11_UMTS-HSDPA_ws12

download 11_UMTS-HSDPA_ws12

of 36

Transcript of 11_UMTS-HSDPA_ws12

  • 8/12/2019 11_UMTS-HSDPA_ws12

    1/36

    High-Speed Downlink Packet Access (HSDPA)

    u HSDPA Background & Basics

    u Principles: Adaptive Modulation, Coding, HARQ

    u Channels/ UTRAN Architecture

    u Principles: Fast scheduling, Mobility

    u Performance Results

  • 8/12/2019 11_UMTS-HSDPA_ws12

    2/36

    UMTS Networks 2Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    Motivation (as of 2000)

    u As the UMTS networks are rolled out, the demand for highbandwidth services is expected to grow rapidly.

    u By 2010, 66% of the revenues will come from data services(source: UMTS forum).

    u Release 99/4 systems alone will not be capable to meet thesedemands. (Realistic outdoor data rates will be limited to

    384kbps).u A more spectral efficient way of using DL resources is required.

    u Competition with CDMA 2000 1x EV-DO/DV

    GSM/GPRS

    UMTS Rel. 99

    Voice, low speed packet data

    No Multimedia, Limited QOS

    Medium rate Packet data Theoretical 2 Mbps but ~384 kbps

    subjected to practical constraints

  • 8/12/2019 11_UMTS-HSDPA_ws12

    3/36

    UMTS Networks 3Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    HSDPA Background

    u Initial goals

    u Establish a more spectral efficient way of using DL resources providing

    data rates beyond 2 Mbit/s, (up to a maximum theoretical limit of 14.4Mbps)

    u Optimize interactive & background packet data traffic, support streamingservice

    u Design for low mobility environment, but not restricted

    u Techniques compatible with advanced multi-antenna and receivers

    u Standardization started in June 2000

    u Broad forum of companies

    u Major feature of Release 5

    u Enhancements in R7 HSPA+

    u Advanced transmission to increase data throughputu Signaling enhancements to save resources

  • 8/12/2019 11_UMTS-HSDPA_ws12

    4/36

    UMTS Networks 4Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    HSDPA Basics

    u Evolution from R99/ R4

    u 5MHz BW

    u Same spreading by OVSF and scrambling codesu Turbo coding

    u New concepts in R5

    u Adaptive modulation (QPSK vs. 16QAM), coding and multicodes(fixed SF = 16)

    u Fast scheduling in NodeB (TTI = 2ms)

    u Hybrid ARQ

    u Enhancements in R7 HSPA+

    u Signaling enhancements

    u 64QAM

    u MIMO techniques, increase of the bandwidth

  • 8/12/2019 11_UMTS-HSDPA_ws12

    5/36

    UMTS Networks 5Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    HSDPA Techniques

    u Adaptive modulation and coding(AMC)

    u Modulation can be switchedbetween QPSK and 16QAM

    u Adaptation of FEC coding rate

    u Fast feedback from UE aboutchannel quality (CQI)

    u Hybrid ARQ

    u Fast retransmission in MAC-layer (S&W protocol)

    u Retransmitted packetscombined with original ones

    u Adaptive redundancy

    u Fast scheduling

    u Allocate resources to userswith good channel quality Multi-user diversity gain

  • 8/12/2019 11_UMTS-HSDPA_ws12

    6/36

    UMTS Networks 6Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    HS-DSCH Principle I

    u Channelization codes at a fixed spreading factor of SF = 16

    u Up to 15 codes in parallel

    u OVSF channelization code tree allocated by CRNC

    u HSDPA codes autonomously managed by NodeB MAC-hs scheduler

    u Example: 12 consecutive codes reserved for HS-DSCH, starting at C16,4

    u Additionally, HS-SCCH codes with SF = 128 (number equal to simult. UE)

    SF=8

    SF=16

    SF=4

    SF=2

    Physical channels (codes) to which HS-DSCH is mapped CPICH, etc.

    C16,0C16,15

  • 8/12/2019 11_UMTS-HSDPA_ws12

    7/36

    UMTS Networks 7Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    HS-DSCH Principle II

    u Resource sharing in code as well as time domain:

    u Multi-code transmission, UE is assigned to multiple codes in the same TTIu Multiple UEs may be assigned channelization codes in the same TTI

    u Example: 5 codes are reserved for HSDPA, 1 or 2 UEs are active within oneTTI

    Data to UE #1 Data to UE #2 Data to UE #3

    Time (per TTI)

    Code

    not used

  • 8/12/2019 11_UMTS-HSDPA_ws12

    8/36

    UMTS Networks 8Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    UMTS Channels with HSDPA

    Cell 1

    UE

    Cell 2

    R99 DCH (in SHO)u UL/DL signalling (DCCH)u UL PS serviceu UL/DL CS voice/ data

    Rel-5 HS-DSCH

    DL PS service (Rel-6: DL DCCH)

    = Serving

    HS-DSCH cell

  • 8/12/2019 11_UMTS-HSDPA_ws12

    9/36

    UMTS Networks 9Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    HSDPA Channels

    u HS-PDSCH

    u Carries the data traffic

    u Fixed SF = 16; up to 15 parallel channelsu QPSK: 480 kbps/code, 16QAM: 960 kbps/code

    u HS-SCCH

    u Signals the configuration to be used next: HS-PDSCH codes, modulationformat, TB information

    u Fixed SF = 128u Sent two slots (~1.3msec) in advance of HS-PDSCH

    u HS-DPCCH

    u Feedbacks ACK/NACK and channel quality information (CQI)

    u Fixed SF = 256, code multiplexed to UL DPCCH

    u Feedback sent ~5msec after received data

  • 8/12/2019 11_UMTS-HSDPA_ws12

    10/36

    UMTS Networks 10Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    Timing Relations (DL)

    u NodeB Tx view

    u

    Fixed time offset between the HS-SCCH information and the start of thecorresponding HS-DSCH TTI: tHS-DSCH-control (2 Tslot= 1.33msec)

    u HS-DSCH and associated DL DPCH not time-aligned

    TB size & HAR Info

    Downlink DPCH

    HS-SCCH

    DATAHS-PDSCH

    3 Tslot(2 msec)

    HS-DSCH TTI = 3 Tslot(2 msec)

    tHS-DSCH-control = 2 Tslot

    Tslot (2560 chips)

    ch. code & mod

  • 8/12/2019 11_UMTS-HSDPA_ws12

    11/36

    UMTS Networks 11Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    Timing Relations (UL)

    u UE Rx view

    u Alignment to m 256 to preserve orthogonality to UL DPCCH

    u HS-PDSCH and associated UL DPCH not time-aligned(but quasi synch)

    DATA

    Uplink DPCCH

    HS-PDSCH

    S-DPCCH

    3Tslot(2ms)

    m 256 chips

    tUEP= 7.5 Tslot(5ms)0-255 chips

    Tslot(0.67 ms)

    CQIA/NCQIA/NCQIA/NCQI A/N

  • 8/12/2019 11_UMTS-HSDPA_ws12

    12/36

    UMTS Networks 12Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    HSDPA Architecture

    MAC-c/sh

    MAC-d

    RLC

    RRC PDCP

    Logical Channels

    Transport Channels

    MAC-b

    BCH

    BCCHDCCHDTCH

    SRNC

    CRNC

    NodeB

    DCH

    Upper phy

    DSCH

    FACH

    Evolution from R99/R4

    HSDPA functionality isintended for transport of

    dedicated logical channels

    Takes into account theimpact on R.99 networks

    MAC-hs

    HS-DSCH

    HSDPA in R5

    Additions in RRC to handleHSDPA

    RLC nearly unchanged(UM & AM)

    Modified MAC-d with link toMAC-hs entity

    New MAC-hs entity locatedin the Node B

    w/oMAC-c/sh

  • 8/12/2019 11_UMTS-HSDPA_ws12

    13/36

    UMTS Networks 13Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    MAC-hs in NodeB

    MAC-hs

    MAC Control

    HS-DSCH

    Priority Queuedistribution

    MAC-d flows

    Scheduling

    PriorityQueue

    PriorityQueue

    PriorityQueue

    UE #1

    UE #2

    UE #N

    MAC-hs Functions

    u Priority handling

    u Flow Control

    u To RNC

    u To UE

    u Scheduling

    u Select which user/queueto transmit

    u Assign TFRC & Txpower

    u HARQ handling

    u Service measurements

    u e.g. HSDPA providedbitrate

    TFRC: Transport Format and Resource Combination

  • 8/12/2019 11_UMTS-HSDPA_ws12

    14/36

    UMTS Networks 14Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    MAC-hs in UE

    MAC-hs

    MAC Control

    Associated Uplink Signalling

    HS-DPCCH

    To MAC-d

    Associated Downlink Signalling

    HS-SCCH

    HS-DSCH

    HARQ

    Reordering Reordering

    Re-ordering queue distribution

    Disassembly Disassembly

    MAC-hs Functions

    u HARQ handling

    u ACK/ NACK generation

    u Reordering buffer handling

    u Associated to priority

    queues

    u Flow control per

    reordering buffer

    u Memory can be shared

    with AM RLC

    u Disassembly unit

  • 8/12/2019 11_UMTS-HSDPA_ws12

    15/36

    UMTS Networks 15Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    Data Flow through Layer 2

    Higher Layer

    L1

    Higher Layer PDU

    RLC SDU

    MAC-d SDU

    MAC-d PDU

    RLCheader

    RLC

    header

    MAC-d SDU

    MAC-d PDU

    CRC

    MAC-dheader

    MAC-d

    headerL2 MAC-d

    (non-transparent)

    L2 RLC(non-transparent)Segmentation

    &

    Concatenation

    Reassembly

    Higher Layer PDU

    RLC SDU

    MAC-hs SDU MAC-hs SDU

    MAC-hsheader L2 MAC-hs

    (non-transparent)

    Transport Block (MAC-hs PDU)

  • 8/12/2019 11_UMTS-HSDPA_ws12

    16/36

    UMTS Networks 16Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    Hybrid Automatic Repeat Request

    u HARQ is a stop-and-wait ARQ

    u Up to 8 HARQ processes per UE

    u Retransmissions are done at MAC-hs layer, i.e. in the Node B

    u Triggered by NACKs sent on the HS-DPCCH

    u The mother code is a R = 1/3 Turbo code

    u Code rate adaptationdone via rate matching, i.e. by puncturing andrepeating bits of the encoded data

    u Two types of retransmission

    u Incremental Redundancy

    uAdditional parity bits are sent when decoding errors occured

    u Gain due to reducing the code rate

    u Chase Combining

    u The same bits are retransmitted when decoding errors occuredu Gain due to maximum ratio combining

    u HSDPA uses a mixture of both types

  • 8/12/2019 11_UMTS-HSDPA_ws12

    17/36

    UMTS Networks 17Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    HARQ Processes

    u HARQ is a simple stop-and-wait ARQu Example

    u RTTmin = 5 TTIu Synchronous retransmissions (MAC-hs decides on transmission)

    u UE support up to 8 HARQ processes (configured by NodeB)u Min. number: to support continuous receptionu Max. number: limit of HARQ soft bufferu Number of HARQ processes configured specifically for each UE category

    1

    1

    2 2

    2

    3 4 5 3

    3 4 5

    1

    RTTHARQ

    Data

    HS-PDSCH

    ACK/NACK

    HS-DPCCH

  • 8/12/2019 11_UMTS-HSDPA_ws12

    18/36

    UMTS Networks 18Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    HSDPA UE Categories

    u The specification allows some freedom to the UE vendors

    u 12 different UE categories for HSDPA with different capabilities(Rel.5)

    u The UE capabilities differ in

    u Max. transport block size (data rate)

    u Max. number of codes per HS-DSCH

    u Modulation alphabet (QPSK only)

    u Inter TTI distance (no decoding of HS-DSCH in each TTI)

    u Soft buffer size

    u The MAC-hs scheduler needs to take these restrictions into account

  • 8/12/2019 11_UMTS-HSDPA_ws12

    19/36

    UMTS Networks 19Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    HSDPA UE Physical Layer Capabilities

    HS-DSCHCategory

    Maximumnumber of

    HS-DSCHmulti-codes

    Minimum inter-TTI interval

    MaximumMAC-hs TB size

    Total number ofsoft channel

    bits

    Theoreticalmaximum data

    rate (Mbit/s)

    Category 1 5 3 7298 19200 1.2

    Category 2 5 3 7298 28800 1.2

    Category 3 5 2 7298 28800 1.8

    Category 4 5 2 7298 38400 1.8

    Category 5 5 1 7298 57600 3.6

    Category 6 5 1 7298 67200 3.6

    Category 7 10 1 14411 115200 7.2

    Category 8 10 1 14411 134400 7.2

    Category 9 15 1 20251 172800 10.1

    Category 10 15 1 27952 172800 14.0

    Category 11* 5 2 3630 14400 0.9

    Category 12* 5 1 3630 28800 1.8

    cf. TS 25.306Note: UEs of Categories 11 and 12 support QPSK only

  • 8/12/2019 11_UMTS-HSDPA_ws12

    20/36

    UMTS Networks 20Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    Channel Quality Information (CQI)

    u Signalled to the Node B in UL each 2ms on HS-DPCCH

    u Integer number from 0 to 30 corresponds to a Transport Format ResourceCombination (TFRC) given by

    u Modulation

    u Number of channelisation codes

    u Transport block size

    u For the given conditions the BLER for this TFRC shall not exceed 10%

    u Mapping defined in TS 25.214 for each UE category

  • 8/12/2019 11_UMTS-HSDPA_ws12

    21/36

    UMTS Networks 21Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    CQI Mapping Table

    CQI value

    Transport

    Block Size

    Number of

    HS-PDSCHModulation

    Reference power

    adjustmentNIR XRV

    0 N/A Out of range

    1 137 1 QPSK 0

    6 461 1 QPSK 0

    7 650 2 QPSK 0

    15 3319 5 QPSK 0

    16 3565 5 16-QAM 0

    23 9719 7 16-QAM 0

    24 11418 8 16-QAM 0

    25 14411 10 16-QAM 0

    26 17237 12 16-QAM 0

    27 21754 15 16-QAM 0

    28 23370 15 16-QAM 0

    29 24222 15 16-QAM 0

    30 25558 15 16-QAM 0

    28800 0

    u Tables specified in TS25.214u For each UE categoryu Condition:

    BLER 10%

    u Example forUE category 10

  • 8/12/2019 11_UMTS-HSDPA_ws12

    22/36

    UMTS Networks 22Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    3G (Rel.99)with dedicated channels

    C/I

    C/I

    C/I

    CQI

    CQI

    CQI

    2 [email protected]

    2 TTI@76k

    7 TTI

    @614k1 TTI

    @1.2M

    64k64k

    64k

    Note: No fast channel quality feedback

    3G with high speed feedback/schedulingon shared channels

    HSDPA Fast Scheduling

  • 8/12/2019 11_UMTS-HSDPA_ws12

    23/36

    UMTS Networks 23Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    HSDPA Resource Allocation

    Scheduler

    QoS & Subscriber ProfileQoS: guar. bitrate, max. delay

    GoS: gold/ silver/ bronze

    Feedback from ULCQI, ACK/NACK

    UE capabilitiesmax. TFRC

    Radio resourcesPower, OVSF codes

    UE service metrics

    Throughput, Buffer Status

    Scheduler Output Scheduled Users TFRC: Mod., TB size, # codes, etc. HS-PDSCH power

    Scheduling targets

    - Maximize network throughput

    - Satisfy QoS/ GoS constraints

    - Maintain fairness across UEs and traffic streams

  • 8/12/2019 11_UMTS-HSDPA_ws12

    24/36

    UMTS Networks 24Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    Scheduling Disciplines

    u Task

    u Select UEs (and associated priority queues) to transmit within next TTIu Usually this is done by means of ranking lists

    u Depending on the ranking criterion it can be distinguished between threemajor categories

    u Round Robin: allocate each user equal amount of time

    u Proportional Fair: equalise the channel rate / throughput ratio

    u Max C/I: prefer the users with good channel conditionsu To provide GoS/ QoS additional inputs are to be used

    u Additional scheduling weights and rate constraints based on therequested GoS/ QoS

    u This can be traded-off with channel conditions

    u Special scheduling schemes are needed for providing delay critical

    services, e.g. VoIP

  • 8/12/2019 11_UMTS-HSDPA_ws12

    25/36

    UMTS Networks 25Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    Comparison of Schedulers

    u Simple Round Robin doesnt care about actual channel rate

    u Proportional Fair offers higher cell throughputu QoS aware algorithm offers significantly higher user perceived throughput than

    PF with similar cell throughput

    aggregated cell throu ghput

    0

    500

    1000

    1500

    2000

    2500

    Round Robin Proportional Fair QoS aw are

    averag

    e

    throughput[kbps]

    user perceived throughput

    0%

    20%

    40%

    60%

    80%

    100%

    0 100 200 300 400 500 600

    average throughput [kbps]

    Per

    centage

    ofusers

    receiving

    throughput

    Round Robin

    Proportional Fair

    QoS aware

  • 8/12/2019 11_UMTS-HSDPA_ws12

    26/36

    UMTS Networks 26Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    Mobility Procedures I

    u HS-DSCH for a given UE belongs to only one of the radio links assigned to

    the UE (serving HS-DSCH cell)u The UE uses soft handover for the uplink, the downlink DCCH and any

    simultaneous CS voice or data

    u Using existing triggers and procedures for the active set update

    (events 1A, 1B, 1C)

    u Hard handover for the HS-DSCH, i.e.

    Change of Serving HS-DSCH Cell within active set

    u Using RRC procedures, which are triggered by event 1D

  • 8/12/2019 11_UMTS-HSDPA_ws12

    27/36

    UMTS Networks 27Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    Mobility Procedures II

    u Inter-Node B serving HS-DSCH cell changeu Note: MAC-hs needs to be transferred to new NodeB !

    NodeB NodeB

    MAC-hs

    NodeB NodeB

    MAC-hs

    Source HS-

    DSCH Node BTarget HS-

    DSCH Node B

    ServingHS-DSCH

    radio link

    ServingHS-DSCH

    radio link

    s t

    CRNC CRNC

  • 8/12/2019 11_UMTS-HSDPA_ws12

    28/36

    UMTS Networks 28Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    HS-DSCH Serving Cell Change

    u Event 1D: change of best cell within the active setu Hysteresis and time to trigger to avoid ping-pong

    (HS-DSCH: 12 dB, 0.5 sec)

    Reporting

    event 1D

    Measurement

    quantity

    Time

    CPICH 2

    CPICH 1

    CPICH3

    Hysteresis

    Time to

    trigger

  • 8/12/2019 11_UMTS-HSDPA_ws12

    29/36

    UMTS Networks 29Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    Handover Procedure

    u Example: HS-DSCH hard handover (synchronized serving cell change)

    SRNC=

    DRNC

    Target

    HS-DSCH cellUE

    RL Reconfiguration Prepare

    RL Reconfiguration Ready

    Radio Bearer Reconfiguration

    Radio Bearer Reconfiguration Complete

    Source

    HS-DSCH cell

    ALCAP Iub HS-DSCH Data Transport Bearer Setup If new NodeB

    Synchronous

    Reconfiguration

    with TactivationRL Reconfiguration Commit

    ALCAP Iub HS-DSCH Data

    Transport Bearer Release

    DATA

    Reset MAC-

    hs entity

    Serving HS-DSCHcell change decision

    i.e. event 1D

    RL Reconfiguration Prepare

    RL Reconfiguration Ready

    RL Reconfiguration Commit

  • 8/12/2019 11_UMTS-HSDPA_ws12

    30/36

    UMTS Networks 30Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    HSDPA Managed Resources

    a) OVSF Code Tree

    b) Transmit Power

    SF=8

    SF=16

    SF=4

    SF=2

    Codes reserved for HS-PDSCH/ HS-SCCH

    C16,0C

    16,15

    Codes available for DCH/common channels

    Border adjusted by CRNC

    Tx power available for HS-PDSCH/ HS-SCCH Tx power available for DCH/

    common channels

    Border adjusted by CRNC

    u Note: CRNC assigns resources to Node B on a cell basis

  • 8/12/2019 11_UMTS-HSDPA_ws12

    31/36

    UMTS Networks 31Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    Cell and User Throughput vs. Load

    u

    36 cells networku UMTS composite channel model

    u FTP traffic model (2 Mbytedownload, 30 sec thinking time)

    u The user throughput is decreasedwhen increasing load due to the

    reduced service time

    u The cell throughput increaseswith the load because overallmore bytes are transferred in thesame time

    0

    500

    1000

    1500

    2000

    2500

    4 6 8 10 12 14 16 18

    Throughput

    [kbit/s]

    Number of Users/ Cell

    Load Impact

    Mean User Throughput

    Aggregated Cell Throughput

  • 8/12/2019 11_UMTS-HSDPA_ws12

    32/36

    UMTS Networks 32Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    HSDPA Performance per Category

    u 36 cells network

    u UMTS composite channel model

    u FTP traffic model (2 Mbytedownload, 30 sec thinking time)

    u Higher category offers highermax. throughput limit

    u Cat.6: 3.6 MBit/secu Cat.8: 7.2 MBit/sec

    uMax. user perceived performanceincreased at low loading

    u Cell performance slightly better

    Cat 6 - Cat 8 Comparison

    0

    500

    1000

    1500

    2000

    2500

    Cat 6/ 10 users Cat 8/ 10 users Cat 6/ 20 users Cat 8/ 20 users

    throug

    hput(kbps)

    Mean User Throughput

    Peak User Throughput

    Aggregated Cell Throughput

  • 8/12/2019 11_UMTS-HSDPA_ws12

    33/36

    UMTS Networks 33Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    Impact from Higher Layers

    uMaximum MAC-hs throughput isdetermined by the MAC-d PDUsize and the max. number ofMAC-d PDUs, which fit into themax. MAC-hs PDU

    uMaximum RLC throughput isfurther limited by

    uThe RLC window size, whichis limited to 2047 PDUs

    uRound-trip time RTT

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    Cat.6 336bit Cat.8 336bit Cat.8 656bit Cat.10 336bit Cat.10 656bit

    Throughput

    [kbit/s]

    Higher Layer Impact

    Max. RLC Throughput, RTT = 120msec

    Max. RLC Throughput, RTT = 80msec

    Max. MAC-hs Throughput

  • 8/12/2019 11_UMTS-HSDPA_ws12

    34/36

    UMTS Networks 34Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    Coverage Prediction with HSDPA

    uExample Scenario

    u 15 users/cell

    u Pedestrian A channelmodel

    u Plot generated with fieldprediction tool

    HSDPA Throughput

    depends on location

  • 8/12/2019 11_UMTS-HSDPA_ws12

    35/36

    UMTS Networks 35Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    HSDPA References

    u Papers:

    u Arnab Das et al: Evolution of UMTS Toward High-Speed Downlink Packet

    Access, Bell Labs Technical Journal, vol. 7, no. 3, pp. 47 68, June2003

    u A. Toskala et al: High-speed Downlink Packet Access, Chapter 12 inHolma/ Toskala: WCDMA for UMTS, Wiley 2010

    u T. Kolding et al: High Speed Downlink Packet Access: WCDMAEvolution, IEEE Veh. Techn. Society News, pp. 4 10, February 2003

    u H. Holma/ A. Toskala (Ed.): HSDPA/ HSUPA for UMTS, Wiley 2006u Standards

    u TS 25.xxx series: RAN Aspects

    u TR 25.858 HSDPA PHY Aspects

    u TR 25.308 HSDPA: UTRAN Overall Description (Stage 2)

    u

    TR 25.877 Iub/Iur protocol aspects

  • 8/12/2019 11_UMTS-HSDPA_ws12

    36/36

    UMTS Networks 36Andreas Mitschele-Thiel, Jens Mckenheim Nov. 2012

    Abbreviations

    ACK (positive) Acknowledgement

    ALCAP Access Link Control ApplicationProtocol

    AM Acknowledged (RLC) Mode

    AMC Adaptive Modulation & Coding

    CAC Call Admission Control

    CDMA Code Division Multiple Access

    CQI Channel Quality Information

    DBC Dynamic Bearer Control

    DCH Dedicated Channel

    DPCCH Dedicated Physical Control Channel

    FDD Frequency Division DuplexFEC Forward Error Correction

    FIFO First In First Out

    GoS Grade of Service

    HARQ Hybrid Automatic Repeat Request

    H-RNTI HSDPA Radio Network TemporaryIdentifier

    HSDPA High Speed Downlink Packet Access

    HS-DPCCH High Speed Dedicated Physical Control

    ChannelHS-DSCH High Speed Downlink Shared Channel

    HS-PDSCH High Speed Physical Downlink SharedChannel

    HS-SCCH High Speed Signaling Control Channel

    IE Information Element

    MAC-d dedicated Medium Access Control

    MAC-hs high-speed Medium Access Control

    Mux Multiplexing

    NACK Negative Acknowledgement

    NBAP NodeB Application Part

    OVSF Orthogonal Variable SF (code)

    PDU Protocol Data Unit

    PHY Physical Layer

    QoS Quality of Service

    QPSK Quadrature Phase Shift Keying

    RB Radio BearerRL Radio Link

    RLC Radio Link Control

    RRC Radio Resource Control

    RRM Radio Resource Management

    SDU Service Data Unit

    SF Spreading Factor

    TB Transport Block

    TFRC Transport Format & Resource

    CombinationTFRI TFRC Indicator

    TTI Transmission Time Interval

    UM Unacknowledged (RLC) Mode

    16QAM 16 (state) Quadrature AmplitudeModulation