A quantum wedding for two crystals - 21 - ethz.ch

2
Press embargo lifts on 04 March at 1800 London time / 1300 US Eastern time A quantum wedding of two crystals A team of researchers lead by Nicolas Gisin and Mikael Afzelius at the University of Geneva are developing a new approach to bring quantum networks to reality, and their latest finding has just been published in Nature Photonics. “What we have demonstrated is that two solid macroscopic objects, namely two 1cm long crystals, can be entangled together. This means that both crystals essentially form a single quantum entity, and that one cannot fully describe the state of each crystal alone,” says Mikael Afzelius. The result is reminiscent of the famous cat of Erwin Schrödinger, except that here, we have two cats such that if one is alive, then the other one is dead, or viceversa. Entanglement means that the two possibilities coexist simultaneously, until someone tries to “look”, which forces one possibility to emerge over the other. In the laboratory, the cats are embodied as rareearthions doped crystals, the same type of crystals that are nowadays widely used in solidstate lasers, and notably in the green laser pointers that everyone can buy. Entanglement in itself is not new; it is routinely produced with photons in many laboratories around the world. However, to go from entanglement between two elementary particles of light, to entanglement between to macroscopic objects, is a challenging task. “Each crystal contains about ten billion rareearth ions that can collectively absorb a single photon. If this single photon is first sent onto a halfsilvered mirror, it emerges as an entangled state of light that can be absorbed by the crystals, thereby transferring the entanglement from light to two solid objects,” explains co author Félix Bussières. The main difficulty is in fact to prove that the crystals have indeed been entangled, which the team achieved by transferring back the entanglement into light and then performing sophisticated measurements on the light particles. But entanglement is not just a striking feature of quantum mechanics: it is a much needed resource for quantum communication. What is envisioned by the researchers is a “quantum internet” where nodes can exchange and processing quantum bits of information. Quantum physics then allows nodes to be entangled, and thus gain the ability to perform important tasks, such as provably secure encryption of messages over distances of a thousand kilometres or more, which is not known to be feasible otherwise. The achievement of the research team is a crucial step towards the realization of practical quantum networks.

Transcript of A quantum wedding for two crystals - 21 - ethz.ch

Page 1: A quantum wedding for two crystals - 21 - ethz.ch

Press  embargo  lifts  on  04  March    at  1800  London  time  /  1300  US  Eastern  time    A  quantum  wedding  of  two  crystals  

A  team  of  researchers  lead  by  Nicolas  Gisin  and  Mikael  Afzelius  at  the  University  of  Geneva  are  developing  a  new  approach  to  bring  quantum  networks  to  reality,  and  their  latest  finding  has  just  been  published  in  Nature  Photonics.    

“What  we  have  demonstrated  is  that  two  solid  macroscopic  objects,  namely  two  1cm-­‐long  crystals,  can  be  entangled  together.  This  means  that  both  crystals  essentially  form  a  single  quantum  entity,  and  that  one  cannot  fully  describe  the  state  of  each  crystal  alone,”  says  Mikael  Afzelius.    

 

The  result  is  reminiscent  of  the  famous  cat  of  Erwin  Schrödinger,  except  that  here,  we  have  two  cats  such  that  if  one  is  alive,  then  the  other  one  is  dead,  or  vice-­‐versa.  Entanglement  means  that  the  two  possibilities  coexist  simultaneously,  until  someone  tries  to  “look”,  which  forces  one  possibility  to  emerge  over  the  other.  In  the  laboratory,  the  cats  are  embodied  as  rare-­‐earth-­‐ions  doped  crystals,  the  same  type  of  crystals  that  are  nowadays  widely  used  in  solid-­‐state  lasers,  and  notably  in  the  green  laser  pointers  that  everyone  can  buy.  

Entanglement  in  itself  is  not  new;  it  is  routinely  produced  with  photons  in  many  laboratories  around  the  world.  However,  to  go  from  entanglement  between  two  elementary  particles  of  light,  to  entanglement  between  to  macroscopic  objects,  is  a  challenging  task.  “Each  crystal  contains  about  ten  billion  rare-­‐earth  ions  that  can  collectively  absorb  a  single  photon.  If  this  single  photon  is  first  sent  onto  a  half-­‐silvered  mirror,  it  emerges  as  an  entangled  state  of  light  that  can  be  absorbed  by  the  crystals,  thereby  transferring  the  entanglement  from  light  to  two  solid  objects,”  explains  co-­‐author  Félix  Bussières.  The  main  difficulty  is  in  fact  to  prove  that  the  crystals  have  indeed  been  entangled,  which  the  team  achieved  by  transferring  back  the  entanglement  into  light  and  then  performing  sophisticated  measurements  on  the  light  particles.  

But  entanglement  is  not  just  a  striking  feature  of  quantum  mechanics:  it  is  a  much  needed  resource  for  quantum  communication.  What  is  envisioned  by  the  researchers  is  a  “quantum  internet”  where  nodes  can  exchange  and  processing  quantum  bits  of  information.  Quantum  physics  then  allows  nodes  to  be  entangled,  and  thus  gain  the  ability  to  perform  important  tasks,  such  as  provably  secure  encryption  of  messages  over  distances  of  a  thousand  kilometres  or  more,  which  is  not  known  to  be  feasible  otherwise.  The  achievement  of  the  research  team  is  a  crucial  step  towards  the  realization  of  practical  quantum  networks.  

Page 2: A quantum wedding for two crystals - 21 - ethz.ch

Press  embargo  lifts  on  04  March    at  1800  London  time  /  1300  US  Eastern  time  

Source:  “Heralded  quantum  entangled  between  two  crystals”  Imam  Usmani,  Christoph  Clausen,  Félix  Bussières,  Nicolas  Sangouard,  Mikael  Afzelius  &  Nicolas  Gisin  Nature  Photonics  (advanced  online  publication)  DOI:  10.1038/NPHOTON.2012.34  (2012)  (Journalists  should  seek  to  credit  the  relevant  Nature    publication  as  the  source  of  stories  covered)  

For  further  information,  please  contact:  Mikael  Afzelius    Group  of  Applied  Physics  University  of  Geneva  Chemin  de  Pinchat  22  1211  Genève  4  +41  22  379  0507  [email protected]  

or  

Nicolas  Gisin  Group  of  Applied  Physics  University  of  Geneva  Chemin  de  Pinchat  22  1211  Genève  4  +41  22  379  0502  [email protected]  

For  information  about  the  press  embargo,  please  contact:  

From North America Neda Afsarmanesh, Nature New York  Tel: +1 212 726 9231; Fax: +1 646 563 7117  E-mail: [email protected]      From Japan, Korea, China, Singapore and Taiwan  Mika Nakano, Nature Tokyo Tel: +81 3 3267 8751; E-mail: [email protected] From the UK/Europe/other countries not listed above Rachel Twinn, Nature London Tel: +44 20 7843 4658; E-mail: [email protected]