

s1, . . . , sk

sk+2, . . . , sm

ps1,. . . ,sk(x) = Esk+1,. . . ,sm

[ ps1,. . . ,sm(x) ]

sk+1

are fixed  is 1 with probability , -1 with  �

are uniformly  

1� �

±1

is real rooted  

Page 67: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Generalization of Heilmann-Lieb

We prove

Es2{±1}m

[ ps(x) ] is real rooted

for every independent distribution on the entries of s

Page 68: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Generalization of Heilmann-Lieb

We prove

Es2{±1}m

[ ps(x) ] is real rooted

for every independent distribution on the entries of s

Page 69: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Mixed Characteristic Polynomials

For independently chosen random vectors  

is their mixed characteristic polynomial.

a1, ..., an

E⇥poly(

Pi aia

Ti )

⇤= µ(A1, ..., An)

Theorem: Mixed characteristic polynomials are real rooted. Proof: Using theory of real stable polynomials.

Page 70: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Mixed Characteristic Polynomials

For independently chosen random vectors  

is their mixed characteristic polynomial.

a1, ..., an

E⇥poly(

Pi aia

Ti )

⇤= µ(A1, ..., An)

Obstacle: our matrix is a sum of random rank-2 matrices  

         0        -­‐1                    -­‐1          0                    

         0          1                      1          0                    

or  

Page 71: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Mixed Characteristic Polynomials

For independently chosen random vectors  

is their mixed characteristic polynomial.

a1, ..., an

E⇥poly(

Pi aia

Ti )

⇤= µ(A1, ..., An)

Solution: add to the diagonal  

         1        -­‐1                    -­‐1          1                    

         1          1                      1          1                    

or  

Page 72: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Generalization of Heilmann-Lieb

We prove

Es2{±1}m

[ ps(x) ] is real rooted

for every independent distribution on the entries of s

Implies is an interlacing family �As(x)

Page 73: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Generalization of Heilmann-Lieb

We prove

Es2{±1}m

[ ps(x) ] is real rooted

for every independent distribution on the entries of s

max-root (�As(x)) 2pd� 1

Conclude there is an s so that

Implies is an interlacing family �As(x)

Page 74: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Universal Covers

The universal cover of a graph G is a tree T of which G is a quotient. vertices map to vertices edges map to edges homomorphism on neighborhoods Is the tree of non-backtracking walks in G.

The universal cover of a d-regular graph is the infinite d-regular tree.  

Page 75: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Quotients of Trees

d-regular Ramanujan as quotient of infinite d-ary tree Spectral radius and norm of inf d-ary tree are

2pd� 1

Page 76: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Godsil’s Proof of Heilmann-Lieb

T(G,v) : the path tree of G at v vertices are paths in G starting at v edges to paths differing in one step

Page 77: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Godsil’s Proof of Heilmann-Lieb

a  

c  

d  

e  b  

a  

ab

e

a  

e

ab

e

ab

c

ab

d

e

a

Page 78: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Godsil’s Proof of Heilmann-Lieb

T(G,v) : the path tree of G at v vertices are paths in G starting at v edges to paths differing in one step

Theorem: The matching polynomial divides the characteristic polynomial of T(G,v)

Page 79: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Godsil’s Proof of Heilmann-Lieb

T(G,v) : the path tree of G at v vertices are paths in G starting at v edges to paths differing in one step

Theorem: The matching polynomial divides the characteristic polynomial of T(G,v)

Is a subgraph of infinite tree, so has smaller spectral radius

Page 80: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Quotients of Trees

(c,d)-biregular bipartite Ramanujan as quotient of infinite (c,d)-ary tree Spectral radius

pd� 1 +

pc� 1

For (c,d)-regular bipartite Ramanujan graphs

pd� 1 +

pc� 1

Page 81: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Questions

Non-bipartite Ramanujan Graphs of every degree?

Efficient constructions?

Explicit constructions?