7 - EDO

11
Solução Numérica de Equações Diferenciais Ordinárias 7 - 1 Cálculo Numérico e Computacional C.Y. Shigue Solução Numérica de Equações Diferenciais Ordinárias Introdução Diversos problemas técnicos e científicos são descritos matematicamente por equações diferenciais que representam variações das quantidades físicas que os descrevem. Alguns exemplos de equações diferenciais são: (1) reação química de 1 a ordem B A , descrita pela equação A A kC dt dC - = , na qual C A é a concentração do reagente A, k a constante da reação e t o tempo decorrido desde o início da reação. (2) descarga de um circuito elétrico contendo uma resistor em série com um capacitor, descrito pela equação Q C dt dQ R V = 0 , para a qual V 0 é a tensão contínua de alimentação do circuito, R a resistência, C a capacitância, Q a carga elétrica acumulada no capacitor e dt dQ i = a corrente do circuito. (3) condução de calor num material sólido, descrito pela equação de Fourier dx dT kA q = & , na qual q & é o fluxo térmico, k a condutividade térmica, A a área de secção transversal ao fluxo térmico, T a temperatura e x a coordenada espacial na direção do fluxo de calor. (4) pêndulo simples, descrito pela equação θ - = θ sen g dt d l 2 2 , na qual q é o ângulo formado pelo pêndulo em relação ao eixo vertical, g a aceleração da gravidade, l o comprimento do pêndulo e t o tempo. Dos exemplos citados, vemos que o grau (ou ordem) de uma equação diferencial pode variar. O grau de uma equação diferencial é definido pelo termo da equação que contém a derivada de maior ordem. Por exemplo, a seguinte equação diferencial 0 2 = - x ´ y é uma equação diferencial de 1 o grau porque a derivada é de 1 a ordem. Já a equação diferencial 0 8 5 2 = - - x y y y x y é uma equação diferencial de 3 o grau porque o termo de derivada de maior ordem é de 3 a ordem. Se a solução de uma equação diferencial y for uma função de uma única variável x, isto é, se y = y(x), então a equação diferencial é chamada de equação diferencial ordinária. Definição Uma equação diferencial ordinária de grau n é uma equação que pode ser descrita na forma geral como: ) y , , y , y , y , x ( f y ) n ( ) n ( 1 - = K (1)

Transcript of 7 - EDO

Page 1: 7 - EDO

Solução Numérica de Equações Diferenciais Ordinárias 7 - 1

Cálculo Numérico e Computacional C.Y. Shigue

Solução Numérica de Equações Diferenciais Ordinárias

Introdução

Diversos problemas técnicos e científicos são descritos matematicamente por equaçõesdiferenciais que representam variações das quantidades físicas que os descrevem. Algunsexemplos de equações diferenciais são:

(1) reação química de 1a ordem BA →← , descrita pela equação A

A kCdt

dC−= , na qual CA é a

concentração do reagente A, k a constante da reação e t o tempo decorrido desde o inícioda reação.

(2) descarga de um circuito elétrico contendo uma resistor em série com um capacitor,

descrito pela equação QC

dt

dQRV +=0 , para a qual V0 é a tensão contínua de alimentação

do circuito, R a resistência, C a capacitância, Q a carga elétrica acumulada no capacitor e

dtdQ

i = a corrente do circuito.

(3) condução de calor num material sólido, descrito pela equação de Fourier dxdT

kAq =& , na

qual q& é o fluxo térmico, k a condutividade térmica, A a área de secção transversal aofluxo térmico, T a temperatura e x a coordenada espacial na direção do fluxo de calor.

(4) pêndulo simples, descrito pela equação θ−=θ

seng

dt

dl2

2, na qual θ é o ângulo formado

pelo pêndulo em relação ao eixo vertical, g a aceleração da gravidade, l o comprimento dopêndulo e t o tempo.

Dos exemplos citados, vemos que o grau (ou ordem) de uma equação diferencial podevariar. O grau de uma equação diferencial é definido pelo termo da equação que contém aderivada de maior ordem. Por exemplo, a seguinte equação diferencial 02 =−+xy é umaequação diferencial de 1o grau porque a derivada y´ é de 1a ordem. Já a equação diferencial

0852 =+−+′+′′−′′′ xyyyxy é uma equação diferencial de 3o grau porque o termo dederivada de maior ordem é de 3a ordem. Se a solução de uma equação diferencial y for umafunção de uma única variável x, isto é, se y = y(x), então a equação diferencial é chamada deequação diferencial ordinária.

Definição

Uma equação diferencial ordinária de grau n é uma equação que pode ser descrita naforma geral como:

)y,,y,y,y,x(fy )n()n( 1−′′′= K (1)

Page 2: 7 - EDO

Solução Numérica de Equações Diferenciais Ordinárias 7 - 2

Cálculo Numérico e Computacional C.Y. Shigue

sendo que n

n)n(

dx

ydy ≡ empregando a notação de Leibniz.

Uma equação diferencial ordinária (E.D.O.) de 1a ordem para duas variáveis x e y édefinida como uma equação da forma espacial:

′ = =ydydx

f x y( , ) (2)

ou para duas variáveis y e t, na forma temporal como:

& ( , )ydydt

f y t= = (3)

No caso particular f(x,y) = f(x), podemos obter a solução geral para E.D.O. de 1a ordem (2)por separação de variáveis:

dx)x(fdy)x(fdxdy

y ⋅=⇒==′ (4)

que pode ser integrada diretamente como:

∫ +⋅= Cdx)x(fy (5)

onde C é a constante de integração. Para obtermos uma solução particular (ou seja, um valorespecífico para a constante C), é necessário fornecer uma condição de contorno para aequação (2):

f x y C( , )0 0 0= (4)

Se y = y(x) é uma solução, então dy/dx = f(x,y) e y0 = y(x0) é a condição de contorno daequação (2).Se considerarmos a E.D.O. (3) em que a variável t representa o tempo, então a condição paraobtenção de uma solução particular de (3) é chamada condição inicial (análoga à condição decontorno, somente que esta se aplica a problemas envolvendo apenas coordenadas espaciais).

Exemplo 1

Seja a E.D.O. de 1a ordem: yy =′ , cuja solução analítica geral é expressa por xCey = . Seimpusermos como condição de contorno y(0) = 1, isto é, em x = 0, y = 1 e substituirmos na

solução geral, vem que, CCe == 01 .Portanto, a solução particular da E.D.O. y’ = y é obtida substituindo-se o valor da constantede integração C calculada da condição de contorno y(0) = 1, resultando:

xey =

Page 3: 7 - EDO

Solução Numérica de Equações Diferenciais Ordinárias 7 - 3

Cálculo Numérico e Computacional C.Y. Shigue

Exemplo 2Seja a E.D.O. de 1o grau, y' = x + y, cuja solução analítica, obtida pelo Método dos FatoresIntegrantes1, é expressa por: y(x) = Cex -x - 1. Se adotarmos a condição de contorno y(0) = 0,vem que y(0) = C - 1 = 0. Portanto, C = 1, que substituindo na solução geral, resulta a soluçãoparticular: y(x) = ex - x - 1.

É importante salientar que a solução geral representa uma família de soluções (isto é,um conjunto infinito de soluções) e que a solução particular representa uma solução única.Como nos métodos numéricos pressupõe-se que a solução do problema seja única, isto irárequerer na descrição do problema a especificação da condição de contorno juntamente com aequação diferencial.

Método de Euler

O Método de Euler é um método aproximado de 1a ordem, isto é, ele aproxima asolução da E.D.O. de 1o grau y(x) = y(x) por uma função de 1o grau, isto é, por uma reta. AFig. 6.1 ilustra a aproximação da solução exata y = y(x) por uma solução aproximada y ,obtida pelo prolongamento de uma reta tangente à curva de y = y(x) até o valor de x para oqual deseja-se obter a solução da E.D.O.

A equação genérica para o cálculo da solução de uma E.D.O. de 1o grau pelo Métodode Euler é expressa por:

y y hf x yi i i i+ = +1 ( , )para a qual

h x xi i= −+1

Exemplo 3:Seja a E.D.O. y’ = x, com a condição de contorno y(0) = 2. Calcular a solução da E.D.O.empregando o método de Euler em x = 2.No enunciado do exemplo não foi especificado o valor do sub-intervalo de integração h, demodo que vamos calcular inicialmente com h = 1.A equação do método de Euler para a E.D.O. do exemplo tem a forma:

iii xhyy .1 +=+

À partir da condição de contorno, x = 0, até o valor de x = 2, existem dois valores da solução aserem calculados: em x = 1 e em x = 2. A seguir estão apresentadas as contas para o cálculo dasolução aproximada da E.D.O. nesses dois pontos.

1 Matemática Superior, E. Kreyszig, Livros Técnicos e Científicos, Rio de Janeiro,1969, p.69.

Page 4: 7 - EDO

Solução Numérica de Equações Diferenciais Ordinárias 7 - 4

Cálculo Numérico e Computacional C.Y. Shigue

(a) h = 1

i = 0 x1 = x0 + h = 0 + 1 = 1y1 = y0 + h.x0 = 2 + 1.0 = 2

i = 1 x2 = x1 + h = 1 + 1 = 2y2 = y1 + h.x1 = 2 + 1.1 = 3

Assim, a solução da E.D.O. y’ = x em x = 2 é igual a y = 3.

Vamos repetir o cálculo agora para h = 0,5

(a) h = 0,5

i = 0 x1 = x0 + h = 0 + 0,5 = 0,5y1 = y0 + h.x0 = 2 + 0,5.0 = 2

i = 1 x2 = x1 + h = 0,5 + 0,5 = 1,0y2 = y1 + h.x1 = 2 + 0,5.0,5 = 2,25

i = 2 x3 = x2 + h = 1,0 + 0,5 = 1,5y3 = y2 + h.x2 = 2,25 + 0,5.1,0 = 2,75

i = 3 x4 = x3 + h = 1,5 + 0,5 = 2,0y4 = y3 + h.x3 = 2,75 + 0,5.1,5 = 3,5

Assim, a solução da E.D.O. y’ = x em x = 2 é igual a y = 3,5.

Vamos comparar os dois resultados com a solução analítica:

∫ ∫ +=⇒=⇒= Cx

ydxxdyxdxdy

2.

2

A constante de integração C é avaliada substituindo-se a condição de contorno na soluçãoanalítica:

220

22)0(2

=⇒+=⇒= CCy

Desta forma, a solução analítica particular para este problema é: 22

2

+=x

y . Calculando-se a

solução exata em x = 2, resulta y(2) = 42222

=+ .

Assim, o erro da solução pelo método de Euler com h = 1 valevalor exato - valor aproximado = 4 - 3 = 1, enquanto que para h = 0,5 o erro vale

Page 5: 7 - EDO

Solução Numérica de Equações Diferenciais Ordinárias 7 - 5

Cálculo Numérico e Computacional C.Y. Shigue

4 - 3,5 = 0,5. Observa-se, assim, que quando o intervalo h é reduzido pela metade, o erroreduz-se pela metade.

Para verificarmos este resultado, vamos calcular a solução aproximada de uma outra E.D.O.pelo método de Euler com diferentes valores de h e comparar com a solução exata.

Exemplo 4:Seja a E.D.O. y’ = y, com a condição de contorno y(1) = 1. Calcular a solução da E.D.O.empregando o método de Euler em x = 2, para h = 0,5 e h = 0,25.Neste exemplo, por questão de conveniência, vamos realizar os cálculos numa tabela quesumariza os resultados.A equação do método de Euler para a E.D.O. y’ = y é:

iii yhyy .1 +=+

(a) h = 0,5

i xi yi yi+1

0 1,0 1,0 1,51 1,5 1,5 2,252 2,0 2,25

(b) h = 0,25

i xi yi yi+1

0 1,0 1,0 1,251 1,25 1,25 1,56252 1,5 1,5625 1,95313 1,75 1,9531 2,44144 2,0 2,4414

(c) A solução analítica é dada por:

∫ ∫ ′+=⇒=⇒= Cxydxy

dyy

dxdy

ln

Re-escrevendo a solução analítica na forma y = f(x), resulta:

xCey =

A constante de integração C é calculada a partir da condição de contorno do problema:

1111)1( −=⇒=⇒= eCCey

Page 6: 7 - EDO

Solução Numérica de Equações Diferenciais Ordinárias 7 - 6

Cálculo Numérico e Computacional C.Y. Shigue

que, substituindo na solução analítica geral, resultará na expressão: 1−= xey como soluçãoanalítica particular do problema.Calculando-se a solução exata em x = 2, obtém-se y(2) = e2-1 = e1 = 2,7183. Comparando-se oresultado exato com os resultados aproximados de (a) e (b), resulta:

h = 0,5 erro = 2,7183 – 2,25 = 0,47h = 0,25 erro = 2,7183 – 2,4414 = 0,28

o que corresponde a uma redução de 1,7 vezes no erro quando o intervalo h é reduzido pelametade.

Método de Euler Estendido

Para reduzir o erro de truncamento do Método de Euler, propôs-se a aproximação dasolução y(x) = y(x) por uma função de 2a ordem, a partir da série de Taylor, na forma:

y y hf x yh

f x yi i i i i i+ = + + ′1

2

2( , ) ( , )

Observar que, além do cálculo da derivada da função y = y(x), este método requer o cálculo dasua derivada segunda também.

Método de Euler Modificado ou Aperfeiçoado

Para evitar o cálculo da derivada segunda, propôs-se o Método de Euler Modificado,que consiste na correção do valor estimado yi+1 , tomando-se a derivada da função y = y(x)em xi+1 e calculando-se a inclinação da reta de aproximação em xi como a média entre asinclinações das retas tangentes em xi e xi+1.

[ ]y yh

f x y f x h yi i i i i i+ += + + +1 12( , ) ( ,

Métodos de Runge-Kutta

Os Métodos de Runge-Kutta consistem em métodos de aproximação de 2a e 4a ordem.No caso do Método de Runge-Kutta de 2a ordem, a expressão para o cálculo aproximado deyi+1 é equivalente à do Método de Euler Modificado, ou seja,

[ ]y yh

f x y f x h yi i i i i i+ += + + +1 12( , ) ( ,

que pode ser reescrito na forma:

Page 7: 7 - EDO

Solução Numérica de Equações Diferenciais Ordinárias 7 - 7

Cálculo Numérico e Computacional C.Y. Shigue

( )y yh

k k

k f x y k f x h y hk

i i

i i i i

+ = + +

= = + +

1 1 2

1 2 1

2( , ) ( , )

A fórmula do Método de Runge-Kutta de 4a ordem é dada por:

( )y yh

k k k k

k f x y

k f x h y hk

k f x h y hk

k f x h y hk

i i

i i

i i

i i

i i

+ = + + + +

== + += + += + +

1 1 2 3 4

1

2 1

3 2

2 3

62 2

2 2

2 3

( , )

( / , / )

( / , / )

( , )

Exemplo 5Seja a equação diferencial ordinária y’ – y = 1 – x, com a condição de contorno y(1) = -2,calcular a solução numérica empregando o método de Euler, o método de Euler Modificado eo método de Runge-Kutta de 4a ordem. Vamos verificar numericamente que a solução pelométodo de Runge-Kutta de 2a ordem é igual à do método de Euler Modificado. Sendo asolução exata y(x) = Cex + x, vamos calcular a constante de integração e, à partir da soluçãoexata particular, determinar o erro para cada um dos métodos numéricos.

SoluçãoRe-escrevendo a E.D.O. na forma canônica, y’ = y – x + 1, vem que:

f(x,y) = y – x + 1

A condição de contorno, x0 = 1, y0 = -2 que, substituindo na solução exata geral, y(x) = Cex +x, vem que C = -1,10364, de modo que a solução exata particular da E.D.O. é expressa como:

y(x) = -1,10364ex + x (solução exata)

1. Método de Euler h = 0.2

yi+1 = yi + h.f(xi,yi) = yi + h.(yi – xi + 1)

Os resultados dos cálculos estão apresentados na Tabela seguinte.

i xi yi yexato erro = |yi - yexato| f(xi,yi) xi+1 yi+1

0 1.0 -2.00 -2.00 0.00 -2.00 1.2 -2.401 1.2 -2.40 -2.46 0.06 -2.60 1.4 -2.922 1.4 -2.92 -3.08 0.16 -3.32 1.6 -3.583 1.6 -3.58 -3.87 0.28 -4.18 1.8 -4.424 1.8 -4.42 -4.88 0.46 -5.22 2.0 -5.46

Page 8: 7 - EDO

Solução Numérica de Equações Diferenciais Ordinárias 7 - 8

Cálculo Numérico e Computacional C.Y. Shigue

5 2.0 -5.46 -6.15 0.69 -6.46 2.2 -6.766 2.2 -6.76 -7.76 1.00 -7.96 2.4 -8.357 2.4 -8.35 -9.77 1.42 -9.75 2.6 -10.308 2.6 -10.30 -12.26 1.96 -11.90 2.8 -12.689 2.8 -12.68 -15.35 2.67 -14.48 3.0 -15.58

10 3.0 -15.58 -19.17 3.59 -17.58 3.2 -19.0911 3.2 -19.09 -23.88 4.78 -21.29 3.4 -23.3512 3.4 -23.35 -29.67 6.32 -25.75 3.6 -28.5013 3.6 -28.50 -36.79 8.29 -31.10 3.8 -34.7214 3.8 -34.72 -45.53 10.82 -37.52 4.0 -42.2215 4.0 -42.22 -56.26 14.04 -45.22 4.2 -51.2716 4.2 -51.27 -69.40 18.13 -54.47 4.4 -62.1617 4.4 -62.16 -85.49 23.33 -65.56 4.6 -75.2718 4.6 -75.27 -105.19 29.92 -78.87 4.8 -91.0419 4.8 -91.04 -129.30 38.26 -94.84 5.0 -110.0120 5.0 -110.01 -158.79 48.78 -114.01 5.2 -132.82

2. Método de Euler Modificado h = 0.2

y'(xi) = f(xi,yi) y'(xi+1) = f(xi+1,y*i+1) y'm = [y'(xi) + y'(xi+1)] / 2

yi+1 = yi + h.y’m

i xi yi yexato erro y'(xi) xi+1 y*i+1 y'(xi+1) y'm yi+1

0 1.0 -2.00 -2.00 0.00 -2.00 1.2 -2.40 -2.60 -2.30 -2.461 1.2 -2.46 -2.46 0.00 -2.66 1.4 -2.99 -3.39 -3.03 -3.072 1.4 -3.07 -3.08 0.01 -3.47 1.6 -3.76 -4.36 -3.91 -3.853 1.6 -3.85 -3.87 0.02 -4.45 1.8 -4.74 -5.54 -4.99 -4.854 1.8 -4.85 -4.88 0.03 -5.65 2.0 -5.98 -6.98 -6.31 -6.115 2.0 -6.11 -6.15 0.05 -7.11 2.2 -7.53 -8.73 -7.92 -7.696 2.2 -7.69 -7.76 0.07 -8.89 2.4 -9.47 -10.87 -9.88 -9.677 2.4 -9.67 -9.77 0.10 -11.07 2.6 -11.88 -13.48 -12.27 -12.128 2.6 -12.12 -12.26 0.14 -13.72 2.8 -14.87 -16.67 -15.20 -15.169 2.8 -15.16 -15.35 0.19 -16.96 3.0 -18.55 -20.55 -18.76 -18.9110 3.0 -18.91 -19.17 0.25 -20.91 3.2 -23.10 -25.30 -23.11 -23.5311 3.2 -23.53 -23.88 0.34 -25.73 3.4 -28.68 -31.08 -28.41 -29.2212 3.4 -29.22 -29.67 0.45 -31.62 3.6 -35.54 -38.14 -34.88 -36.1913 3.6 -36.19 -36.79 0.60 -38.79 3.8 -43.95 -46.75 -42.77 -44.7514 3.8 -44.75 -45.53 0.79 -47.55 4.0 -54.26 -57.26 -52.40 -55.2315 4.0 -55.23 -56.26 1.03 -58.23 4.2 -66.87 -70.07 -64.15 -68.0616 4.2 -68.06 -69.40 1.34 -71.26 4.4 -82.31 -85.71 -78.48 -83.7517 4.4 -83.75 -85.49 1.74 -87.15 4.6 -101.18 -104.78 -95.97 -102.9518 4.6 -102.95 -105.19 2.25 -106.55 4.8 -124.26 -128.06 -117.30 -126.4119 4.8 -126.41 -129.30 2.90 -130.21 5.0 -152.45 -156.45 -143.33 -155.0720 5.0 -155.07 -158.79 3.72 -159.07 5.2 -186.89 -191.09 -175.08 -190.09

Page 9: 7 - EDO

Solução Numérica de Equações Diferenciais Ordinárias 7 - 9

Cálculo Numérico e Computacional C.Y. Shigue

3. Método de Runge-Kutta de 2a ordem h = 0.2

k1 = f(xi,yi) k2 = f(xi + h,yi + hk1)

yi+1 = yi + h/2.(k1 + k2)

i xi yi yexato erro k1 k2 xi+1 yi+1

0 1.0 -2.00 -2.00 0.00 -2.00 -2.60 1.20 -2.461 1.2 -2.46 -2.46 0.00 -2.66 -3.39 1.40 -3.072 1.4 -3.07 -3.08 0.01 -3.47 -4.36 1.60 -3.853 1.6 -3.85 -3.87 0.02 -4.45 -5.54 1.80 -4.854 1.8 -4.85 -4.88 0.03 -5.65 -6.98 2.00 -6.115 2.0 -6.11 -6.15 0.05 -7.11 -8.73 2.20 -7.696 2.2 -7.69 -7.76 0.07 -8.89 -10.87 2.40 -9.677 2.4 -9.67 -9.77 0.10 -11.07 -13.48 2.60 -12.128 2.6 -12.12 -12.26 0.14 -13.72 -16.67 2.80 -15.169 2.8 -15.16 -15.35 0.19 -16.96 -20.55 3.00 -18.9110 3.0 -18.91 -19.17 0.25 -20.91 -25.30 3.20 -23.5311 3.2 -23.53 -23.88 0.34 -25.73 -31.08 3.40 -29.2212 3.4 -29.22 -29.67 0.45 -31.62 -38.14 3.60 -36.1913 3.6 -36.19 -36.79 0.60 -38.79 -46.75 3.80 -44.7514 3.8 -44.75 -45.53 0.79 -47.55 -57.26 4.00 -55.2315 4.0 -55.23 -56.26 1.03 -58.23 -70.07 4.20 -68.0616 4.2 -68.06 -69.40 1.34 -71.26 -85.71 4.40 -83.7517 4.4 -83.75 -85.49 1.74 -87.15 -104.78 4.60 -102.9518 4.6 -102.95 -105.19 2.25 -106.55 -128.06 4.80 -126.4119 4.8 -126.41 -129.30 2.90 -130.21 -156.45 5.00 -155.0720 5.0 -155.07 -158.79 3.72 -159.07 -191.09 5.20 -190.09

4. Método de Runge-Kutta de 4a ordem h = 0.2

k1 = f(xi,yi) k2 = f(xi + h/2,yi + hk1/2)

k3 = f(xi + h/2,yi + hk2/2) k4 = f(xi + h,yi + hk3)

yi+1 = yi + h/6.(k1 + 2k2 + 2k3 + k4)

i xi yi yexato erro k1 k2 k3 k4 xi+1 yi+1

0 1.0 -2.00 -2.00 0.00 -2.00 -2.30 -2.33 -2.67 1.20 -2.461 1.2 -2.46 -2.46 0.00 -2.66 -3.03 -3.07 -3.48 1.40 -3.082 1.4 -3.08 -3.08 0.00 -3.48 -3.92 -3.97 -4.47 1.60 -3.873 1.6 -3.87 -3.87 0.00 -4.47 -5.01 -5.07 -5.68 1.80 -4.884 1.8 -4.88 -4.88 0.00 -5.68 -6.34 -6.41 -7.16 2.00 -6.155 2.0 -6.15 -6.15 0.00 -7.15 -7.97 -8.05 -8.97 2.20 -7.766 2.2 -7.76 -7.76 0.00 -8.96 -9.96 -10.06 -11.17 2.40 -9.777 2.4 -9.77 -9.77 0.00 -11.17 -12.38 -12.50 -13.87 2.60 -12.268 2.6 -12.26 -12.26 0.00 -13.86 -15.34 -15.49 -17.16 2.80 -15.359 2.8 -15.35 -15.35 0.00 -17.15 -18.96 -19.14 -21.18 3.00 -19.17

Page 10: 7 - EDO

Solução Numérica de Equações Diferenciais Ordinárias 7 - 10

Cálculo Numérico e Computacional C.Y. Shigue

10 3.0 -19.17 -19.17 0.00 -21.17 -23.38 -23.61 -26.09 3.20 -23.8711 3.2 -23.87 -23.88 0.00 -26.07 -28.78 -29.05 -32.08 3.40 -29.6712 3.4 -29.67 -29.67 0.00 -32.07 -35.38 -35.71 -39.41 3.60 -36.7913 3.6 -36.79 -36.79 0.00 -39.39 -43.43 -43.83 -48.36 3.80 -45.5314 3.8 -45.53 -45.53 0.00 -48.33 -53.27 -53.76 -59.28 4.00 -56.2515 4.0 -56.25 -56.26 0.00 -59.25 -65.28 -65.88 -72.63 4.20 -69.3916 4.2 -69.39 -69.40 0.00 -72.59 -79.95 -80.69 -88.93 4.40 -85.4917 4.4 -85.49 -85.49 0.00 -88.89 -97.88 -98.78 -108.84 4.60 -105.1918 4.6 -105.19 -105.19 0.00 -108.79 -119.77 -120.87 -133.16 4.80 -129.3019 4.8 -129.30 -129.30 0.01 -133.10 -146.51 -147.85 -162.87 5.00 -158.7920 5.0 -158.79 -158.79 0.01 -162.79 -179.17 -180.80 -199.15 5.20 -194.85

Para comparação visual, o gráfico contendo as soluções numéricas e a solução exata estámostrado na Fig. 1 e os resultados numéricos resumidos na Tabela seguinte.

Tabela comparativa dos resultados numéricos e exato.

x Euler Euler Modificado Runge-Kutta 4a ordem Solução exata

1.0 -2.00 -2.00 -2.00 -2.001.2 -2.40 -2.46 -2.46 -2.461.4 -2.92 -3.07 -3.08 -3.081.6 -3.58 -3.85 -3.87 -3.871.8 -4.42 -4.85 -4.88 -4.882.0 -5.46 -6.11 -6.15 -6.152.2 -6.76 -7.69 -7.76 -7.762.4 -8.35 -9.67 -9.77 -9.772.6 -10.30 -12.12 -12.26 -12.262.8 -12.68 -15.16 -15.35 -15.353.0 -15.58 -18.91 -19.17 -19.173.2 -19.09 -23.53 -23.87 -23.883.4 -23.35 -29.22 -29.67 -29.673.6 -28.50 -36.19 -36.79 -36.793.8 -34.72 -44.75 -45.53 -45.534.0 -42.22 -55.23 -56.25 -56.264.2 -51.27 -68.06 -69.39 -69.404.4 -62.16 -83.75 -85.49 -85.494.6 -75.27 -102.95 -105.19 -105.194.8 -91.04 -126.41 -129.30 -129.305.0 -110.01 -155.07 -158.79 -158.79

Page 11: 7 - EDO

Solução Numérica de Equações Diferenciais Ordinárias 7 - 11

Cálculo Numérico e Computacional C.Y. Shigue

-160

-140

-120

-100

-80

-60

-40

-20

0

0.0 1.0 2.0 3.0 4.0 5.0x

y(x)

Euler

Euler Mod.

Runge-Kutta

Exato

Fig. 1 Gráfico com as soluções numéricas e exata da E.D.O. y’ – y = x – 1.

Exercícios propostos

1. Calcular a solução das seguintes E.D.O. de 1o grau nos valores indicados, utilizando ométodo de Euler e compare com a solução exata à partir da solução analítica:

(a) y’ + 2y = x2, y(0) = 0,25, y(2)h = 0,5 e h = 0,25

Solução analítica: Cxx

y +−=22

2

(b) y’ + y = sen x, y(0) = -0,5, y(2)h = 1,0 e h = 0,5Solução analítica: )cos(sen xxCy −=

(c) y’ + 2y = x, y(0) = 1, y(3)h = 1 e h = 0,5

Solução analítica: xCex

y 2

41

2−+−=

(d) y’ – y = 1 – x, y(1) = -2, y(2)h = 0,5 e h = 0,2Solução analítica: xCey x −=