2019 KEK WS Shimano,QWURGXFWLRQ WR +LJJV PRGH DQG +LJJV PRGH LQ LVRWURSLF SDLULQJ V ZDYH...

47
島野 Ryo Shimano 東京大学低温センター 東京大学大学院理学系研究科物理学専攻 The University of Tokyo 非従来型超伝導体のヒッグスモード Higgs mode in unconventional superconductors

Transcript of 2019 KEK WS Shimano,QWURGXFWLRQ WR +LJJV PRGH DQG +LJJV PRGH LQ LVRWURSLF SDLULQJ V ZDYH...

  • 島野 亮Ryo Shimano

    東京大学低温センター東京大学大学院理学系研究科物理学専攻

    The University of Tokyo

    非従来型超伝導体のヒッグスモードHiggs mode in unconventional superconductors

  • (1) Introduction to Higgs mode and Higgs mode in isotropic pairing(s-wave) superconductor (NbN)

    (2) Higgs mode in anisotropic pairing (d-wave) High-Tc superconductor (Bi2Sr2CaCu2Ox )

    (3) Higgs mode in multiband superconductor (FeSe0.5Te0.5)

    Outline

  • National Institute of CommunicationTechnology

    K. MakiseY. Uzawa

    H. Terai

    Z. Wang (SIMIT at present)

    Dept. of Phys., Univ. of Tokyo

    H. AokiN. Tsuji (Riken CEMS at present)

    Coworkers and Collaborators

    K. KatsumiK. Tomita

    Y. MurotaniN. YoshikawaR. Matsunaga (ISSP at present)

    NbN:

    Brookhaven National Lab.R.D. Zhong,J.Schneeloch,G.D. Gu,

    Univ. of Paris DiderotY. Gallais

    FeSexTe1-x:

    Dept. of Basic Sci., Univ. of Tokyo

    A. MaedaF. NabeshimaT. IshikawaN. Shikama

    Bi2212:

    YBCO:

    Osaka Univ.

    S. TajimaS. Miyasaka

    MgB2:

    Kitami Inst. TechH. Shibata

  • BCS theory0)',()(Δ ''

    '

    kk ccVk

    kkk

    Particle Physics and BCS theory

    Energy dispersion ofQuasiparticles in BCS

    Energy dispersion of particleand antiparticle

    1957 BCS theory(Bardeen, Cooper & Schrieffer)1960 Nambu’s theory of SSB1960-61 Nambu-Goldstone theorem1963-66 Anderson-Higgs theory(Anderson, Higgs)1967 Unified theory of electroweak interaction (Winberg& Salam)2012 Discovery of Higgs boson(CERN LHC)

    SSB of U(1) gauge symmetry

    青木秀夫: “南部理論と物性物理学” [日本物理学会誌、64, 80 (2009)]より

  • Spontaneous Symmetry breaking and collective modes

    amplitude mode

    When spontaneous symmetry breaking occurs, massless and massive collective modeswith respect to the order parameter appear.

    ReΨImΨ

    Free Energy

    phase mode

    ( Nambu-Goldstone mode)

    E

    k

  • Anderson-Higgs mechanism

    “Anderson-Higgs mechanism” or “ Brout-Englert-Higgs mechanism”“ABEGHHK'tH mechanism “

    [for Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble and 't Hooft]

    amplitude mode (Higgs boson, Higgs mode)

    E

    k

    phase mode

    ( Nambu-Goldstone mode)

    0

    Z,W boson, p-mesons, plasmon

  • Massive gauge boson(photon)in superconductors

    Meissner-Ochsenfeld effect 1933

    T>Tc T

  • Free Energy

    ReYImY

    Y0

    massive amplitude mode massive gauge boson

    Local gauge transformation

    Scalar field theory of the Anderson-Higgs mechanism

    Note that the phase degree of freedom is gone. “Gauge boson has eaten the N-G boson.”

  • Quantum quench problem

    Quenching the interaction U(t) much faster thanτΔ ~ ℏ/Δ (Δ:order parameter)

    Volkov et al., Sov. Phys. JETP 38, 1018 (1974). Barankov et al., PRL 94, 160401 (2004).Yuzbashyan et al., PRL 96, 230404 (2006).Gurarie et al., PRL 103, 075301 (2009).Podolsky, PRB84, 174522 (2011).A. P. Schnyder et al., PRB84, 214513 (2011)N. Tsuji et al., PRB 88,165115 (2013).N. Tsuji et al., PRL 110, 136404 (2013).

    Theoretical studies for dynamics of nonequilibrium BCS state after nonadiabatic excitation

    Emergence of order parameter oscillation (Higgs mode)

    0

    Free energy

    ReΨ

  • Higgs mode in superconductors

    For a review, e.g., Lee, J. Phys. Chem. Sol. 59, 1682 (1998).G. E. Volovik, and M. A. Zubkov, J. Low Temp. Phys.175, 486 (2014)

    BCS-CDW coexistent compound NbSe2

    Cf.) p-wave superfluid 3He (not Higgs, but amplitude mode as there is no Higgs mechanism)

    R. Sooryakumar and M. V. Klein, PRL 45, 660 (1980).P.B. Littlewood and C. M. Varma, PRL 47, 811 (1982).C. M. Varma, J. Low Temp. Phys.126, 901 (2002)

    M.-A. Measson, et al., PRB 89, 060503 (2014).

    For a recent review: David Pekker and C. M. Varma, Ann. Rev. Cond. Matt. Phys.6, 269(2015).

  • Quench by the injection of quasiparticles

    Ene

    rgy

    DOS

    2D(0) 2D(T)

    Energy

    DOS

    EFCooper pair

    quasiparticlephoton hn

    The gap (order parameter) is determined self-consistently with the quasiparticle distribution f (e) through the gap equation

    Quasiparticle injection by ultrafast optical pulse

  • Ene

    rgy

    DOS

    What happens if one create quasiparticelinstantaneously, t

  • 1.5

    1.0

    0.5

    0.02.01.51.00.50.0

    6x103

    4

    2

    2.01.51.00.50.0

    THz pump and THz probe experiment in NbN

    Nb0.8Ti0.2N film (12nm)/Quartz

    TC = 8.5 K, 2Δ(T=4 K) = 3.0 meV = 0.72 THz

    response time : tD D-1 ~ 2.8 ps

    Re

    σ(Ω

    -1cm

    -1)

    real-partoptical conductivity

    Frequency (THz)

    9K

    4K

    8K

    6K7K

    Inte

    nsity

    (ar

    b. u

    nits

    )

    pump pulse power spectrum

    Frequency (THz)

    5K

    Sample

    Center frequency 0.7THz~2D

    pulse width: tpump ~ 1.5 ps

    tpump/tD ~0.57 < 1

    nonadiabatic excitation condition

    THz pump pulse

    1086420Delay Time (ps)P

    ump

    Ele

    ctri

    c F

    ield

    (arb

    . un

    its) temporal waveform

  • gate

    LiNbO3

    sample

    wire grid×3

    wire grid

    ZnTeZnTe

    balanced detection

    pump THz pulse

    probe THz pulse

    electro-optic samplingtilted pulse-front scheme

    Pump

    Probe

    wire-grid polarizer

    wire-grid polarizer

    sample

    xy z

    tpp

    Pump : Epump//xProbe: Eprobe//ytpp: pump-probe delay

    Transmitted probe THz electric field:Free space EO samplingtgate: gate pulse delay

    THz pump and THz probe experiment in NbN

  • Detection of order parameter dynamics

    Temperature dependence of the probe E-field without pump

    We fixed the gate delay at tgate=t0and measure the pump-probe delay dependence

    Eprobe(tgate)

    Pro

    be E

    lect

    ric

    Fie

    ldE

    pro

    be(a

    rb. u

    nits

    )

    Gate Delay Time tgate (ps)

    tgate=t0

    At tgate=t0, the change in Eprobe is proportional to the change in the order parameter Δ.

  • Dynamics after the THz pump pulse

    THz pump-induced change in the probe E-field δEprobe(tgate=t0)

    τpump/τΔ=0.57

    86420-2-4

    1

    0

    nJ/cm2

    9.6 8.5 7.9 7.2 6.4 5.6 4.8 4.0C

    han

    ge

    of

    Pro

    be

    Ele

    ctri

    c F

    ield

    δE

    prob

    e(t g

    ate=t 0

    ) (

    arb

    . un

    its)

    Pump-probe Delay Time tpp (ps)

  • Order parameter dynamics

    Pump Intensity (nJ/cm2)

    Fre

    quen

    cy (

    TH

    z)86420-2-4

    1

    0

    nJ/cm2

    9.6 8.5 7.9 7.2 6.4 5.6 4.8 4.0

    0.6

    0.4

    0.2

    0.010864

    Pump-probe Delay Time tpp (ps)

    Cha

    nge

    of

    Pro

    be E

    lect

    ric

    Fie

    ldδE

    pro

    be(t

    gate=t 0

    ) (

    arb

    . un

    its)

    U

    ΔΔ∞ Δ0

    0

    f = 2Δ∞

    f2Δ∞

    R. Matsunaga et al., PRL111, 057002 (2013)

  • 5

    4

    3

    2

    1

    0

    -1

    -2

    -32.01.51.00.5

    5

    4

    3

    2

    1

    0

    -1

    -2

    -32.01.51.00.5

    3x104

    2

    1

    0

    6x104

    5

    4

    3

    2

    1

    02.01.51.00.5

    w/o pump 0.9 ps 1.3 ps 1.7 ps 2.1 ps 2.5 ps

    2x104

    1

    02.01.51.00.5

    w/o pump 0.7 ps 1.1 ps 1.5 ps 1.9 ps 2.3 ps

    (a) σ1 (ω) (Ω-1 cm-1) (b) σ2 (ω) (Ω-1 cm-1)

    σ1

    (ω)

    -1cm

    -1)

    σ2

    (ω)

    -1cm

    -1)

    Pu

    mp

    -Pro

    be D

    ela

    y T

    ime

    t pp

    (ps)

    Pu

    mp

    -Pro

    be D

    ela

    y T

    ime

    t pp

    (ps)

    Frequency ω (THz) Frequency ω (THz)

    Frequency ω (THz) Frequency ω (THz)

    (c) (d)

    18

    Time evolution of conductivity spectrum σ1(ω; tpp)

  • -0.1

    0.0

    1210864

    Pump-Probe Delay Time (ps)

    Data Power-law fit Exponential fit

    δEpr

    obe

    (arb

    . uni

    ts)

    exponential decay

    t= 1.3 ps

    power-law decay

    b = 0.71

    Tc=15K, 2Δ(T=4K)=1.3THz

    c2= 3.6×10-4

    c2= 2.8×10-4

    f=1.35 THz

    Power law decay

    Volkov et al., Sov. Phys. JETP 38, 1018 (1974). Yuzbashyan et al., PRL 96, 097005 (2006).

    Weak coupling case (BCS)

  • 1.5

    1.0

    0.5

    0.016141210864

    Temperature (K)

    Ele

    ctric

    Fie

    ld (

    arb

    . u

    nits

    )

    2520151050Delay Time (ps)

    monocycle pulse monocolor pulse

    Inte

    nsi

    ty (

    arb

    . u

    nits

    )

    2.01.51.00.50.0

    Frequency (THz)

    monocycle pulse monocolor pulse

    Coherent excitation regime with multicycle THz pulse

    Quasi-monochromatic THz pulse(0.3THz, pulsewidth~13ps)

    E-field waveform Power Spectrum

    2Δ (T

    Hz)

    Photon energy vsBCS gap

    How does the BCS ground state respond to the strong electromagnetic field with ℏω

  • 1086420Delay Time (ps)

    0

    1086420Pump-Probe Delay Time (ps)

    0

    14 K 14.5 K 14.8 K 15.5 K

    13 K 12 K 10 K 4 K

    Epump

    |Epump|2

    δEp

    rob

    e(a

    rb.

    uni

    ts)

    ω=0.6THzE=3.5 kV/cm @ peak

    Coherent Excitation Regime Experiments

    R. Matsunaga et al., Science 345, 1145 (2014)

    (T)

    ω=0.6THz

    1

    016141210864

    Temperature (K)

    δE

    prob

    e(a

    rb. u

    nits

    ) long-term component

    oscillating component

    16141210864

    Temperature (K)

    2ω=2D

  • Anderson’s pseudospin representation

    where 𝒃𝒌 is the pseudo magnetic field

    P.W. Anderson, PR 112, 1900 (1958)

    normal state (T=0)

    BCS state

    Pseudospin up : (k, -k) both occupied

    Pseudospin down: (k, -k) both empty

    kFk

    f

    0

    kFk

    f

    0

    all ↓ (k>kF)all ↑ (k

  • Time evolution of BCS state is described by the motion of pseudospins under effective magnetic field

    The time evolution of the pseudospin is given by the Heisenbergs’ equation of motion

    𝒌 𝒌 𝒌 𝒌

    𝒌 𝒌

    𝒌

    𝒌 𝒌

    z

    -Δ’

    x

    𝒌

    𝒌

    -Δ’(0)

    𝒌

    Let’s consider that D’ is suddenly quenched at t=0.

    Each pseudospin 𝒌 starts the precession around the new 𝒌 .

  • In the presence of EM field (vector potential)

    z-component of effective magnetic field oscillates at 2w⇒ precession of Anderson’s pseudospins

    z

    bk

    σk

    -Δ’x

    εk

    kkb e,",'eff DD

    k

    kkyx σiσUi "Δ'ΔΔ

    .)(e2

    )()()(22

    1

    ,

    422

    22

    ,

    422

    )()(

    ji

    tiji

    ji

    jiji

    jitete

    AOEE

    kk

    e

    AOtAtAkk

    e

    w

    wee

    eeee

    kk

    kkAkAk

    Pseudospin dynamics under the presence of vector potential A(t)

    kkkk σbσσ eff2,idtd

  • Pseudospin dynamics : simulation with BdG equation

  • Free Energy

    ReYImY

    Y0

    Ginzburg-Landau picture

    Local gauge transformation

    H

    A

    A

    A

    A

  • THz THG by Higgs mode

    Current density

    dD(t)~ei2wt, A(t) ~ eiwt

    )(Δ)(Δ

    )(~

    2

    1)()(

    2

    linear

    )(

    tδtU

    et

    tσε

    enet zte

    Aj

    kvj

    kk

    Ak

    k kAk

    London equation for nonlinear current jnl

    j (t) ~ ei3wt

    Does superconductor emit THz third harmonics?

  • Waveform of the transmitted pulse

    Power spectrum of the transmitted pulse

    121086420

    Delay Time (ps)

    10 K 15.5 K

    Epu

    mp

    (arb

    . u

    nits

    ) Tc=15K

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    Inte

    nsi

    ty (

    arb

    . u

    nits

    )

    210Frequency (THz)

    10 K 15.5 K

    ω

    Efficient THG from superconductor

    Nonlinear transmission experiment

    5x10-2

    4

    3

    2

    1

    0In

    ten

    sity

    (a

    rb.

    un

    its)

    2.42.22.01.81.61.41.2

    Frequency (THz)

    4 K 8 K 10 K 11 K 12 K 13 K 14 K 15.5 K

    R. Matsunaga, R.Shimano et al., Science 345, 1145 (2014)

  • 1

    01.21.00.80.60.4

    1.5

    1.0

    0.5

    0.0

    0.8 THz1

    01.21.00.80.60.4

    1.5

    1.0

    0.5

    0.0

    0.3 THz

    1

    01.21.00.80.60.4

    1.5

    1.0

    0.5

    0.0

    0.6 THz

    TH

    G I

    nte

    nsi

    ty (

    arb

    . un

    tis)

    Experiment

    0

    1

    1.21.00.80.60.4

    0.8 THz 0.6 THz 0.3 THz

    T/Tc

    TH

    G I

    nte

    nsi

    ty (

    arb

    . un

    tis)

    Theory

    1.2 THz

    1.6 THz

    0.6 THz2Δ

    (T)

    (TH

    z)

    T/Tc

    Temperature dependence of THG

    Experiments with different frequencies ω=0.3, 0.6, 0.8 THz

    THG shows a peak at 2ω=2Δ(T),but not at ω=2Δ(T)!

    Theory: N. Tsuji and H. Aoki, Phys. Rev. B 92, 064508(2015)

    R. Matsunaga et al., Science 345, 1145 (2014)

    H

    A

    A

    A

    A

  • Science 345, 1121 (2014)

  • (1) Introduction to Higgs mode and Higgs mode in isotropic pairing(s-wave) superconductor (NbN)

    (2) Higgs mode in anisotropic pairing (d-wave) High-Tc superconductor (Bi2Sr2CaCu2Ox )

    (3) Higgs mode in multiband superconductor (FeSe0.5Te0.5)

    Outline

  • Higgs in High Tc cuprate

  • Phase diagram of Bi2Sr2CaCu2Ox

    M. Hashimoto et al., Nat. Phys. 10, 483 (2014)

    UD OP OD

  • Higgs modes in d-wave SC

    Barlas and Varma, PRB 87, 054503 (2013)

    A1g

    A2g

    B2g

    B1g

  • THz pump and optical probe experiments in Bi2Sr2CaCu2Ox

    400200

    0-200

    5.02.50.0Time (ps)

    ba

    Cu-O

    Sample

    Time Delay

    THz Pump

    Optical Probe(800 nm)

    θ

  • 1086420Delay Time (ps)

    0

    1086420Pump-Probe Delay Time (ps)

    0

    14 K 14.5 K 14.8 K 15.5 K

    13 K 12 K 10 K 4 K

    Epump

    |Epump|2

    δEp

    rob

    e(a

    rb.

    uni

    ts)

    ω=0.6THzE=3.5 kV/cm @ peak

    Coherent Excitation Regime Experiments in NbN

    R. Matsunaga et al., Science 345, 1145 (2014)

    (T)

    ω=0.6THz

    1

    016141210864

    Temperature (K)

    δE

    prob

    e(a

    rb. u

    nits

    ) long-term component

    oscillating component

    16141210864

    Temperature (K)

  • Transient reflectivity change

    300

    200

    100

    0

    Te

    mp

    era

    ture

    (K

    )

    1050Time (ps)

    840DR/R (10

    -4)

    TC

    Cu-O

    THz Pump

    a

    Probe °

    Optical Probe

    b

  • Symmetry of the signal

    y

    x

    Cu

    O

    y

    +

    --

    +

    xEProbe

    A1gB2g

    B1g

    2.0

    1.6

    1.2

    0.8

    0.4

    0.0

    DRM

    ax/R

    (10

    -3)

    1000

    Probe (degree)

    30 K 100 K 300 K

    Pump = 0°

    )2sin2sin2cos2cos(2

    1

    Re1

    ~),(

    )3()3()3()3(

    )3(0

    1

    211 probepumpBprobepumpBA

    pumpl

    pumpkijkl

    probej

    probei

    ggg

    EER

    REE

    R

    R

    cccc

    cee

    D

    Bi2212: D4h point group

    THz-induced Kerr effect

  • Pump polarization dependence

    1.0

    0.5

    0.0

    -0.5

    -1.0DR

    Max

    /R (

    no

    rm.)

    -50 0 50

    Pump (degree)

    A1g

    B1g

    )2sin2sin2cos2cos(2

    1 )3()3()3()3(211 probepumpBprobepumpBA ggg

    cccc

  • 1050Time (ps)

    1.50.0DR/R (10

    -4) B1g

    300

    200

    100

    0Te

    mp

    era

    ture

    (K

    )

    1050Time (ps)

    840DR/R (10

    -4)

    Tc

    A1g

    Temperature dependence of A1g and B1g

    A1g: oscillatory(coherent) component + decay(incoherent) componentB1g: only oscillatory(coherent) component

  • Decomposition into coherent and incoherent part

    5.0

    2.5

    0.0

    DR

    /R (

    10-

    4 )

    100Time (ps)

    10 K A1g

  • Temperature dependence of each component

  • Doping dependence

    A1g signal is always dominant.

  • Polarization dependence of CDF mean field(BCS) theory with d-wave symmetry

    W : 4meV w : 1.5 eV

    The dominance of A1g signal cannot be explained by CDF.

    CDF: B1g is dominantTHz pump-optical probe

  • Doping dependence of the oscillating component

    A1g signal is attributed to Higgs.

    B1g is most likely CDF.

    200

    150

    100

    50

    0

    Tem

    pera

    ture (K

    )

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    B1g

    / A

    1g

    0.200.10Doping

    TC

    K. Katsumi et al, Phys. Rev. Lett. 120, 117001 (2018).

  • (1) Introduction to Higgs mode and Higgs mode in isotropic pairing(s-wave) superconductor (NbN)

    (2) Higgs mode in anisotropic pairing (d-wave) High-Tc superconductor (Bi2Sr2CaCu2Ox )

    (3) Higgs mode in multiband superconductor (FeSe0.5Te0.5)

    Outline

  • (1) Higgs mode in s-wave SC (NbN)

    (2) Higgs mode in d-wave High-Tc SC (Bi2Sr2CaCu2Ox )

    (3) Higgs mode in multiband SC (FeSe0.5Te0.5)

    86420-2-4

    1

    0

    nJ/cm2

    9.6 8.5 7.9 7.2 6.4 5.6 4.8 4.0

    Ch

    an

    ge o

    f Pro

    be

    Ele

    ctric

    Fie

    ldδE

    prob

    e(t g

    ate=t 0

    ) (

    arb

    . un

    its)

    Pump-probe Delay Time tpp (ps)

    Summary

    1050Time (ps)

    1.50.0DR/R (10

    -4)

    B1g

    300

    200

    100

    0Te

    mp

    era

    ture

    (K

    )

    1050Time (ps)

    840DR/R (10

    -4)

    Tc

    A1g

    Outlook: toward the Higgs spectroscopy in ”strongly” unconventional SCs, U(1) SU(2) T

    H

    A

    A