Download - Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Transcript
Page 1: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Ramanujan Graphs of Every Degree

Adam Marcus (Crisply, Yale) Daniel Spielman (Yale)

Nikhil Srivastava (MSR India)

Page 2: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Expander Graphs

Sparse, regular well-connected graphs with many properties of random graphs.

Random walks mix quickly.

Every set of vertices has many neighbors.

Pseudo-random generators.

Error-correcting codes.

Sparse approximations of complete graphs.

Page 3: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Spectral Expanders Let G be a graph and A be its adjacency matrix

a  

c  

d  

e  b  

         0          1          0          0          1            1          0          1          0          1            0          1          0          1          0            0          0          1          0          1            1          1          0          1          0  

Eigenvalues   �1 � �2 � · · · � �n

If d-regular (every vertex has d edges),   �1 = d

“trivial”

Page 4: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Spectral Expanders If bipartite (all edges between two parts/colors)

eigenvalues are symmetric about 0  

“trivial”

a  

c   d  

f  

b  

e  

If d-regular and bipartite, �n = �d

           0          0          0                1          0          1            0          0          0                1          1          0            0          0          0                0          1          1              1          1          0                0          0          0            0          1          1                0          0          0            1          0          1                0          0          0  

Page 5: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Spectral Expanders

0  [   ]  -­‐d   d  

G is a good spectral expander if all non-trivial eigenvalues are small

Page 6: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Bipartite Complete Graph Adjacency matrix has rank 2, so all non-trivial eigenvalues are 0

a  

c   d  

f  

b  

e  

           0          0          0                1          1          1            0          0          0                1          1          1            0          0          0                1          1          1              1          1          1                0          0          0            1          1          1                0          0          0            1          1          1                0          0          0  

Page 7: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Spectral Expanders

0  [   ]  -­‐d   d  

Challenge: construct infinite families of fixed degree

G is a good spectral expander if all non-trivial eigenvalues are small

Page 8: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Spectral Expanders

G is a good spectral expander if all non-trivial eigenvalues are small

0  [   ]  -­‐d   d  

Challenge: construct infinite families of fixed degree

Alon-Boppana ‘86: Cannot beat 2pd� 1

)  (  2pd� 1�2

pd� 1

Page 9: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

G is a Ramanujan Graph if absolute value of non-trivial eigs

0  [   ]  -­‐d   d  

)  (  

Ramanujan Graphs: 2pd� 1

2pd� 1

2pd� 1�2

pd� 1

Page 10: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

G is a Ramanujan Graph if absolute value of non-trivial eigs

0  [   ]  -­‐d   d  

)  (  

Ramanujan Graphs: 2pd� 1

2pd� 1

Margulis,  Lubotzky-­‐Phillips-­‐Sarnak’88:  Infinite  sequences  of  Ramanujan  graphs  exist  for      

2pd� 1�2

pd� 1

d = prime + 1

Page 11: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

G is a Ramanujan Graph if absolute value of non-trivial eigs

0  [   ]  -­‐d   d  

)  (  

Ramanujan Graphs: 2pd� 1

2pd� 1

 Friedman’08:  A  random  d-­‐regular  graph  is  almost  Ramanujan  :    2

pd� 1 + ✏

2pd� 1�2

pd� 1

Page 12: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Ramanujan Graphs of Every Degree

Theorem: there are infinite families of bipartite Ramanujan graphs of every degree.

Page 13: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Theorem: there are infinite families of bipartite Ramanujan graphs of every degree. And, are infinite families of (c,d)-biregular Ramanujan graphs, having non-trivial eigs bounded by p

d� 1 +pc� 1

Ramanujan Graphs of Every Degree

Page 14: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Find an operation that doubles the size of a graph without creating large eigenvalues.

0  [   ]  -­‐d   d  

Bilu-Linial ‘06 Approach

2pd� 1�2

pd� 1

(   )  

Page 15: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

0  [   ]  -­‐d   d  

Bilu-Linial ‘06 Approach

2pd� 1�2

pd� 1

Find an operation that doubles the size of a graph without creating large eigenvalues.

(   )  

Page 16: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

2-lifts of graphs

a  

c  

d  

e  b  

Page 17: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

2-lifts of graphs

a  

c  

d  

e  b  

a  

c  

d  

e  b  

duplicate every vertex

Page 18: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

2-lifts of graphs

duplicate every vertex

a0  

c0  

d0  

e0  

b0  

a1  

c1  

d1  

e1  

b1  

Page 19: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

2-lifts of graphs

a0  

c0  

d0  

e0  

b0  

a1  

d1  

e1  

b1  

c1  

for every pair of edges: leave on either side (parallel), or make both cross

Page 20: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

2-lifts of graphs

for every pair of edges: leave on either side (parallel), or make both cross

a0  

c0  

d0  

e0  

b0  

a1  

d1  

e1  

b1  

c1  

Page 21: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

2-lifts of graphs

         0          1          0          0          1            1          0          1          0          1            0          1          0          1          0            0          0          1          0          1            1          1          0          1          0  

Page 22: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

2-lifts of graphs

         0          1          0          0          1              0          0          0          0          0            1          0          1          0          1              0          0          0          0          0            0          1          0          1          0              0          0          0          0          0            0          0          1          0          1              0          0          0          0          0            1          1          0          1          0              0          0          0          0          0              0          0          0          0          0              0          1          0          0          1            0          0          0          0          0              1          0          1          0          1            0          0          0          0          0              0          1          0          1          0            0          0          0          0          0              0          0          1          0          1            0          0          0          0          0              1          1          0          1          0  

Page 23: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

2-lifts of graphs

         0          0          0          0          1              0          1          0          0          0            0          0          1          0          1              1          0          0          0          0            0          1          0          0          0              0          0          0          1          0            0          0          0          0          1              0          0          1          0          0            1          1          0          1          0              0          0          0          0          0              0          1          0          0          0              0          0          0          0          1            1          0          0          0          0              0          0          1          0          1            0          0          0          1          0              0          1          0          0          0            0          0          1          0          0              0          0          0          0          1            0          0          0          0          0              1          1          0          1          0  

Page 24: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Eigenvalues of 2-lifts (Bilu-Linial)

Given a 2-lift of G, create a signed adjacency matrix As with a -1 for crossing edges and a 1 for parallel edges

         0        -­‐1          0          0          1          -­‐1          0          1          0          1            0          1          0        -­‐1          0            0          0        -­‐1          0          1            1          1          0          1          0  

a0  

c0  

d0  

e0  

b0  

a1  

d1  

e1  

b1  

c1  

Page 25: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Eigenvalues of 2-lifts (Bilu-Linial)

Theorem: The eigenvalues of the 2-lift are the union of the eigenvalues of A (old)

and the eigenvalues of As (new)

         0        -­‐1          0          0          1          -­‐1          0          1          0          1            0          1          0        -­‐1          0            0          0        -­‐1          0          1            1          1          0          1          0  

a0  

c0  

d0  

e0  

b0  

a1  

d1  

e1  

b1  

c1  

Page 26: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Eigenvalues of 2-lifts (Bilu-Linial)

Conjecture: Every d-regular graph has a 2-lift in which all the new eigenvalues

have absolute value at most 2pd� 1

Theorem: The eigenvalues of the 2-lift are the union of the eigenvalues of A (old)

and the eigenvalues of As (new)

Page 27: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Eigenvalues of 2-lifts (Bilu-Linial)

Conjecture: Every d-regular graph has a 2-lift in which all the new eigenvalues

have absolute value at most 2pd� 1

Would give infinite families of Ramanujan Graphs: start with the complete graph, and keep lifting.

Page 28: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Eigenvalues of 2-lifts (Bilu-Linial)

Conjecture: Every d-regular graph has a 2-lift in which all the new eigenvalues

have absolute value at most 2pd� 1

We prove this in the bipartite case.

a 2-lift of a bipartite graph is bipartite  

Page 29: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Eigenvalues of 2-lifts (Bilu-Linial)

Theorem: Every d-regular graph has a 2-lift in which all the new eigenvalues

have absolute value at most 2pd� 1

Trick: eigenvalues of bipartite graphs are symmetric about 0, so only need to bound largest

Page 30: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Eigenvalues of 2-lifts (Bilu-Linial)

Theorem: Every d-regular bipartite graph has a 2-lift in which all the new eigenvalues

have absolute value at most 2pd� 1

Page 31: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

First idea: a random 2-lift

Specify a lift by

Pick s uniformly at random

s 2 {±1}m

Page 32: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

First idea: a random 2-lift

Specify a lift by

Pick s uniformly at random

s 2 {±1}m

Are graphs for which this usually fails

Page 33: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

First idea: a random 2-lift

Specify a lift by

Pick s uniformly at random

s 2 {±1}m

Are graphs for which this usually fails

Bilu and Linial proved G almost Ramanujan, implies new eigenvalues usually small. Improved by Puder and Agarwal-Kolla-Madan

Page 34: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

The expected polynomial

Consider Es[ �As(x) ]

Page 35: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

The expected polynomial

Consider Es[ �As(x) ]

max-root (�As(x)) 2pd� 1

Conclude there is an s so that

Prove max-root

⇣Es[ �As(x) ]

⌘ 2

pd� 1

Prove is an interlacing family �As(x)

Page 36: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

The expected polynomial

Es[ �As(x) ] = µG(x)

Theorem (Godsil-Gutman ‘81):

the matching polynomial of G

Page 37: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

The matching polynomial (Heilmann-Lieb ‘72)

mi = the number of matchings with i edges

µG(x) =X

i�0

x

n�2i(�1)imi

Page 38: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

µG(x) = x

6 � 7x4 + 11x2 � 2

Page 39: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

µG(x) = x

6 � 7x4 + 11x2 � 2

one matching with 0 edges

Page 40: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

µG(x) = x

6 � 7x4 + 11x2 � 2

7 matchings with 1 edge

Page 41: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

µG(x) = x

6 � 7x4 + 11x2 � 2

Page 42: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

µG(x) = x

6 � 7x4 + 11x2 � 2

Page 43: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Proof that Es[ �As(x) ] = µG(x)

Es[ det(xI �As) ]

x ±1 0 0 ±1 ±1! ±1 x ±1 0 0 0! 0 ±1 x ±1 0 0! 0 0 ±1 x ±1 0! ±1 0 0 ±1 x ±1! ±1 0 0 0 ±1 x!

Expand using permutations

Page 44: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Proof that Es[ �As(x) ] = µG(x)

Es[ det(xI �As) ]

x ±1 0 0 ±1 ±1! ±1 x ±1 0 0 0! 0 ±1 x ±1 0 0! 0 0 ±1 x ±1 0! ±1 0 0 ±1 x ±1! ±1 0 0 0 ±1 x!

Expand using permutations

same  edge:    same  value  

Page 45: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Proof that Es[ �As(x) ] = µG(x)

Es[ det(xI �As) ]

x ±1 0 0 ±1 ±1! ±1 x ±1 0 0 0! 0 ±1 x ±1 0 0! 0 0 ±1 x ±1 0! ±1 0 0 ±1 x ±1! ±1 0 0 0 ±1 x!

Expand using permutations

same  edge:    same  value  

Page 46: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Proof that Es[ �As(x) ] = µG(x)

Es[ det(xI �As) ]

x ±1 0 0 ±1 ±1! ±1 x ±1 0 0 0! 0 ±1 x ±1 0 0! 0 0 ±1 x ±1 0! ±1 0 0 ±1 x ±1! ±1 0 0 0 ±1 x!

Expand using permutations

Get 0 if hit any 0s

Page 47: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Proof that Es[ �As(x) ] = µG(x)

Es[ det(xI �As) ]

x ±1 0 0 ±1 ±1! ±1 x ±1 0 0 0! 0 ±1 x ±1 0 0! 0 0 ±1 x ±1 0! ±1 0 0 ±1 x ±1! ±1 0 0 0 ±1 x!

Expand using permutations

Get 0 if take just one entry for any edge

Page 48: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Proof that Es[ �As(x) ] = µG(x)

Es[ det(xI �As) ]

x ±1 0 0 ±1 ±1! ±1 x ±1 0 0 0! 0 ±1 x ±1 0 0! 0 0 ±1 x ±1 0! ±1 0 0 ±1 x ±1! ±1 0 0 0 ±1 x!

Expand using permutations

Only permutations that count are involutions

Page 49: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Proof that Es[ �As(x) ] = µG(x)

Es[ det(xI �As) ]

x ±1 0 0 ±1 ±1! ±1 x ±1 0 0 0! 0 ±1 x ±1 0 0! 0 0 ±1 x ±1 0! ±1 0 0 ±1 x ±1! ±1 0 0 0 ±1 x!

Expand using permutations

Only permutations that count are involutions

Page 50: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Proof that Es[ �As(x) ] = µG(x)

Es[ det(xI �As) ]

x ±1 0 0 ±1 ±1! ±1 x ±1 0 0 0! 0 ±1 x ±1 0 0! 0 0 ±1 x ±1 0! ±1 0 0 ±1 x ±1! ±1 0 0 0 ±1 x!

Expand using permutations

Only permutations that count are involutions

Correspond to matchings

Page 51: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

The matching polynomial (Heilmann-Lieb ‘72)

µG(x) =X

i�0

x

n�2i(�1)imi

Theorem (Heilmann-Lieb) all the roots are real

Page 52: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

The matching polynomial (Heilmann-Lieb ‘72)

µG(x) =X

i�0

x

n�2i(�1)imi

Theorem (Heilmann-Lieb) all the roots are real and have absolute value at most

2pd� 1

Page 53: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

The matching polynomial (Heilmann-Lieb ‘72)

µG(x) =X

i�0

x

n�2i(�1)imi

Theorem (Heilmann-Lieb) all the roots are real and have absolute value at most

2pd� 1

Implies max-root

⇣Es[ �As(x) ]

⌘ 2

pd� 1

Page 54: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Interlacing

Polynomial

interlaces

if

q(x) =Qd�1

i=1 (x� �i)

p(x) =Qd

i=1(x� ↵i)

↵1 �1 ↵2 · · ·↵d�1 �d�1 ↵d

Page 55: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

p1(x)

Common Interlacing

and have a common interlacing if can partition the line into intervals so that each interval contains one root from each poly  

�1

�2

�3

p2(x)

�d�1

Page 56: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

p1(x)

Common Interlacing

and have a common interlacing if can partition the line into intervals so that each interval contains one root from each poly  

�1

�2

�3

p2(x)

�d�1

)  )  )  )  (   (   (  (  

Page 57: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

If p1 and p2 have a common interlacing,

for some i.

max-root (pi) max-root (Ei [ pi ])

Largest root of average  

Common Interlacing

�1

�2

�3

�d�1

Page 58: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

If p1 and p2 have a common interlacing,

for some i.

max-root (pi) max-root (Ei [ pi ])

Largest root of average  

Common Interlacing

�1

�2

�3

�d�1

Page 59: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

is an interlacing family

If the polynomials can be placed on the leaves of a tree so that when put average of descendants at nodes siblings have common interlacings

Ei [ p1,i ]

Ei,j [ pi,j ]

Interlacing Family of Polynomials {ps}s2{±1}m

p1,�1 p�1,�1p�1,1

Ei [ p�1,i ]

p1,1

Page 60: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

is an interlacing family

Interlacing Family of Polynomials

If the polynomials can be placed on the leaves of a tree so that when put average of descendants at nodes siblings have common interlacings

{ps}s2{±1}m

p1

p;

p1,�1 p�1,�1p�1,1

p�1

p1,1

Page 61: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Interlacing Family of Polynomials There is an s so that

Theorem:

max-root (ps(x)) max-root

⇣Es[ ps(x) ]

p1,1

p1

p;

p1,�1 p�1,�1p�1,1

p�1

Page 62: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

An interlacing family Theorem: Let ps(x) = �As(x)

is an interlacing family {ps}s2{±1}m

Page 63: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Interlacing

p1(x) and have a common interlacing iff p2(x)

�p1(x) + (1� �)p2(x) is real rooted for all  0 � 1

�1

�2

�3

�d�1

Page 64: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

To prove interlacing family

Let ps1,. . . ,sk(x) = Esk+1,. . . ,sm

[ ps1,. . . ,sm(x) ]

Page 65: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

To prove interlacing family

Let

Need to prove that for all , s1, . . . , sk

�ps1,. . . ,sk,1(x) + (1� �)ps1,. . . ,sk,�1(x)

� 2 [0, 1]

is real rooted  

ps1,. . . ,sk(x) = Esk+1,. . . ,sm

[ ps1,. . . ,sm(x) ]

Page 66: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

To prove interlacing family

Let

Need to prove that for all , s1, . . . , sk

�ps1,. . . ,sk,1(x) + (1� �)ps1,. . . ,sk,�1(x)

� 2 [0, 1]

s1, . . . , sk

sk+2, . . . , sm

ps1,. . . ,sk(x) = Esk+1,. . . ,sm

[ ps1,. . . ,sm(x) ]

sk+1

are fixed  is 1 with probability , -1 with  �

are uniformly  

1� �

±1

is real rooted  

Page 67: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Generalization of Heilmann-Lieb

We prove

Es2{±1}m

[ ps(x) ] is real rooted

for every independent distribution on the entries of s

Page 68: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Generalization of Heilmann-Lieb

We prove

Es2{±1}m

[ ps(x) ] is real rooted

for every independent distribution on the entries of s

Page 69: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Mixed Characteristic Polynomials

For independently chosen random vectors  

is their mixed characteristic polynomial.

a1, ..., an

E⇥poly(

Pi aia

Ti )

⇤= µ(A1, ..., An)

Theorem: Mixed characteristic polynomials are real rooted. Proof: Using theory of real stable polynomials.

Page 70: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Mixed Characteristic Polynomials

For independently chosen random vectors  

is their mixed characteristic polynomial.

a1, ..., an

E⇥poly(

Pi aia

Ti )

⇤= µ(A1, ..., An)

Obstacle: our matrix is a sum of random rank-2 matrices  

         0        -­‐1                    -­‐1          0                    

         0          1                      1          0                    

or  

Page 71: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Mixed Characteristic Polynomials

For independently chosen random vectors  

is their mixed characteristic polynomial.

a1, ..., an

E⇥poly(

Pi aia

Ti )

⇤= µ(A1, ..., An)

Solution: add to the diagonal  

         1        -­‐1                    -­‐1          1                    

         1          1                      1          1                    

or  

Page 72: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Generalization of Heilmann-Lieb

We prove

Es2{±1}m

[ ps(x) ] is real rooted

for every independent distribution on the entries of s

Implies is an interlacing family �As(x)

Page 73: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Generalization of Heilmann-Lieb

We prove

Es2{±1}m

[ ps(x) ] is real rooted

for every independent distribution on the entries of s

max-root (�As(x)) 2pd� 1

Conclude there is an s so that

Implies is an interlacing family �As(x)

Page 74: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Universal Covers

The universal cover of a graph G is a tree T of which G is a quotient. vertices map to vertices edges map to edges homomorphism on neighborhoods Is the tree of non-backtracking walks in G.

The universal cover of a d-regular graph is the infinite d-regular tree.  

Page 75: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Quotients of Trees

d-regular Ramanujan as quotient of infinite d-ary tree Spectral radius and norm of inf d-ary tree are

2pd� 1

Page 76: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Godsil’s Proof of Heilmann-Lieb

T(G,v) : the path tree of G at v vertices are paths in G starting at v edges to paths differing in one step

Page 77: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Godsil’s Proof of Heilmann-Lieb

a  

c  

d  

e  b  

a  

ab

e

a  

e

ab

e

ab

c

ab

d

e

a

Page 78: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Godsil’s Proof of Heilmann-Lieb

T(G,v) : the path tree of G at v vertices are paths in G starting at v edges to paths differing in one step

Theorem: The matching polynomial divides the characteristic polynomial of T(G,v)

Page 79: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Godsil’s Proof of Heilmann-Lieb

T(G,v) : the path tree of G at v vertices are paths in G starting at v edges to paths differing in one step

Theorem: The matching polynomial divides the characteristic polynomial of T(G,v)

Is a subgraph of infinite tree, so has smaller spectral radius

Page 80: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Quotients of Trees

(c,d)-biregular bipartite Ramanujan as quotient of infinite (c,d)-ary tree Spectral radius

pd� 1 +

pc� 1

For (c,d)-regular bipartite Ramanujan graphs

pd� 1 +

pc� 1

Page 81: Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil ...cs-Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Expander Graphs Sparse, regular well-connected

Questions

Non-bipartite Ramanujan Graphs of every degree?

Efficient constructions?

Explicit constructions?