A Serial Link Transmitter with 8b10b coding in Monolithic Active Pixel Sensors Guy Doziere, Quan...

34
A Serial Link Transmitter with 8b10b coding in Monolithic Active Pixel Sensors Guy Doziere, Quan Sun, Olav Torheim K. Jaaskelainen IPHC Strasbourg

Transcript of A Serial Link Transmitter with 8b10b coding in Monolithic Active Pixel Sensors Guy Doziere, Quan...

A Serial Link Transmitter with

8b10b coding in Monolithic

Active Pixel Sensors

Guy Doziere, Quan Sun, Olav Torheim K. Jaaskelainen IPHC Strasbourg

314/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Motivation

Matrix of pixels

Memory

Zero Suppression

Columns Discriminators

Serial link

Read out architecture diagram Matrix of pixels (1152 x 576 ) 1152 discriminators : bit rate > Gbits/s Zero suppression (data compression) Buffer Data bit rate: 160 Mbit/s.

Necessity to reduce the number of wires link Quick serial link.

414/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Motivation

Q

QSET

CLR

DData

Clock

Theoretical serial link

1 Gbps=> 1 ns

=> 20 cm

514/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Motivation

Q

QSET

CLR

DData

Clock

Propagation delay ≠

Δt

Real serial link

? ? ? ?

614/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Motivation

Q

QSET

CLR

DData

clock

D

HPLL

RHD

Combine Clock and data!

Clock data recovery

PLLClock data recovery

NB: If there are enough edges in the data then the clock can be recovered from the data

714/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Motivation

Code properties

Provide enough edges in the data to enable Clock Recovery

814/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Motivation

Q

QSET

CLR

DData

Clock

D

HPLL

CDR

Receiver threshold

Jitter

Receiver Threshold refers to “Ground” which must be the same potential as “Ground” at the transmitter!

914/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Motivation

Q

QSET

CLR

DData

Clock

D

HPLL

CDR

Differential Link

Differential link

Receiver Threshold is halfway positive and negative signal

Use AC Coupling Capacitors…Need DC Balance!

NB: Common mode voltage difference between transmitter and termination at the receiver can result in excessive currents

1014/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Motivation

1 0 1 0 1 0 1 0=>

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 00

DC balance

Define a maximum Run Length (max consecutive 1 or 0) Sent equal amount of ‘1’s and ‘0’s (Running Disparity)

Modulation or coding ?

1 1 1 ? 0 0 0 00

1114/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Motivation

Code Properties

Provide enough edges for Clock Recovery Maximum Run Length and DC Balance

1214/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Coding 8b 10 b

Coding 8b 10b properties

8 bits to 10 bits conversion, (20 % overload of the data bandwidth) Input: 256 data characters ≠ , Output : 1024 characters ≠ including 12 specific control characters for the frame

synchronization (beginning and end of frame for ex)

Provide enough edges in the data for Clock Recovery,

DC Balance: running disparity positive or negative: ≠ between the number of 0 & 1 for each received byte, positive if nb of 1 > nb of 0, negative if not, possible values 0, +2, -2

run length : max length of identical successive values of 1 or 0 < 5

NB: coding develop by Wilmer & Franaszek (1983 patent expired from 2003)

1314/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Coding 8b 10 b

byte (input coding)

7 6 5 4 3 2 1 0K

hi gi fi ei di ci bi ai0 1

K = 0 Þdata D

Control bit

4 3 2 1 0

ei di ci bi ai

7 6 5

hi gi fi

Decimal value Decimal value.K = 1 ÞControl K Decimal value Decimal value.

Input byte Notation

Ex: data bite 101 00110 => D6.5

control byte 110 10110 => K22.6

8 bits 10 bits (coding table cf. annexes)

4 3 2 1 0

ei di ci bi ai

7 6 5

hi gi fi

4 3 2 1 0

eo do co bo ao

5

io

8 7 6

ho go fo

9

jo

encoder 5 è 6 bits encoder 3 è 4 bits

K

0 1

256 values

1024 values : (all are not useful value) For most of the 256 (8B) values a positive and a negative 10B

value is selected depending on the “Current Running Disparity” (rd+ et rd-)

12 values/1024 “Special” K Characters (used word alignment)

1414/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Coding 8b 10 b

Synchronization characters

The Comma characters K28.1/K28.5/K28.7 are used for frame synchronization

Create “ordered sets” – For example Fibre Channel Start Of Frame (SOF) = K28.5/D21.5/D23.0/D23.0 – K30.7 = Error Propagate – K28.3 = Carrier Extend

1514/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Coding 8b 10 b

Main diagram

5b/6bEncoder:

ClassificationL functions

3b/4bEncoder:

ClassificationS function

ai

bi

ci

di

ei

fi

gi

hi

8 bits bus input port

Z(K/D)Control/

data

Encoder:Disparity &

Control

6 B bit control

4 B bit control

5b/6bEncoding

switch

3b/4bEncoding

switch

ai

bi

ci

di

ei

fi

gi

hi

ao

bo

co

do

eo

io

fo

go

ho

jo

Serializer 10 bits

Output line

Byte rate clock BYTECLK

1614/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Architecture of prototype

Transmitter diagram

Clock generation: low jitter, power supply noise insensitive, JTAG configuration : 16 x 9 bits words, Data encoded read by JTAG., The chain check is done by serial data analyser, LVDS output.

1714/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Implementation of Building Blocks

Encoder 8B/10B

Serializer•Load byte frequency: 16 MHz

•Bit output rate: 160 MHz

•Max. frequency DFF delay / loading of the input byte.

•Ring shifter register.

Coding implementing from an open source, currently estimated and studied

Clock Generator160 MHz PLL Cf. Isabelle Valin presentation

Buffer LVDS Frequency : 160 MHz, Termination Impedance: 100, Max differential swing: 400 mV, Common mode voltage : 1,2 V, A adjustable bias current flows between two single ended outputs, Typical current consumption: : 5,6 mA.

1814/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Implementation of Building Blocks

Layout

AMS CMOS 0,35 μm Technology Total circuit area : 0,92 mm² integrated Independent test block integrated into the Mimosa 26 chip

1914/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Results

Serial link LVDS at 160 MHz

Data eye is 60% opening at BER of 10-12(160 MHz) (measurement extrapolation)

Bit rate up to 250 Mbit/s The encoding data read by JTAG after decoding are the same of the initial

values (verilog & vhdl simulation test ) The data given by the serial data analyser correspond to the scheduled result. No intensive test has been achieved.

2014/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Conclusion and perspectives

Serial transmission Coding 8b/10b with LVDS output

Block 8b/10b easily integrable in a design, Layout included in a area of 1450 μm x 330 μm, Consumption max. at 160 MHz < 10 mA, PLL working up to 300 MHz with a good noise immunity, LVDS Max. frequency (standalone) : 400 MHz New instigation to done for a frequency higher than 400 MHz

Serial link with Coding 8b/10b for optical fibre link

This block can also be used on a optical fibre link.

2114/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Annexes References

1. A.X. Widmer and P.A. Franaszek, A DC-BALANCED, PARTITIONED-BLOCK, 8B/10B TRANSMISSION CODE, IBM Journal of Research and Development, Volume 27, Number 5, September 1983

1bis. Y. Takasaki, M. Tanaka, N. Maeda, K. Yamashita, and K. Nagano, “Optical Pulse Formats for Fiber Optic Digital Com- munications,” IEEE Trans. Commun. COM-24, 404-413 (1976).

2. J. M. Griffiths, “Binary Code Suitable for Line Transmission,” Electron. Lett. 5,79-81 (1969). 3. R. G. Kiwimagi, “Encoding/Decoding for Magnetic Record Storage Apparatus,” IBM Tech. Disclosure Bull. 18,

3147- 3149 (1976). 4. A. X. Widmer and P. A. Franaszek, “Transmission Code for High-speed Fibre-Optic Data Networks,” Electron.

Lett. 19, 5. P. A. Franaszek, “Sequence-State Coding for Digital Transmis- sion,”BellSyst. Tech. J. 47, 143-157 (1968). 6. P. A. Franaszek, “Sequence-State Methods for Run-Length- Limited Coding,” IBM J. Res. Develop. 14,376-383

(1970). 7. A. M. Patel, “Zero-Modulation Encoding in Magnetic Record- ing,” IBM J. Res. Develop. 19,366-378 (1975). 8. Peter A. Franaszek, “A General Method for Channel Coding,” IBM J. Res. Develop. 24,638-641 (1980). 9. P. A. Franaszek, “Construction of Bounded Delay Codes for Discrete Noiseless Channels,” IBM J. Res. Develop.

26, 506- 514 (1982). 10. B. Marcus, “Sofic Systems and Encoding Data on Magnetic Tape,” Preliminary Report, Notices, Amer. Math.

SOC. 29, 43 (1982). 11. R. L. Adler, D. Coppersmith, and M. Hassner, “Algorithms for Sliding Block Codes,” IEEE Trans. Info. Theory

IT-29, 5-22 (1983). 12. G. Nigel N. Martin, Glen G. Langdon, Jr., and Stephen J. P. Todd, “Arithmetic Codes for Constrained

Channels,” IBM J. Res. Develop. 27,94-I06 (1983). 13. Ta-Mu Chien, “Upper Bound on the Efficiency of DC- Constrained Codes,’’ Bell Syst. Tech. J. 49, 2261-2287

(1970). 14. J. J. Stiffler, “Theory of Synchronous Communications,” Pren- tice-Hall, Inc., Englewood Cliffs, NJ, 1971, pp.

368-372.

2214/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Annexes Coding block diagram8b/10b (1/6)

The FIG. 3 shows the digital schematic of the Classification .5B/6B ": functions L “

2314/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Annexes Coding block diagram8b/10b (2/6)

The FIG.4 shows the digital schematic of the Classification 3B/4B ": functions S “

(1/ )

2414/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Annexes Coding block diagram8b/10b (3/6)

The FIG. 5 shows the digital schematic of the running disparity (rd+, rd-)

2514/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Annexes Coding block diagram8b/10b (4/6)

The FIG. 6 shows the digital schematic of the complementation control

2614/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Annexes Coding block diagram8b/10b (5/6)

The FIG. 7 shows the digital schematic of 5b/6b terminal.

2714/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Annexes Coding block diagram8b/10b (6/6)

The FIG. 8 shows the digital schematic of 3b/4b terminal.

2814/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Annexes Running disparity coding table (1/4)

2914/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Annexes Running disparity coding table (2/4)

3014/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Annexes Running disparity coding table (3/4)

3114/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Annexes Running disparity coding table (4/4)

3214/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Annexes 12 “Special” K Characters

CommaCharacters“The only patterns thathave 5 consecutive‘1’s or ‘0’s

3314/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Annexes Decoding 6b/5b

3414/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Annexes

Decoding 4b/3b

3514/09/2009 8b10b G.Doziere Q. Sun O. Torheim K. Jaaskelainen IPHC Strasbourg

Annexes

Test diagram

Evaluation board

Power supply

Signal generator 10 MHz

Serial data analyser

JTAG

ASIC

// Port