3G Americas IPv6 LTE

download 3G Americas IPv6 LTE

of 26

Transcript of 3G Americas IPv6 LTE

  • 8/8/2019 3G Americas IPv6 LTE

    1/26

    TableOfContents

  • 8/8/2019 3G Americas IPv6 LTE

    2/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 2

    TableofContents

    1. ExecutiveSummary............................................................................................................................3

    2. Introduction.......................................................................................................................................4

    2.1

    EPSArchitecture

    ......................................................................................................................................

    4

    2.1.1 Simultaneousdualstacksupport.......................................................................................................5

    2.1.2 Addressassignmentmechanisms......................................................................................................6

    2.1.3 EvolvingpacketcoretoEPCandIPv6................................................................................................7

    3. VoiceCoreNetwork............................................................................................................................8

    3.1 IPAddressUsageintheDistributedMSC...............................................................................................8

    3.1.1 MSCtoSS7NetworkSIGTRAN........................................................................................................9

    3.1.2 MSCServertoMediaGatewayMcinterface................................................................................11

    3.1.3 MSCtoRNCforUMTSAccesssupportIuCSInterface.................................................................13

    3.1.4 MSCtoMSCInterfaces....................................................................................................................16

    3.1.5 SIPI..................................................................................................................................................18

    3.2 MigratingtheVoiceCorefromIPv4andIPv6.......................................................................................18

    4. ImpactoftheIntroductionofIPv6onSecurityinUMTS....................................................................19

    4.1 IPv6SecurityIssuesOverview...............................................................................................................19

    4.1.1 SecurityissuescommontoIPv4andIPv6........................................................................................19

    4.1.2 SecurityissuesinvolvedintransitiontoIPv6...................................................................................20

    4.1.3 SecurityissuesspecifictoIPv6.........................................................................................................21

    4.2 OverviewofUMTSSecurityandIPv6...................................................................................................23

    4.2.1 IPv6ImpactstoUMTSEndUserSecurity.........................................................................................23

    4.2.2 IPv6ImpactstoUMTSPacketNetworkSecurity..............................................................................23

    4.3 IPv6ImpactsonLTESecurityImplementation.....................................................................................24

    4.4 IPv6SecurityRecommendations..........................................................................................................24

    5. Conclusions......................................................................................................................................25

    6. Acknowledgements..........................................................................................................................25

    7. References.......................................................................................................................................25

    8. Glossary...........................................................................................................................................26

  • 8/8/2019 3G Americas IPv6 LTE

    3/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 3

    1. EXECUTIVE SUMMARY

    As the wireless networks grow and evolve, the dependency on IP addresses becomes a vital

    ingredientto

    rolling

    out

    services.

    At

    the

    same

    time

    IPv4

    addresses

    are

    being

    depleted,

    always

    on

    services(SIPbasedapplications)arealreadybeingdeployedatanincreasingrate;hence,theurgency

    tomovetoIPv6continuestobeamajorissueforoperatorsandvendorsinthewirelessindustry.

    ThepurposeofthispaperistobuildontheIPv6recommendationspresentedinthefirstiterationof

    3GAmericasIPv6WhitePaperpublishedin2008. Thefocusofthispaperincludescommonareasof

    interestthatwillaffectinteroperabilityandotherappropriateissues. Thispapercoversthefollowing

    areas:

    TheevolutiontotheEvolvedPacketCore

    Assess

    impact

    of

    IPv6

    to

    existing

    Voice

    Core

    EnsurenetworkSecurityduringtransitiontoIPv6

  • 8/8/2019 3G Americas IPv6 LTE

    4/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 4

    2. INTRODUCTION The Evolved Packet Core is the mobility core solution associated with the Evolved Universal

    Terrestrial Radio Access Network (EUTRAN),whichwas formally known as Long Term Evolution

    (LTE).EPCandEUTRANaredefinedby3GPPsRelease8specifications, inparticular[1],[2]and[3].

    Thecombination

    of

    EUTRAN

    and

    EPC

    is

    called

    Evolved

    Packet

    System

    (EPS).

    2.1 EPS ARCHITECTURE

    TheEPSarchitectureisdepictedinthefollowingfigure.

    Figure1:EvolvedPacketSystem

    EUTRAN introduces a new radio interface technology. A base station that supports this radio

    interfacetechnologyiscalledEvolvedNodeB(eNB).

    TheEPCarchitectureconsistsofaMobilityManagementEntity(MME)andtwogateways,theServing

    Gateway(SGW)andthePacketDataNetworkGateway(PDNGWorPGW).

    TheMME is responsible for controlplane functions:authentication,mobilitymanagement,paging

    and signaling security.Manyof the functionsandprotocols supportedby theMMEare similar to

    thosesupportedbySGSNsinUMTSdeployments.IncontrasttotheSGSN,theMMEsolelydealswith

    control

    protocols.

    User

    plane

    traffic

    flows

    directly

    between

    the

    eNB

    and

    the

    gateways.

    Thetwogatewaysmaybecombined inasinglenetworkelement.InthecasethatSGWandPGW

    areseparatenetworkelements, thereare twooptions for theprotocolusedbetween them:GPRS

    TunnelingProtocol(GTP)andProxyMobileIPv6(PMIPv6).

  • 8/8/2019 3G Americas IPv6 LTE

    5/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 5

    2.1.1 SIMULTANEOUS DUALSTACKSUPPORT

    Similar to the concept of PDP Context, which is defined in 3GPPs R7 specifications, the R8

    specifications identify EPS bearers. An EPS bearer is a logical connection between a UE and a

    gateway,associatedwithaspecificQoSClass.AnEPSbearercancarrymultipleServiceDataFlows

    (SDF),as

    long

    as

    these

    SDFs

    belong

    to

    the

    same

    QoS

    class

    IncontrasttothePDPContextdefinition in3GPPR7,anEPSbearercancarrybothnative IPv4and

    IPv6 traffic. Therefore, a UE can support simultaneously an IPv4 and an IPv6 stack while being

    connectedthroughasingleEPSbearer.

    Inaprevious3GAmericaswhitepaperonIPv6([4]),itwasarguedthatinUMTSdeployments,support

    ofsimultaneousdualstackwasimpractical,becausethenumberofPDPContextthatwouldneedto

    be setupwouldbeunacceptablyhigh. SinceEPCallowsboth IPv4and IPv6 trafficona singleEPS

    bearer,supportofsimultaneousdualstackinEPCdoesnotsufferfromthesameproblem.

    Ofcourse,

    allocating

    both

    IPv6

    and

    IPv4

    addresses

    to

    adevice

    does

    not

    solve

    the

    problem

    of

    IPv4

    exhaustion.AserviceprovidermaythereforedecidetoassignonlyIPv6addressestocertaindevices,

    evenwhenthedeviceisabletosupportIPv4andIPv6simultaneously. Inthatcase,NATPT(seeRFC

    2766) or IPv6toIPv4 httpproxy functionalitymay be required to connect these IPv6onlydevices

    with legacyIPv4endpoints.Suchadecisionneedscarefulconsiderationandthe issues identifiedin

    RFC4966(NATPTIssuesAnalysis)needtobetakenintoaccount.

    Note that the 3GPP R8 specs also provide updates to UMTS specifications. An R8based UMTS

    networkcancarrybothIPv4andIPv6trafficoverasinglePDPContext.

  • 8/8/2019 3G Americas IPv6 LTE

    6/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 6

    2.1.2 ADDRESSASSIGNMENT MECHANISMS

    AUserEquipmentdevice(UE)obtainsanIPaddressinoneoftwoways:

    - aspartoftheattachmentprocedure

    - viasseparateassignmentprocedure,suchasDHCPorIPv6StatelessAddress

    Autoconfiguration

    Theattachmentprocedureisdepictedinthefollowingfigure:

    Figure2:Attachmentprocedure

    Theattachmentprocedureconsistsofthefollowingsteps:

    1. The User Equipment (UE) requests attachment by sending amessage to theMME. This is

    followedbyanauthenticationprocedurethat involvestheHSS.Aspartofthisprocedure,the

    HSSsendssubscriptiondataassociatedwiththeusertotheMME.

    2. TheMME is,witha fewexceptions, responsible forselecting theServingandPDNGateways

    thatwillbeusedforthisUE.Itsendsarequestfortheestablishmentofthedefaultbearerto

    theSGW,whichforwardsittothePGW.Thismessageexchangeresultsintheestablishment

    ofaGTPtunneloraMobileIPtunnelsegmentbetweenSGWandPGW.Thissegmentremains

    up,aslongastheuserisattached,evenwhentheUEenterstheidlestate.

    3. Asalaststep,theMMEorchestratestheestablishmentoftheGTPtunnelsegmentbetweenS

    GWand

    eNB

    and

    the

    (default)

    radio

    bearer

    between

    eNB

    and

    UE.

    The

    bearer

    between

    SGW

    andUE is torn downwhenever theUE goes to idle state. If the SGW receives IP packets

    destined fortheUEwhile it is in idlestate,theSGWtriggerstheMMEwhichstartsapaging

    procedure.

    In the case IP addressassignment ispartof theattachmentprocedure, thePGWallocatesan IP

    addresstotheUEaspartofstep2.ThisaddressisconveyedtotheUEintheGTPcontrolmessages

    thatareusedtoestablishtheEPSbearerinstep3.

  • 8/8/2019 3G Americas IPv6 LTE

    7/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 7

    Onceadefaultbearer isestablished (withorwithout IPaddressassignment), theUE canperform

    DHCPorIPv6StatelessAddressAutoconfiguration(SLAAC)toobtainanIPaddress.Thus,forexample,

    aUEcouldobtainanIPv4addressaspartoftheattachmentprocedureandanIPv6addressthrough

    anadditionalIPv6SLAACprocedure.

    2.1.3

    EVOLVINGPACKET

    CORE

    TO

    EPC

    AND

    IPV6

    Introduction of LTE requires new or upgraded NodeBs and new mobility gateways in the core

    network.Manyserviceproviders,however,willgraduallyupgradetheirnetworkstoLTE.Therefore,

    LTEandUMTS(andprevioustechnologies)willbedeployedsimultaneously.

    ThefollowingfigureshowshowLTEandUMTSnetworksinterface.

    Figure3:CombinedLTEandUMTSnetworkarchitecture

    WhenaUE,afterattaching throughanLTE radio link,movesoutof the reachofLTEeNBs, itmay

    havetofallbacktoUMTS.ThehandovertoUMTSisorchestratedbytheMME,whichinterfaceswith

    thetargetSGSN.ThePDPContextisroutedviatheSGSNtotheSGWtowhichtheUEwaspreviously

    connected.

    If theUE isadualstackdevicewith its IPv4and IPv6stacksimultaneouslyactive,ahandovermay

    haveimpactonitsoperations.IftheUEishandedovertoanR8compliantUMTSnetwork,thereare

    noconsequences,astheR8PDPContextcancarryboth IPv4and IPv6traffic.However, iftheUE is

    handedover to anR7compliantUMTSnetwork (which is themore likely scenario), thisdoesnot

    work,sinceanR7PDPContextcarrieseitherIPv4trafficorIPv6traffic,butnotboth.

    3GPPstandards

    specify

    aone

    to

    one

    mapping

    between

    EPS

    bearers

    and

    PDP

    contexts.

    This

    implies

    thatanoperatoreitherneedstoupgradeallSGSNs(connectedtotheEPC)toRel8,ordisabledual

    stackoperationovertheEPSnetwork.Inthe lattercase,aUEthatrequestsdualstackoperationat

    attachment to the EPS network will only receive a singlestack bearer, say for IPv4, and it will

    subsequentlyneedtoinitiateasecondbearerestablishmenttowardsthesameAPNforIPv6.

  • 8/8/2019 3G Americas IPv6 LTE

    8/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 8

    3. VOICECORENETWORKVoicetelephonyservicesina3GPPnetworkaretraditionallyprovidedbyaMobileservicesSwitching

    Centre(andsupportinginfrastructure)and/oranIPMultimediaSystem.

    Asthe

    name

    implies,

    IP

    Multimedia

    Subsystems

    (IMS)

    rely

    heavily

    on

    IP

    protocol.

    Per

    3GPPP

    standards,IMSequipmentshouldbedeployedusingIPv6therebyavoidingtheneedforafutureIPv4

    toIPV6migration.

    WhereasnewIMSequipmentwilltypicallybedeployedwithIPv6,existingvoicecoreequipmentwill

    stillbeutilizing IPv4. Since theMSC is at theheartof any existing 3GPP voice core, this section

    focuses on the use of IP in the Mobileservices Switching Centre (MSC). As part of the MSC

    discussion,IPinterfacestosubtendingvoicecorenetworkelementsarealsocovered.

    3.1 IP ADDRESSUSAGE IN THE DISTRIBUTED MSC

    The Mobileservices Switching Centre (MSC) performs all CS domain switching and signalling

    functionsforGSMandUMTSmobilestations located inaspecificgeographicalarea. TheMSCcan

    beimplementedinanintegratedplatformorintwodistinctphysicalentities.

    WhendividedintotwophysicalentitiestheMSCconsistsofanMSCServer,handlingonlysignalling,

    andaMGW,handlinguserdata. Thisarchitectureofdividing the signalling server from thedata

    planeissometimesreferredtoasadistributedMSC.

    Figure4. GSM/UMTSVoiceCorewithaDistributedMSC

    STP HLR

    NodeB

    BTS

    BSC

    BTSBaseTransceiverStation

    BSCBaseStationController

    HLRHomeLocationRegister

    MSCMobileSwitchingCentre

    MSCSMSCServer

    Distributed MSC

    MSCS

    MGW

    TCUBTS

    RNC

    MSCS

    Distributed MSC

    MGW

    NodeB

    SIGTRANorSS7

    Network

    Mc

    (H.248)

    SIP-I or

    Nc

    Iu-CSMc

    (H.248)

    A Interface

  • 8/8/2019 3G Americas IPv6 LTE

    9/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 9

    Dependentonthevendor implementation,thedistributedMSCmaybeenhancedtofunction inan

    IMS environment as a Telephony Application Server (TAS), MGCF/IMMGW, IMSSF, MRF, MSC

    enhancedforICS,MSCenhancedforSRVCCetc.,ormaybeextendedtoserviceSIPuserequipment

    directly.

    Forinterconnect,

    adistributed

    MSC

    will

    typically

    utilize

    amix

    of

    packet

    or

    cell

    based

    protocols

    including IP and/or ATM. Since IP interfaces in a distributedMSC environment are generally a

    supersetofanintegratedMSC,thispaperassumesadistributedMSCasthereferencepoint.

    EveryinstanceofanIPaddressmustbeconsideredwhenmigratingfromIPv4toIPv6oroperatingin

    a dualstack environment. The following subsections identifywhere IP addresses are typically

    utilizedwithinthedistributedMSC.

    3.1.1 MSC TO SS7 NETWORK SIGTRAN

    InaGSM,UMTS,or4Gnetwork,theMSCmayconnecttootherSSPs,STPs,orSCPs(suchastheHLR)

    viaatraditionalSS7protocolstackorviaSIGTRAN.

    SIGTRAN, as defined in RFC 2719 and RFC 4166, is a set of protocols that allow circuit switch

    telephonymessages,suchasMediaGatewaycontrolandSS7messages, tobe reliably transported

    overanIPnetwork. SIGTRANconsistsofthreecomponents: astandardIPlayer,anSCTPlayer,and

    useradaptationlayer(s).

    When migrating networks from IPv4 to IPv6, all three of the SIGTRAN components must be

    considered. Components above SIGTRAN are also relevant when migrating from IPv4 to IPv6;

    however,discussionforupperlayersignalingcomponentsisreservedforsubsequentsections.

    SignalingProtocols

    (maycontainembeddedIP@)

    UserAdaptationLayer: M2PA,M2UA,M3UA,SUA

    (SUAmaycontainembeddedIP@)

    SCTP(embeddedIP@)

    IP

    L1

    Figure5.

    SIGTRAN

  • 8/8/2019 3G Americas IPv6 LTE

    10/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 10

    3.1.1.1 SCTP

    TomeettheperformancerequirementsofatelephonynetworkinanIPenvironment,SIGTRANuses

    theSCTPprotocoldefined inRFC3257. SCTP isaconnectionorientedprotocolthatoffersmultiple

    servicesincluding:Multihoming,Multistreaming,Heartbeat,amongothers.

    Whenmigrating from IPv4to IPv6,ofparticularnote isSCTPsmultihomingservice. Multihoming

    allowsanassociationtosupportmultiple IPaddressesatagivenendpoint. Theuseofmorethan

    one IPaddressatanendpoint increasesnetworkrobustnessbyprovidinganalternatepathforre

    transmissionsorallowingreroutingofpacketsduringfailurescenarios.

    AspartofSCTPsmultihomingservice,SCTPcontrolpacketscarryembeddedIPaddressesduringthe

    connectionsetupprocess. ThisallowstheendpointstoexchangeIPaddresslists.

    Although SCTPsmultihoming service canprovide increasednetwork resiliency, the embedded IP

    addresses exchanged during connection setup complicate the use of aNATPT and the potential

    interworking

    between

    IPv4

    and

    IPv6

    network

    elements.

    AsdiscussedinRFC4966section2.6[5],useofNATPTwithSCTPshouldgenerallybeavoided.

    3.1.1.1 USERADAPTATION(UA)LAYERS

    AbovetheSCTPlayer,SIGTRANoffersmultipleuseradaptationlayersincluding:M2PA,M2UA,M3UA

    andSUA. TheuseradaptationlayersmimictheservicesofthelowerlayersofSS7andISDN.

    Among the adaptation layers,M3UA and SUA are IP aware and require special attention when

    migratingfromIPv4toIPv6.

    3.1.1.2.1 M3UA

    M3UAisdefinedinRFC4666. M3UAisIPawareinthatittranslatespointcodestoIPaddressesand

    viceversausingaRoutingKey. However,M3UAdoesnotexchange IPaddress informationwithin

    any of its messages. Rather, M3UA relies on point codes to identify end points and defines

    boundariesbetweenitselfandMTP3,SCTP,andLayerManagement.

    BecauseM3UAdoesnotexchangeIPaddressinformationwithinanyofitsdefinedmessages,address

    translatorswilloperatetransparentlywithinthenetworkwithrespecttoM3UAthereisnoneedfor

    an

    application

    layer

    gateway

    for

    M3UA.

    Still,

    IPv4

    and

    IPv6

    must

    be

    considered

    at

    the

    M3UA

    end

    points:attheIPprotocolportandwithintheM3UAsoftware.

    3.1.1.2.2 SUA

    SUAisdefinedinRFC3868. SUAsupportsbothconnectionlessandconnectionorientedoperations.

    SUAmaydeterminethenexthopIPaddressbasedonGlobalTitleinformation(e.g.E.164number),IP

    addressorpointcodecontainedinthecalledpartyaddress. Accordingly,someSUAmessagessuchas

  • 8/8/2019 3G Americas IPv6 LTE

    11/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 11

    CLDT (Connectionless Data Transfer), CLDR (Connectionless Data Response), Connection Request

    (CORE),ConnectionRefused (COREF),andCOAK (ConnectionAcknowledge)mayembed IPaddress

    informationasaparameter.

    3.1.2 MSC SERVER TOMEDIA GATEWAYMC INTERFACE

    InadistributedMSCenvironment,theMSCServerusesH.248ontheMcinterfacetocontrolaMedia

    Gateway. Whenplanningamigration from IPv4to IPv6ontheMc interface,aminimumofthree

    layersmustbeconsidered: thenetwork/transportlayer,theSCTPlayer,andtheH.248layer.

    3.1.2.1 NETWORK/TRANSPORTLAYER

    Atthenetwork/transportlayer,the3GPPstandardsallowforthefollowingMcinterfaceoptions:

    1.) AmixedIP&ATMconnectionH.248/M3UA/SCTP/IP/AAL5/ATMasanexample

    2.)

    Apure

    IP

    connection

    H.248/M3UA/SCTP/IP

    with

    M3UA

    as

    an

    optional

    layer.

    3.) ApureATMconnection H.248/MTP3b/SSCF/SSCOP/AAL5/ATM

    ThefirsttwointerfaceoptionsbothutilizeIPandmustbeconsideredwhenmigratingfromIPv4and

    IPv6. ThethirdoptioninvolvesnoIPaddressingandisthereforeexcludedfromthispaper.

    In the first twooptions, theMc interface IP connectionsmaybeeither IPv4or IPv6.Thediagram

    belowprovidesaprotocol stack for theMc interface in thepure IPconnectionandmixed IP&

    ATMconnectioncases. NotethattheM3UAlayerisanoptionallayerinthepureIPcase. [3GPP

    TS29.232V4.17.0(200706)page11].

    H.248(embeddedIP@)

    M3UA (optionallayer)

    SCTP(embeddedIP@)

    IP

    L1

    Figure6.

  • 8/8/2019 3G Americas IPv6 LTE

    12/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 12

    3.1.2.2 SCTPANDM3UA

    TheMc interfaceuses the SCTPprotocol andmayoptionallyuse theM3UA layer asdiscussed in

    section6.1.1. TheSCTP layerembeds IPaddressesduringconnectionsetupwhichcomplicatesthe

    useofNATPTforIPv4toIPv6migrations. FormoreinformationonSCTPandM3UArefertosection

    6.1.1.

    3.1.2.2 H.248LAYER

    Above the network/transport and SCTP layers, and within H.248 layer, IP addresses are also

    embedded.

    For example, during a call setup across an IP backbone, theMSC serverwill send anH.248 Add

    requesttothelocalMGWtocreateacontext. ThelocalMGWrespondstotheMSCserverwithan

    H.248 Replymessage. Inside the Replymessage is the local descriptorwhich contains the local

    MGWsbearer IPaddress. The localdescriptormakestheMSCserverawareofthe IPtermination

    pointforwhichitmustdirecttheincomingIPmediastream.

    Similarly, the remoteMGWprovides itsbearer IPaddress to its controllingMSC serverwithin the

    H.248messaging. ThisIPaddress(partoftheRemoteDescriptor)isrelayedtothelocalMGW. The

    localMGWusesthisRemoteDescriptorIPtoappropriatelyaddresstheoutgoingmediastream.

    ThisexchangeofIPaddresseswithintheH.248layerallowsforthedynamicswitchingofVoIPpackets

    betweenMGWcontexts.

    Asmentionedintheexampleabove,H.248commandsmayspecifyanIPv4orIPv6addressanywhere

    aLocal,Remoteand/oraLocalControlDescriptorareutilized[ITUTRec.H.248.1(09/2005)Annex

    C].

    3.1.2.3 H.248.37

    BecauseH.248messagingbetweenthecallserverandMGWeffectivelyrelaysIPaddressinformation

    betweenMGWs,H.248byitselfdoesnotallowforNAPTtraversalbetweenMGWs. Toovercomethis

    limitation,H.248.37wasdeveloped.

    H.248.37allowstheMSCServerto instructaMGWto latchtoanaddressprovidedbyan incoming

    InternetProtocol (IP)applicationdata stream rather than theaddressprovidedby the call/bearer

    control.This

    enables

    the

    MGW

    to

    open

    apinhole

    for

    data

    flow.

    It

    also

    allows

    the

    MGW

    to

    ignore

    theRemoteDescriptorMGWIPaddressinformationprovidedintheH.248messaging.

    When the NAPT parameter on a termination/stream is set to LATCH, the MGW ignores the IP

    addresses received in the RemoteDescriptor. Instead, theMGWwilluse the source address and

    sourceport from the incomingmedia stream (i.e., from theother termination)as thedestination

    addressanddestinationportoftheoutgoingapplicationdata.

  • 8/8/2019 3G Americas IPv6 LTE

    13/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 13

    Ignoring theRemoteDescriptor IPaddresses in theH.248messaging,makes IPaddress translation

    within thenetwork transparent tobasicMGWoperations. Thus,H.248.37couldbeused toallow

    interworkingofanIPv4MGWwithanIPv6MGW,allowtwoIPv4MGWstocommunicateacrossan

    IPv6backbone,and/orhelpfacilitateanIPv4toIPv6migration.Still,H.248.37hasaseriouslimitation

    asdiscussedbelow.

    H.248.37assumes that themedia streamhas alreadybeen establishedandVoIP traffic is already

    flowingbetweenMGWs. ForH.248.37andNATPTtobeeffectiveinallowinginterworkingofIPv4to

    IPv6capableMGWs,themediastreammustfirstbeestablishedwithan IPaddressprovided inthe

    H.248messaging. This implies thateither the call server includesanApplication LevelGateway

    ControlFunction(ALGCF)tocontroladynamicNAT[6],oritimpliesthatstaticaddresstranslationis

    usedbetweentheMGWs.

    3.1.3 MSC TO RNC FOR UMTS ACCESSSUPPORT IUCS INTERFACE

    The

    UMTS

    access

    network

    is

    connected

    to

    the

    MSC

    via

    the

    Iu

    CS

    interface.

    Standards

    allow

    for

    Iu

    CS

    tobetransportedoverATMorIP.Witheithertransportoption,IuCSoverIPorIuCSoverATM,the

    IuCSinterfacecanbelogicallydividedintothreeareas:

    1. ControlPlane

    2. BearerControlPlane

    3. Bearer(orUser)Plane

    3.1.3.1 IU CS CONTROL PLANE

    TheIuCScontrolplanecarriesRANAPsignalingbetweentheUTRANandMSCS.

  • 8/8/2019 3G Americas IPv6 LTE

    14/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 14

    3.1.3.2 IU CS OVERIP

    For the IuCSover IP controlplane, three layersmustbe consideredwhenmigrating from IPv4 to

    IPv6:the

    network/transport

    layer,

    the

    SCTP

    layer,

    and

    the

    RANAP

    layer.

    Notice

    the

    protocol

    stack

    showninthefigurebelow(3GPPTS25.412section5.2.3).

    RANAP(embeddedIP@)

    SCCP

    M3UA

    SCTP(embeddedIP@)

    IP

    DataLinkLayer(e.g.GigE,FE)

    PhysicalLayer

    Figure7.

    Asdiscussedinsection6.1.1,SCTPoffersamultihomingservicewhichprovidesredundancybetween

    twoSCTPendpoints. Aspartofmultihoming,SCTPmessagesexchangeIPtransportlayeraddresses

    duringconnection

    setup

    [8].

    IntheRANAPlayer,transportlayerIPaddressareexchangedbetweentheRNCandMGWusingthe

    Prepare_IP_Transportprocedure.

    InthePrepare_IP_Transportprocedure,theMSCserverrequeststheMGWtoprovide IPTransport

    AddressandanIuUDPPortandprovidestheMGWwiththebearercharacteristics.AftertheMGW

    has repliedwith the IPaddressandUDPPort, theMSC server requestsaccessbearerassignment

    usingtheprovidedIPaddressandUDPPortinaccordancewith3GPPTS25.413.

    TheIPaddressesandUDPPortsoftheMGWandtheRNCareexchangedviatheRANAPprocedures.

    Ifthe

    bearer

    transport

    is

    IP

    and

    IuUP

    mode

    is

    Transparent,

    when

    the

    MSC

    receives

    the

    RANAP

    RAB

    assignment response it sends the RNC IP address and UDP Port to the MGW Access bearer

    terminationusingtheModify_IP_Transport_Addressprocedure.

    IfthebearertransportisIPandIuUPmodeisSupport,theMGWusesthesourceIPaddressandUDP

    Portof the IuUP Initpacket received from theradioaccessnetworkasthedestinationaddress for

    subsequentdownlinkpackets. TheRNC isalreadyawareof theMGW IPaddressbecause theCall

    ServerprovidestheRNCtheMediaGatewaysIPaddressintheRABAssignmentRequestmessage.

  • 8/8/2019 3G Americas IPv6 LTE

    15/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 15

    3.1.3.3 IU CS OVERATM

    IntheIuCSoverATMconfiguration,thecontrolplaneusesbroadbandSS7signalingwhichdoesnot

    requireIP.

    It

    should

    be

    noted

    however

    that

    some

    vendors,

    in

    particular

    those

    who

    have

    an

    all

    IP

    MSC

    server,

    mayconvertM3UA/IPtobroadbandSS7inaSignalingGateway(SGW)orMGW. Becausethistypeof

    implementation isvendor specific, IPv4 to IPv6migrationconcerns shouldbeworkeddirectlywith

    thevendorfortheIuCSoverATMinterface.

    3.1.3.4 IU CS BEARER CONTROLPLANE

    ThebearercontrolplaneisonlyapplicableforIuCSoverATM,anddoesnotneedtobeconsidered

    whenplanninganIPv4toIPv6migration.

    3.1.3.5

    IU

    CS

    BEARER

    (OR

    USER)

    PLANE

    TheIuCSbearercanutilizeATMorIPatthetransportlayer. InanATMconfiguration,thebeareris

    transportedoverAAL2virtualcircuitconnections. Inan IPconfiguration,bearer istransportedover

    RTP/UDP/IP[9].

    AprotocolstackoftheIuCSBearerusingIPtransportisprovidedbelow.

    RTP

    UDP

    IP

    DataLinkLayer(e.g.GigE)

    PhysicalLayer

    Figure8.

    MSCtoTCU/BSCforGSMAccesssupportAInterface

    At the timeof thewritingof thisdocument, standards forAinterfaceover IP standardswere still

    beingdevelopedby3GPP. Previously,theA interfaceimplementationdidnotutilizeorsupportIP.

    AInterfaceisthereforeexcludedfromthispaper.

  • 8/8/2019 3G Americas IPv6 LTE

    16/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 16

    3.1.4 MSC TO MSC INTERFACES

    3.1.4.1 BICCARCHITECTURE

    Bearer Independent Call Control (BICC) is a signaling protocol used to support narrowband ISDN

    serviceindependent

    of

    the

    bearer

    technology

    and

    signaling

    message

    transport

    technology

    used.

    BICCwasdeveloped tobe interoperablewithany typeofbearer, suchasATM, IP,andTDM.The

    followingsectionfocusesonBICCwhenusedinanIPnetwork.

    ThreeinterfacesaredefinedinaBICCarchitecture:

    NbMGWtoMGW

    Mc (G)MSCServertoMGW

    Nc MSCServerto(G)MSCServer

    3.1.4.2 NB INTERFACE

    TheNb interfacetransportsbearer informationbetweenMGWs.The3GPPstandardssupportTDM,

    IP,andATMtransportontheNbinterface. TheprotocolstackoftheNbinterfaceusingIPtransport

    isprovidedbelow:

    G.711 UMTSAMR/AMR2

    NbUP[29.415]

    RTP[RFC3550]

    UDP[RFC768]

    IP

    L1

    Figure9.

  • 8/8/2019 3G Americas IPv6 LTE

    17/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 17

    3.1.4.3 TUNNELING ACROSSTHEMC ANDNC INTERFACES

    Because BICC is Bearer Independent it utilizes other protocols for exchanging media stream

    characteristics.

    In

    an

    ATM

    network,

    BICC

    uses

    ALCAP/Q.2630

    signaling

    for

    bearer

    control

    of

    Nb.

    The

    ATM

    bearer

    controliscarrieddirectlybetweenMGWsalongsidethebearertraffic.

    In IPnetworks, the IP bearer control isnot carrieddirectly betweenMGWs alongside the bearer

    traffic.Nbbearercontrol istunneledbetweenMGWsvia theMcandNc interfacesusing IPBCP (IP

    BearerControlProtocolQ.1970). ThefigurebelowillustratesthepathforIPBCP.

    Figure10.

    IPBCP protocol allows the establishment and modification of IP bearers on theMGWs. IPBCP

    exchangesmediacharacteristicssuchasportnumbersand IPaddressesofthesourceandsinkofa

    mediastream.Theexchangeof informationwith IPBCP isdoneduringBICCcallestablishmentand

    afteracall

    has

    been

    established.

    IPBCP

    uses

    asubset

    of

    the

    Session

    Description

    Protocol

    (SDP)

    definedin3GPP29.414toencodetheinformation.

    Although the transport layers for theMc andNc interfacesmay consistof variousprotocols, the

    figurebelowprovidestheprotocolstackforIPBCPwhenIPisthetransporttype.

    MGW

    Nb

    MSCMSC

    MGW

    McMc

    Nc

    IPBCP

  • 8/8/2019 3G Americas IPv6 LTE

    18/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 18

    IPBCP(embeddedIP@)

    BCTP[Q.1990]

    BICC

    IP

    L1

    Figure11.

    3.1.5 SIP I

    SIPIisanextensionoftheSIPprotocol. SIPIisusedtotransportISUPmessagesacrossaSIPnetwork

    asattachmentstotheSIPmessages.

    SimilartoBICC,SIPIprovidesamechanismbywhichtwoMSCscanbeconnectedoveranIPnetwork.

    ThoughBICCwas the firstprotocolstandardizedby3GPP for interMSCVoiceover IPconnectivity,

    BICCislimitedtooperationinaGSM/UMTSenvironment. Thus,manyoperatorshaveoptedtouse

    SIPIforMSCinterconnect.

    To exchange media stream information between MGWs, SIPI utilizes the Session Description

    Protocol(SDP).

    3.2 MIGRATING THE VOICE CORE FROMIPV4 ANDIPV6

    Asdescribed in thepreceding section,migrationof the voice core from IPv4 to IPv6 isa complex

    activityrequiringconsiderationofnumerousprotocolsandlayersabovetheIPnetworklayer.

    Oneoftheprimarydriversforamigrationfrom IPv4toIPv6 istoalleviateIPaddressconsumption.

    SincethemajorityofIPaddressesareconsumedbyenduserdevices,andafullmigrationofthevoice

    corefromIPv4toIPv6ishighlycomplex,inmostcasesitwillnotbefeasibletomigrateanoperators

    entire3GPPvoicecore to IPv6. Instead, it ismuchmoreprobablethatamigrationof IPv4to IPv6

    withinthe

    voice

    core

    will

    only

    be

    targeted

    at

    specific

    interfaces.

    Forexample,anoperatormayopttoleaveallIuCS/IPandintracallserverMGWtoMGWtrafficas

    IPv4whilemakingall intercall serverMGW toMGW traffic IPv6.This typeofarchitecturewould

    allow thenetworkoperator toonly requiredual stack capableMGWson thenetworkbound (vs.

    access)interfacesandwouldavoidtheneedforanIPv6capableRNC.

  • 8/8/2019 3G Americas IPv6 LTE

    19/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 19

    4. IMPACT OF THEINTRODUCTION OF IPV6 ONSECURITY IN UMTS IPv6currentlyhas relatively limiteddeployments, thus fewvulnerabilitieshavebeenexploited. As

    adoptionexpands,likeinIPv4,attacksontheprotocolwillemergeunlesssufficientlyprotected. IPv6

    security issueshave implicationsdirectly for the IP layer,and indirectly forapplicationsupportand

    thelink

    layer.

    And

    these

    security

    issues

    can

    be

    examined

    with

    respect

    to

    end

    to

    end

    security,

    end

    togatewayandgatewaytogatewayconnections. TheimplementationofIPv6requiresextensionsto

    theexistingsecuritypolicyaswellas introducingnewsecuritypoliciesspecifictoIPv6. Thesecurity

    concerns (threatsandvulnerabilities)andspecific solutionscomprise those issuescommon to IPv4

    andIPv6,thosesecurityissuesspecifictothetransitiontoIPv6,andthosespecifictoIPv6. IPv6must

    bemanagedtoprovideanequivalentlevelofsecurityasisprovidedforIPv4.

    Thefollowingsubsectionprovidesaconcisesummaryofsecurity issuesrelatedtoIPv6. Sections0

    and0provideanoverviewofhowtheseissuesimpactordonotimpact3GPPandLTE.

    4.1

    IPV6SECURITY

    ISSUES

    OVERVIEW

    4.1.1 SECURITYISSUES COMMON TO IPV4AND IPV6

    ManysecurityissuesandsolutionscommoninIPv4implementationsprojectforwardintoIPv6.

    FirewallsarerequiredtobeupdatedtosupportfirewallrulesspecifictoIPv6,aswellasupdatesfor

    SSH(SecureShellprotocolforremotelogin/filetransfer).

    IPsec,AH (authenticationheader)andESP (encapsulatingsecuritypayload) functionessentially the

    sameforbothIPv4andIPv6. IPseccanbeusedtosupporttheroutingprotocols,RoutingInformation

    Protocol(RIP)

    &

    Open

    Shortest

    Path

    First

    (OSPFv3),

    ifrequired.

    The

    Virtual

    Private

    Network

    (VPN)

    model inusemustbeupdated toadd IPv6 support. The IPv6 configuration in IKEv2 is stillbeing

    worked on in the IETF and currently is defined with limitations with respect to IKEv2 and IPv6

    functionality. RefertoIETFdraft,IPv6ConfigurationinIKEv2.

    ForDomainNameSystem(DNS)andDNSSECthesamesecurityconcernsapplytoIPv6asIPv4. There

    is no new impact to Transport Layer Security (TLS) functionality with the introduction of IPv6.

    Applicationlayer attacks have the same vulnerabilities. No new security concerns for Border

    GatewayProtocol(BGP)areintroducedwithIPv6.

    UpdatesarerequiredtosupportIPv6for:IntrusionDetectionSystems(IDS)andIntrusionPrevention

    Systems(IPS).

    With respect to the benefits of Network Address Translation (NAT), IPv6 provides alternative

    mechanisms. NAT isoftenusedtoperformthetasksofafirewallbyestablishingdynamicstatefor

    connections to protect againstunauthorized, ingress traffic, and also to perform topology hiding.

    NATshouldnotbeusedasasubstituteforafirewall. NATisnotinvulnerableandoncecompromised

    itiseasyforattackerstoscantheprivateaddressspaceontheinsideoftheNATforopenports. It

  • 8/8/2019 3G Americas IPv6 LTE

    20/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 20

    shouldalsobenotedthatNATcomplicatestheuseofIPsecforendtoendencryption. Forexample,

    thereisadditionaloverheadrequiredtosupportUDPencapsulationandNATkeepalivemessaging.

    IPv6providesseveralmechanismstosupporttopologyhiding. ThesizeofasingleIPv6subnetmakes

    ping sweepsandport scanning fornetworkvulnerabilitiesunprofitable. Simplyassigningmultiple

    IPv6addresses

    to

    ahost,

    difficult

    in

    IPv4

    due

    to

    the

    limited

    address

    space

    and

    on

    some

    hosts

    not

    supported, can aid in concealing the nodes in the internal network. Unique Local IPv6 Unicast

    Addressingcanbeusedforaddressallocationwithinasite thistrafficisforcommunicationwithina

    siteandshouldneverberoutedoutsidetheinternalnetwork. UntraceableIPv6addressing(random

    prefixallocationwithina subnet)canbeused toconceal thesizeand topologyof thenetwork,as

    opposed tosequentialnumberingwithina subnet,commonlyemployed in IPv4due to the limited

    numberofavailableaddresses.

    RefertoLocalNetworkProtectionforIPv6(RFC4864),foramorecompleteunderstanding.

    4.1.2

    SECURITY

    ISSUES

    INVOLVED

    IN

    TRANSITION

    TO

    IPV6

    TheintroductionofIPv6hasimpactsonsecurityrelatingtothetransitionmechanismsofdualstack,

    tunneling,andtranslation.

    Dualstack

    Active IPv4onlynetworksmayalreadybevulnerable to IPv6attacks if IPv6capabledevices (dual

    stack) are included. The security policy should determinewhether IPv6 packets in the IPv4only

    network should be blocked as IPinIP packets (41 in protocol field of IPv4 header) thatmay be

    concealingIPv6inIPv4attacks.

    RefertoRFC4942,IPv6Transition/CoexistenceSecurityConsiderations,foracompletedescriptionof

    issueswithsupportingadualstackenvironment.

    Tunneling

    There are several tunneling mechanisms proposed to allow IPv6 traffic to traverse IPv4only

    networks. Some are based on static configuration and some support automatic tunneling. In

    general,statictunnelingismoresecurethanautomatictunneling,butdoesnotscalewell. Tunneling

    mechanisms thatareconstructedusing IPinIP,as6in4 staticor6to4automatic tunneling,cannot

    traverse a NAT when port translation is required (NAPT). Many of the automatic tunneling

    mechanisms,as

    6to4,

    ISATAP

    and

    Teredo,

    use

    embedded

    IPv4

    addresses

    within

    the

    128

    bits

    of

    the

    IPv6address.

    Dependinguponthetunnelingmechanismsemployed,filteringmayberequiredatfirewallstoblock

    IPinIP or IPv6 addresseswith embedded IPv4 addresses. Embedded addressingmay introduce

    vulnerabilitiesthatareabletotraversefirewalls.

  • 8/8/2019 3G Americas IPv6 LTE

    21/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 21

    Refer to IPv6OperationsandSoftwires IETFworkinggroups foradditionalRFCsanddraftson IPv6

    securitymechanismsrelatedtotunneling,www.ietf.org.

    Translation

    Referto IETFdraft,AComparisonofProposalstoReplaceNATPT,forcurrentstatusofpossibleco

    existencemechanisms.

    RefertothefollowingreportsforamorecompleteunderstandingofIPv6securityissues:

    NorthAmericanIPv6TaskForce(NAv6TF)TechnologyReport,

    http://www.6journal.org/archive/00000287/01/nav6tf.analysis_ipv6_features_and_usabilit

    y.pdf

    IPv6andIPv4ThreatComparisonandBestPracticeEvaluation,

    http://www.seanconvery.com/v6v4threats.pdf

    4.1.3 SECURITYISSUES SPECIFICTO IPV6

    IPv6addressselectionalgorithm(sourceanddestination)securityhasimpactswithrespecttoingress

    filtering and attempts at session hijacking. This concern also applies for dualstack nodes and

    tunnelingenvironments.

    IPv6privacyextensions,whichareusedtovarytheInterfaceIdentifybytheendnode,canbeusedto

    thwartdeviceprofiling.

    New firewall rules for IPv6are required to supportpolicy for ICMPv6and IPv6extensionheaders:

    which

    ICMP

    messages

    to

    allow

    or

    deny,

    e.g.,

    Packet

    Too

    Large

    for

    PMTU,

    which

    extension

    headers

    to

    allowordeny,e.g.,denyRoutingHeaderType0,whethertoallowRoutingHeaderType2forMIPv6

    RouteOptimization. RefertoRFC4890,RecommendationsforFilteringICMPv6MessagesinFirewalls

    andRFC4942,IPv6Transition/CoexistenceSecurityConsiderations.

    IPv6 stateless address autoconfiguration uses new ICMP messages in Router Advertisements

    (RA)/Router Solicitations (RS) and Neighbor Advertisements (NA)/Neighbor Solicitations (NS) that

    assistanIPv6node inconstructinganIPv6address. Newvulnerabilitiesare introduced ifthelink is

    compromised. NA/NS and RA/RS can be protected using a linklevel securitymechanism, as, for

    example,theSecureNeighborProtocol(SEND)andCryptographicallyGeneratedAddresses(CGA)to

    determinewhethera routeron the link isa trusted router. However,deploymentofCGAmaybe

    limiteddue to IntellectualPropertyRights issuesand some technical concerns. Refer to the IETF

    workinggroup,Cga&Sendmaintenance(csi)forcurrentstatus.

    Certain IPv6addresses shouldbe filteredat the firewall, forexample: IPv6 loopback, IPv4mapped

    address, unique local address, site local address, certain multicast addresses. The IPv6 use of

    multicastaddressing introduces thepotential fornewvulnerabilities. Certainresources internal to

    the network are identifiable bymulticast addressing. These addresses should be filtered at the

  • 8/8/2019 3G Americas IPv6 LTE

    22/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 22

    networkboundary,dependingupon their scope. Theseaddressesalso introduce thepotential for

    DoS attacks. Also, IPv6 anycast addresses, such asMobile IPv6Home Agent anycast or Subnet

    Routeranycast,canpotentiallybeusedinDoSattacks.

    IPsec support is builtin to IPv6, which will allow for more instances of endtoend encryption,

    consistentwith

    the

    design

    of

    IPv6

    to

    move

    more

    of

    the

    responsibility

    for

    the

    session

    to

    the

    end

    users.

    However,enduserencryptionmakesexecutionofIDSmoredifficult. Ingeneral,consistentwiththe

    designofIPv6,somelevelofsecuritymaybemoveddowntotheendnodes,eitherforencryptionor

    attheapplicationlevel. Securitymaybetransitionedfromaperimetermodeltoadistributedmodel.

    PerformanceconsiderationsofIPv6securitymechanismsmustbebalancedagainstrisk.

    MIPv6

    Severalsecurityissues/mechanismsareintroducedwithMIPv6.

    IPseccanbeusedtosecurecommunicationbetweenthemobilenodeandthehomeagent. Asan

    alternative to IPsec,securingofbindingupdatesandbindingacknowledgementscanbeperformed

    usingMIPv6signalingmessagingbetweentheMobileNode(MN)andtheHomeAgent(HA). Referto

    RFC4285.

    InMIPv6,packet lossdue toegress filteringat theaccess router ispreventedbyplacing the IPv6

    mobilenodescareofaddressintheexternalIPheaderwheninaforeignnetwork.

    DynamicHomeAgentAddressDiscovery reliesupon special ICMPmessaging,which is required to

    passthroughthenetworkfirewalls.

    Routeoptimizationallows themobilenode and the correspondentnode to communicatedirectly

    (ratherthanviathehomeagent),withoutprearrangedsecurityassociations. Additionalmessaging

    isrequiredtoperformreturnroutabilityforrouteoptimization. Inrouteoptimization,amobilenode

    reveals its careofaddress (currentpointof attachment) to the correspondentnode. The careof

    addresscanbetraceabletoaparticularlocation. Itisaconcernthatamobileuserslocationcanbe

    compromisedwhenrouteoptimizationisused.

    HierarchicalMIPv6canbeusedtomitigatelocationprivacyissueswithrouteoptimization.

    IssueswithMobileIPv6securityhaveconsiderableimplicationsforendusersandthenetwork,andis

    toolargeatopictoduejusticetohere. RefertotheIETFMobilityEXTensionsforIPv6(mext)working

    grouprelated

    RFCs

    for

    additional

    information.

  • 8/8/2019 3G Americas IPv6 LTE

    23/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 23

    SecuritySupportTools

    Additionalconsiderationsincludethestatusofcommon,securitysupporttools:Nessus(vulnerability

    scanner), Nmap (port scanner), Wireshark (packet analyzer), netcat (packet read/write), hping

    (packet generator), Snort (packet sniffer), to list only few of the open source and commercial

    productswhich

    all

    have

    varying

    levels

    of

    support

    for

    IPv6.

    The

    Status

    of

    commercial

    firewalls,

    IDS

    andIPStosupportIPv6isnotmature. RefertoNationalInstituteofStandardsandTechnology(NIST)

    report,FirewallDesignConsiderationsforIPv6.

    4.2 OVERVIEW OFUMTS SECURITY ANDIPV6

    4.2.1 IPV6IMPACTSTO UMTSENDUSER SECURITY

    InPacketDateProtocol(PDP)ContextactivationusingIPv6statelessaddressautoconfiguration,the

    GatewayGPRSSupportNode (GGSN)assignsbothan IPv6 Interface Identifierand/64prefixtothe

    MobileStation(MS). Theprefixisuniquewithinitsscope. TheGGSNandMSaretheonlynodeson

    the local link, thusDuplicateAddressDetection is not required. TheMS is authenticated by the

    network and the PDP Context is tunneledwithin the network. The need for additional security

    measures,suchasSENDandCGAarenotrequiredforthePDPContextwithinthe3GPPnetwork.

    TheGGSNactsasananchorforthePDPContext,eliminatingtheneedforMIPv6,priortorelease8

    (LTE).

    3GPPsupportsIPv6privacyextensionsforthePDPAddress. ThePDPContextisidentifiedbytheIPv6

    prefixat

    the

    Serving

    GPRS

    Support

    Node

    (SGSN)

    and

    GGSN

    and

    not

    by

    the

    full

    128

    bit

    PDP

    Address.

    ForIMS,theGGSNprovidestheaddressofthePCSCFtotheMSforProxyDiscovery. TheMS,GGSN

    and PCSCFmust support the same IP version. TheMS point of attachment is at the external

    interfaceoftheGGSN. IMSreliesuponSIPsignalingbetweenenduserandPCSCFIMS. SIPsignaling

    is protected by IPsec or TLS. This protection is independent of the Access Network protection

    mechanisms.

    For IMS security, refer to IMS TS 33.203. For IPv4IPv6 interworking scenarios, refer to 3GPP TS

    23.981.

    4.2.2 IPV6IMPACTSTO UMTSPACKETNETWORK SECURITY

    SecurityprotectionisspecifiedforGTPcontroltraffic. Protectionofusertrafficisconsideredoutside

    thescopeofthestandards.

    TS32.210describestheminimumsecurityfeaturesinsupportofdataintegrity,originauthentication,

    antireplay protection, and confidentiality. 3GPP Network Domain Security provides hopbyhop

    protection,whichallowsforseparatesecuritypoliciesdependinguponwhetheralinkisintradomain

  • 8/8/2019 3G Americas IPv6 LTE

    24/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 24

    or interdomain and whether between trusted or untrusted domains. Security Gateways are

    stationedatthenetworkboundary alltrafficbetweensecuritydomains isviaaSecurityGateway.

    Authentication and integrity protection are mandatory between two security domains and

    encryptionusingESP intunnelmode isoptional. ProtectionoftrafficwithintheSecurityDomain is

    optional.

    Firewallsatnetworkboundariesarerequiredtoprotectagainstunauthorizedtraffic.

    TheIMSnetworktopologycanbehiddenbyencryptingtheIMSnetworkelementIPaddressesinSIP

    messages.

    RefertoTS33.102,33.203,33.210and33.310fordetailsofNetworkDomainSecurityandTS33.234

    forWLANinterworkingsecurity.

    4.3 IPV6 IMPACTSON LTESECURITY IMPLEMENTATION

    TheLTE

    specification

    supports

    aflat

    IP

    network

    based

    upon

    TCP/IP

    protocols.

    General

    security

    and

    enduserprivacyprinciplesfortheEPSarespecified inTS22.278. LTEspecificsecurityisdetailedin

    TS33.203,33.401,33,402and33.178.

    TheLTEUEsupportsdualstack,whichmayusesimultaneous IPv4and IPv6addresses,overanEPS

    Bearer(MIPbetweenSGWandPGW)orPDPContext(GTPtunneling).

    LTE supports interworking between 3GPP EPS and UTRAN, WLAN, CDMA, WIMAX and GERAN.

    Securehandover is supportedbetweenEPS andnonEPSaccessnetworks. This incursadditional

    complexitywithrespecttosecuritytosupportmobility,keytransferandalgorithmnegotiation,DS

    MIPv6orPMIPv6,andsupportforIPv4privateaddressing.

    4.4 IPV6 SECURITY RECOMMENDATIONS

    ItisobviousbutsignificanttostresstheimportanceoftrainingandplanningfortheadoptionofIPv6

    with respect to security. Oncea securitypolicy isestablished, it isnecessary to stay currentand

    vigilant with security vulnerabilities and with IPv6specific updates and vulnerabilities, as IPv6

    continuestobeadopted.

    Notallsecuritysupport isequal knowthecapabilities/limitationsofhostsandrouters innetwork:

    IPv6stacksupport,privacyextensions,IPsec,andfilteringcapabilities.

    Determineabalanceacrossrisk,overheadandperformanceofsecuritymechanisms.

  • 8/8/2019 3G Americas IPv6 LTE

    25/26

    3GAmericas IPv6LTEandEvolvedPacketCoreFebruary2009 25

    5. CONCLUSIONS ThegrowthofalwaysonalwaysreachableservicesandthedepletionofIPv4addressesaretwokey

    driversmovingcarrierstoconsidertransitioningtoIPv6. IPv4willcoexistwithIPv6forseveralyears;

    therefore,transitionmechanismsandcoexistencetechniqueswillbeusedasthecarrierstransition

    toIPv6.

    CarriersevolvingtheirnetworkstoLTEshouldconsidermakingIPv6arequirementfromday1. Since

    LTEEPCdoesnotsupportaCircuitSwitchedCoreaspartofthe3GPPstandard,nativesupport for

    voicewillbesupportedby the IMScore. Becausethe transition to IMSbasedVoIPwill likely take

    severalyears,itiscriticalforthecarrierstounderstandtheimpactsofIPv6ontheexistingVoiceCore

    and signaling infrastructure. Lastly, it is absolutely critical that the transition to IPv6 consider

    networksecurity.

    6. ACKNOWLEDGEMENTS Themissionof3GAmericas is topromoteand facilitate the seamlessdeployment throughout the

    Americas of the GSM family of technologies, including LTE. 3G Americas' Board of Governor

    membersincludeAlcatelLucent,AT&T(USA),Cable&Wireless(WestIndies),Ericsson,Gemalto,HP,

    Huawei,Motorola,NokiaSiemensNetworks,NortelNetworks,Openwave,ResearchInMotion(RIM),

    RogersWireless(Canada),TMobileUSA,Telcel(Mexico),TelefonicaandTexasInstruments.

    Wewould like to recognize the significantproject leadershipand important contributionsof Paul

    SmithofAT&Taswellastheothermembercompaniesfrom3GAmericasBoardofGovernorswho

    participatedin

    the

    development

    of

    this

    white

    paper.

    7. REFERENCES[1] GPRSenhancementsforEUTRANaccess(Release8);3GPPTS23.401;inprogress

    [2] ArchitectureEnhancementsfornon3GPPaccesses(Release8);3GPPTS23.402;inprogress

    [3] EvolvedUniversalTerrestrialRadioAccess(EUTRA)andEvolvedUniversalTerrestrialRadio

    AccessNetwork

    (E

    UTRAN),

    3GPP

    TS

    36.300;

    in

    progress

    [4] TransitioningtoIPv6;3GAmericas;February2008

  • 8/8/2019 3G Americas IPv6 LTE

    26/26

    8. GLOSSARY

    AAA Authentication,AuthorizationandAccounting

    ALG ApplicationLevelGateway

    APN AccessPointName

    CDR CallDetailRecord

    DAD DuplicateAddressDetection

    DHCP DynamicHostConfigurationProtocol

    DNS DomainNameServer

    EMS ElementManagementSystem

    GGSN GatewayGPRSSupportNode

    GPRS GeneralPacketRadioService

    GTP GPRSTunnelingProtocol

    HSS

    HomeSubscriber

    Server

    HTTP HyperTextTransferProtocol

    IANA InternetAssignedNumberAuthority

    ICE InteractiveConnectivityEstablishment

    IMS IPMultimediaSubsystem

    ICID IMSChargingIdentity

    NAT NetworkAddressTranslation

    NOC NetworkOperationCenter

    PCRF PolicyandChargingRulesFunction

    PCSCF ProxyCallSessionControlFunction

    PDP PacketDataProtocol

    QoS

    Qualityof

    Service

    RAB RadioAccessBearer

    RAN RadioAccessNetwork

    RIM ResearchinMotion

    RIR RegionalInternetRegistry

    RNC RadioNetworkController

    RTCP RealTimeControlProtocol

    RTP RealTimeProtocol

    SCSCF ServingCallSessionControlFunction

    SDP SessionDescriptionProtocol

    SLAAC StatelessAddressAutoConfiguration

    SIP SessionInitiationProtocol

    SGSN ServingGPRSSupportNode

    UE UserEquipment

    UMTS UniversalMobileTelecommunicationsSystem

    URI UniversalResourceIdentifier

    VPN VirtualPrivateNetwork