130820 Presentation Slides NoPW

download 130820 Presentation Slides NoPW

of 31

Transcript of 130820 Presentation Slides NoPW

  • 8/12/2019 130820 Presentation Slides NoPW

    1/31

    ASDSO Webinar August 20, 2013

    Hydraulic Design of Labyrinth Weirs

    2Hydraulic Design of Labyrinth Weirs 2

    Dr. Blake P. Tullis

    Utah State University

    [email protected]

    Dr. Brian M. Crookston

    Schnabel Engineering

    [email protected]

    Standard Head-Discharge Relationships for Weirs

    3

    h

    P

    Energy Grade Line

    V2/2g

    V

    Ht

    Q =CLHt3/2

    Q = discharge

    C= discharge coefficient

    L = weir length

    Ht= total upstream head

    Q =2

    3C

    dL 2gH

    t

    3/2

    Q = discharge

    Cd= dimensionless discharge coefficient

    L = weir length

    Ht= total upstream head

    g= gravity

    Hydraulic Design of Labyrinth Weirs 3

  • 8/12/2019 130820 Presentation Slides NoPW

    2/31

    How can we increase weir discharge capacity?

    4

    Q =2

    3CdL 2gHt

    3/2 Q =CLHt3/2

    Ogee Crest vs. Broad Crested Weir

    Hydraulic Design of Labyrinth Weirs 4

    Increase discharge coefficient with improved crest shapes

    How can we increase weir discharge capacity?

    5

    Q =2

    3C

    dL 2gH

    t

    3/2 Q =CLHt3/2

    Labyrinth 200-600%L

    Box-Inlet Drop200-400%L

    Radial Weir111%L for 90

    157%L for 180

    Piano Key200-600%L

    Hydraulic Design of Labyrinth Weirs 5

    IncreaseL with non-linear or 3-D weirs

    6

    Radial Weirs

    Hydraulic Design of Labyrinth Weirs 6

  • 8/12/2019 130820 Presentation Slides NoPW

    3/31

    7

    Box-Inlet Drop Spillway

    Hydraulic Design of Labyrinth Weirs 7

    8

    Fuse Gates

    Hydraulic Design of Labyrinth Weirs 8

    9

    Labyrinth Spillways

    Hydraulic Design of Labyrinth Weirs 9

  • 8/12/2019 130820 Presentation Slides NoPW

    4/31

    10Hydraulic Design of Labyrinth Weirs 10

    Labyrinth Weir Prototypes

    Brazos Dam, Texas (USA)

    Run-of-river labyrinth weir structure

    11Hydraulic Design of Labyrinth Weirs 11

    Labyrinth Weir Prototypes

    Single-cycle labyrinth weir

    Oneida, Pennsylvania (USA)

    12Hydraulic Design of Labyrinth Weirs 12

    Labyrinth Weir Prototypes

    Yahoola Dam, Georgia (USA)

  • 8/12/2019 130820 Presentation Slides NoPW

    5/31

    13Hydraulic Design of Labyrinth Weirs 13

    Labyrinth Weir Prototypes

    Lake Townsend, North Carolina (USA)

    Staged labyrinth weir

    Lower-staged cycles

    14Hydraulic Design of Labyrinth Weirs 14

    Labyrinth Weir PrototypesArced Labyrinth Weir with integrated bridge piers and nappe breaker/vent pipes

    Maguga Dam, Swaziland

    15

    Piano Key Weirs

    Hydraulic Design of Labyrinth Weirs 15

    L Etroit Dam (France)

  • 8/12/2019 130820 Presentation Slides NoPW

    6/31

  • 8/12/2019 130820 Presentation Slides NoPW

    7/31

    Hydraulic Design of Labyrinth Weirs 19

    Hydraulic Design of Labyrinth Weirs 20

    Hydraulic Design of Labyrinth Weirs 21

  • 8/12/2019 130820 Presentation Slides NoPW

    8/31

    22Hydraulic Design of Labyrinth Weirs

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0 20 40 60 80 100

    HT

    (ft)

    Q (cfs)

    QR 1 cycle P=36in tw=4.5in w/P=2.66 L/W = 3.25

    Discharge Capacity

    232

    3

    2Tc)(d HgLCQ =

    )nappe,flowapproach,,,shapecrest,,,,()( dTwd HHAPtfC =

    Hydraulic Design of Labyrinth Weirs 23

    Spreadsheet Design Method

    Hydraulic Design of Labyrinth Weirs 24

    Design Method

  • 8/12/2019 130820 Presentation Slides NoPW

    9/31

    Hydraulic Design of Labyrinth Weirs 25

    Design Method

    26

    Discharge CoefficientsQuarter-Round Crests

    Hydraulic Design of Labyrinth Weirs 26

    27

    Discharge CoefficientsHalf-Round Crests

    Hydraulic Design of Labyrinth Weirs 27

  • 8/12/2019 130820 Presentation Slides NoPW

    10/31

    28

    Discharge Coefficients

    Hydraulic Design of Labyrinth Weirs 28

    29

    HT/P Limits

    HT/P limited by experimental data

    Crookston (2010) curve-fit equations trend-basedHT/P >1

    Hydraulic Design of Labyrinth Weirs 29

    Tullis et al. (1995) and Crookston

    (2010)

    Hydraulic Design of Labyrinth Weirs 30

    dP

    HaC

    c

    P

    THb

    Td +=

    )(

    HT/P Limits

  • 8/12/2019 130820 Presentation Slides NoPW

    11/31

    31

    Crest Comparison

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Cd-HR/Cd-QR

    HT/P

    6 degree

    8 degree

    10 degree

    12 degree

    15 degree

    20 degree

    35 degree

    90 degree

    Hydraulic Design of Labyrinth Weirs 31

    Rating Curve Validation

    Hydraulic Design of Labyrinth Weirs 32

    Tullis et al. (1995)

    Willmore (2004) QR Crest Shape

    Validation

    Rating Curve Validation

    Hydraulic Design of Labyrinth Weirs 33

    Validation

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Cd()

    HT/P

    6 de gr ee H R Cr oo ks to n 8 d eg re e HR C roo ks to n 1 0 d eg re eH R Cr oo ks to n 1 2 d eg re e H R Cr oo kst on

    1 5 de gr ee HR C ro ok st on 2 0 de gr ee H R Cr oo kst on 3 5 de gr ee HR C ro ok st on 7 d eg re e HR W il lm or e

    8 d eg re eH R Wi ll mo re 1 0 d eg re e H R Wi ll mo re 1 2 d eg re eH R Wi ll mo re 1 5 d eg re e H R Wi ll mo re

    2 0 de gr ee H R W il l mo re 3 5 de gr ee H R Wi ll mo r e

    Willmore (2004) HR Crest Shape

  • 8/12/2019 130820 Presentation Slides NoPW

    12/31

    Rating Curve Validation

    Hydraulic Design of Labyrinth Weirs 34

    Validation

    35

    Nappe Behavior

    Hydraulic Design of Labyrinth Weirs 35

    36

    Nappe Behavior

    Hydraulic Design of Labyrinth Weirs 36

  • 8/12/2019 130820 Presentation Slides NoPW

    13/31

    37

    Nappe Behavior

    Hydraulic Design of Labyrinth Weirs 37

    38Hydraulic Design of Labyrinth Weirs 38

    Nappe Behavior

    39Hydraulic Design of Labyrinth Weirs 39

    Nappe Vibration

  • 8/12/2019 130820 Presentation Slides NoPW

    14/31

  • 8/12/2019 130820 Presentation Slides NoPW

    15/31

    Hydraulic Design of Labyrinth Weirs 43

    44

    Nappe Interference & Local

    Submergence

    Hydraulic Design of Labyrinth Weirs 44

    45

    Nappe Interference & Local

    Submergence

    Hydraulic Design of Labyrinth Weirs 45

  • 8/12/2019 130820 Presentation Slides NoPW

    16/31

    46

    Nappe Interference & Local

    Submergence

    Hydraulic Design of Labyrinth Weirs 46

    47Hydraulic Design of Labyrinth Weirs 47

    ( ) 03916.07-E155.5038.2307.1

    1+

    =

    P

    H

    B

    BTint

    48

    Nappe Interference & Local

    Submergence

    Hydraulic Design of Labyrinth Weirs 48

  • 8/12/2019 130820 Presentation Slides NoPW

    17/31

    49Hydraulic Design of Labyrinth Weirs 49

    Q & A Break

    50

    Labyrinth Weir Submergence

    Hydraulic Design of Labyrinth Weirs 50

    51

    Labyrinth Weir Submergence

    Hydraulic Design of Labyrinth Weirs 51

    Ogee crest weir, Iowa River,

    Iowa City (USA)

  • 8/12/2019 130820 Presentation Slides NoPW

    18/31

    52

    Labyrinth Weir Submergence

    Hydraulic Design of Labyrinth Weirs 52

    Tailwater submergence definition: S=H* /Hd

    Key Terms:

    Ho: free-flow upstream total head (relative to crest elevation)

    ho: free-flow upstream water depth (relative to crest elevation)

    H*: submerged upstream total head (relative to crest elevation)

    h*: submerged upstream water depth (relative to crest elevation)

    Hd: downstream total head (relative to crest elevation)

    hd: downstream water depth (relative to crest elevation)

    s = h* /hdAlternative Tailwater submergence definition:

    53

    Labyrinth Weir Submergence

    Hydraulic Design of Labyrinth Weirs 53

    Modular Submergence Limit (H*=Ho)

    Free-flow conditions

    no longer apply (H*Ho)

    54

    Labyrinth Weir Submergence

    Hydraulic Design of Labyrinth Weirs 54

  • 8/12/2019 130820 Presentation Slides NoPW

    19/31

    55

    Labyrinth Weir Submergence

    Hydraulic Design of Labyrinth Weirs 55

    Submerged Labyrinth WeirHead-Discharge Calculations

    Inputs: Q(hydrology)Hd(HEC-RAS)

    Calculate Qvs.HT(Ho)Using design method

    CalculateHd/HoDetermineH*/Housing Submergence Curve

    H*=(H*/Ho)*Ho

    Output: (Q,Ho) submerged rating curve data point

    56

    Discharge Efficiency vs. Labyrinth Weir Cycle Geometry

    Cycle Efficiency ()

    1. Cddecreases with decreasing

    *smaller Cd = smaller unit discharge

    Hydraulic Design of Labyrinth Weirs 56

    2.L increases with decreasing

    *assuming cycle width w remains constant

    *assuming no longitudinal footprint restrictions

    57

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    '=Cd()Lc-cycle/w

    HT/P

    6 de gr ee H R 8 de gr ee HR

    1 0 de gr ee H R 1 2 de gr e e HR

    1 5 de gr ee H R 2 0 de gr e e HR

    3 5 de gr ee H R 9 0 de gr e e HR

    Cycle Efficiency ()

    ' =CdLcycle

    w

    shows relative change in efficiency between values for a given HT/P

    Hydraulic Design of Labyrinth Weirs 57

  • 8/12/2019 130820 Presentation Slides NoPW

    20/31

    . 0

    .

    .

    . 0

    . 0

    . 0

    . 0

    .

    .

    . 0

    Straight Weir

    15Labyrinth

    0.00

    0.50

    1.00

    1.50

    2.00

    2.50

    0 0.2 0.4 0.6 0.8 1 1.2

    H/P

    CycleEfficiency(CdxL/W)

    Straight Weir

    15Labyrinth

    Cycle Efficiency ()15-degree labyrinth vs. linear weir

    Cd

    Ht/PHydraulic Design of Labyrinth Weirs 58

    59

    Debris / Sediment

    Hydraulic Design of Labyrinth Weirs 59

    60

    Biological Growth on Crest

    Hydraulic Design of Labyrinth Weirs 60

    Labyrinth weir crest shape: ogee crest profile

    Run-of-the-river dam: crest always wet

    Ogee crest profile used to keep nappe attached (clinging flow): improve discharge efficiency

    Algal growth on the crest caused the nappe to separate from crest: benefit of ogee crest not fully realized

    Biological growth on the crest likely not an issue for spillways that are typically dry (emergency spillway, etc.)

  • 8/12/2019 130820 Presentation Slides NoPW

    21/31

    61Hydraulic Design of Labyrinth Weirs 61

    62

    High Headwater Ratios

    Hydraulic Design of Labyrinth Weirs 62

    CFD

    Hydraulic Design of Labyrinth Weirs 63

  • 8/12/2019 130820 Presentation Slides NoPW

    22/31

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

    Cd(15)

    HT/P

    Model1

    Model2

    CFD Model

    Crookston (2010) Curve Fit

    Hydraulic Design of Labyrinth Weirs 64

    High Headwater Ratios

    Hydraulic Design of Labyrinth Weirs 65

    High Headwater Ratios

    Hydraulic Design of Labyrinth Weirs 66

    HT/P 2.1

    dP

    HaC

    c

    P

    THb

    Td +=

    )(

  • 8/12/2019 130820 Presentation Slides NoPW

    23/31

    Hydraulic Design of Labyrinth Weirs 67

    Configurations/Abutments

    Hydraulic Design of Labyrinth Weirs 68

    Configurations/Abutments

    69

    Arced Labyrinth Weir Geometry

    Hydraulic Design of Labyrinth Weirs 69

    Arced Labyrinth Weirs

  • 8/12/2019 130820 Presentation Slides NoPW

    24/31

    Hydraulic Design of Labyrinth Weirs 70

    Arced Labyrinth Weirs

    Hydraulic Design of Labyrinth Weirs 71

    Reservoir vs. In-channel

    0.80

    0.85

    0.90

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    Cd-Res

    /Cd-Channel

    HT/P

    =12 Normal in Channel =12Ar ced Projecting, =10

    =12Flush =12Pr ojecting (Linear, =0)

    =12 Rounded Inlet

    72

    Residual Energy

    Lopes, Matos, and Melo (2006, 2008)

    0

    0.5

    1

    1.5

    2

    2.5

    0 25 50 75 100 125 150 175 200

    Unit Discharge, q (l/s/m)

    Hds/P

    L/W = 2

    L/W = 3

    L/W = 4

    L/W = 5

    Drop (Chanson, 1994)

    Hydraulic Design of Labyrinth Weirs 72

  • 8/12/2019 130820 Presentation Slides NoPW

    25/31

    P = 6 inches

    P = 12 inches

    P = 36 inches

    Hydraulic Design of Labyrinth Weirs 73

    Scale Effects

    Partially Aerated

    Hydraulic Design of Labyrinth Weirs 74

    Scale Effects

    75Hydraulic Design of Labyrinth Weirs 75

    Q & A Break

  • 8/12/2019 130820 Presentation Slides NoPW

    26/31

    Sectional Model Studies

    Hydraulic Design of Labyrinth Weirs 76

    Sectional Model Studies

    Hydraulic Design of Labyrinth Weirs 77

    Full-Width Model Studies

    Hydraulic Design of Labyrinth Weirs 78

  • 8/12/2019 130820 Presentation Slides NoPW

    27/31

    When is a Model Recommended

    Hydraulic Design of Labyrinth Weirs 79

    Prototype hydraulic/geometric conditions fall outside published design conditions

    Wall height effects (w/P)

    Approach flow angle

    Approach flow topography and abutments

    Energy dissipation

    Wall thickness & apex details

    Arced Labyrinth Weir Model

    Hydraulic Design of Labyrinth Weirs 80

    Approach Channel Details

    Arced Labyrinth Weir Model

    Hydraulic Design of Labyrinth Weirs 81

    Approach Channel Details

  • 8/12/2019 130820 Presentation Slides NoPW

    28/31

    Labyrinth Weir Model

    Hydraulic Design of Labyrinth Weirs 82

    Significant Approach Flow Angle

    Advantages/Limitations

    Physical Model Very visual

    Quick changes

    Handles complex flow

    patterns

    Scale Effects

    Cost/construction schedule

    Data limited to specific

    measurement locations

    Calibration (roughness

    models)

    Lab space/flow capacity

    Numerical Model Easy streamline visualization

    Data available anywhere in

    domain

    Easily stored

    Cost/simulation time

    Calibration to physical model

    data required

    Results vary with user-

    defined boundary conditions

    and turbulence simulation

    model selection

    Hydraulic Design of Labyrinth Weirs 83

    CompositeModeling

    84

    Non-Linear Weirs with Footprint Restrictions

    Hydraulic Design of Labyrinth Weirs 84

    Piano Key Weirs

  • 8/12/2019 130820 Presentation Slides NoPW

    29/31

    85

    Non-Linear Weirs with Footprint Restrictions

    Hydraulic Design of Labyrinth Weirs 85

    Piano Key Weirs

    PK Weir History

    Lemprire 2003, 2005, 2009

    Laugier 2007, 2009

    Ribeiro et al 2007, 2009

    Machiels et al 2009

    Anderson and Tullis 2012

    Abdorreza et al. 2012

    Labyrinth PK-Weir Workshops

    Belgium 2011

    New Delhi, India May 2012

    Hydraulic Design of Labyrinth Weirs 86

    Discharge

    Cd=f (HT,L, Wi, Wo,B, P, Tw, Ramp Angle, Parapet)

    Hydraulic Design of Labyrinth Weirs 87

  • 8/12/2019 130820 Presentation Slides NoPW

    30/31

    PK Weir Submergencechannel applications

    free-flow PK weir local submergencetailwater submergence

    Dabling and Tullis (2012)

    Piano Key Weir Submergence in Channel Applications

    Journal of Hydraulic Engineering

    Hydraulic Design of Labyrinth Weirs 88

    PK vs. Labyrinth Weir

    1.00

    1.50

    2.00

    2.50

    3.00

    3.50

    4.00

    4.50

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    H/P

    CdxL/W

    PK 6

    8 10

    12 15

    20 RL

    Cycleefficiency

    Hydraulic Design of Labyrinth Weirs 89

    PK vs. Labyrinth WeirGeometries required for

    equivalent discharge

    Changes in discharge and weir dimensions

    with channel width constrained

    Q-specific

    Q-specific

    Hydraulic Design of Labyrinth Weirs 90

  • 8/12/2019 130820 Presentation Slides NoPW

    31/31

    Select References for Labyrinth and PK Weirs

    1. Crookston, B. M. and B. P. Tullis (?). Hydraulic Design and Analysis of Labyrinth Weirs. J. Irrigation

    and Drainage (two companion papers-under review).

    2. Crookston, B. M. and B. P. Tullis (2012). Arced Labyrinth Weirs. J. Hydraulic Engineering, 138(6),

    pp. 555-562, DOI: 10.1061/(ASCE)HY.1943-7900.0000553.

    3. Anderson, R. M. and B. P. Tullis (2012). Comparison of Piano Key and Rectan gular Labyrinth WeirHydraulic. J. Hydraulic Engineering (in press), doi:10.1061/(ASCE)HY.1943-7900.0000509.

    4. Crookston, B. M. and B. P. Tullis (2012). Discharge Efficiency of Reservoir-Application-Specific

    Labyrinth Weirs. J. of Irrigation and Drainage, 138(6), 564-568 , doi: 10.1061/(ASCE)IR.1943-

    4774.0000451.

    5. Dabling, M. and B. P. Tullis (2012). Piano Key Weir Submergence in Channel Applications .J.

    Hydraulic Engineering (in press), doi:10.1061/(ASCE)HY.1943-7900.0000563 .

    6. Crookston, B. M. and B. P. Tullis (2012). Labyrinth Weirs: Nappe Interference and Local

    Submergence.J. Irritation and Drainage, 138(6), pp. 555-562, doi: 10.1061/(ASCE)IR.1943-

    4774.0000466.

    7. Anderson, R. M. and B. P. Tullis (2012). Piano Key Weir: Reservoir vs. Channel Applications. J.

    Hydraulic Engineering (in press), doi:10.1061/(ASCE)IR.1943-4774.0000464.

    8. Erpicum, S., F. Laugier, J. L. Boillat, M. Pirotton, B. Reverchon, and A. J. Schleiss (2011).Labyrinth

    and Piano Key Weirs. CRC Press, New York, NY.

    9. Falvey. H. (2003).Hydraulic Design of Labyrinth Weirs. ASCE, Reston, VA.

    10.Tullis, J. P, N. Amanian, and D. Waldron ( 1995). Design of Labrinth Weir Spillways. J. Hydraulic

    Engineering, 121(3), 247-255.

    Hydraulic Design of Labyrinth Weirs 91

    State of Utah

    Utah State University-Utah Water Research Lab

    Ricky Anderson

    Nathan Christensen

    Tyler Seamons

    Schnabel Engineering

    Dave Campbell

    Greg Paxson

    Freese & Nichols

    Idaho State University

    Dr. Bruce Savage

    92

    Acknowledgements

    Hydraulic Design of Labyrinth Weirs 92

    Post Event Evaluation & Quiz

    Please click the following link to take the Seminar

    Evaluation and Quiz:

    http://e02.commpartners.com/users/asdso/posttest.ph

    p?id=10501

    You must complete the Seminar Evaluation and Quiz

    to receive PDH credit hours

    and Quiz to receive PDH credit hours 93