100年度計畫...

163
用過核子燃料最終處置計畫 潛在處置母岩特性調查與評估階段 100年度計畫 成果報告 台灣電力公司 中華民國10106

Transcript of 100年度計畫...

  • 100

    10106

  • 99~101 100

    500

    GPS

    (DFN_NET )

    U Cu Fe

    Eh(pe)-pH

    Cs Se

    (

    )

  • / ( i)

    (i i )

  • ABSTRACT

    This Annual Report 2011 reports on the TPC s achievements in

    implementing the Spent Nuclear Fuel Disposal Program Pla n. This

    report presents Disposal Environment Investigat ion, Development

    of Disposal Technologies, and Performance Assessment of Spent

    Nuclear Fuel Disposal in consistence with the requirements of the

    program plan for the 2010 to 2012 period .

    The main achievements of the Disposal Environment

    Invest igation include dril l ing of f irst 500 -meter-dril led-core borehole

    in the eastern Taiwan granitic bodies as well as conducting

    Magnetotellurics (MT) geophysical survey around the planned area for

    the Geological Tunnel Laboratory in H-area for underground

    information about water conductive structures. Moreover, this project

    f irstly sets up microseismic network and continuous GPS monitoring

    stations around the target granitic bodies to monitor long-term

    seismicity, uplift or subsidence by crustal movement. Furthermore,

    downhole mult i-packer pressure monitoring for groundwater also has

    been kept for long-term hydraulic characterization in three deep

    boreholes in western offshore islands.

    On the Development of D isposal Technologies, signif icant

    technical achievements in 201 1 include: laboratory-scale rock testing

    on thermal properties by conducting thermal measurements in a

    granitic block associated with back-f i l led bentonite for further

    numerical s imulations; discrete fractural network modeling ( i .e.

    DFN_Net) based on in-situ fracture measurement from a tunnel of the

    western offshore is lands; for geochemical evolutionary modeling based

    on hydrogeochemical data of the western offshore islands, this year

    the Eh-pH diagrams of U, Cu and Fe have been carried out to

    evaluating stable condition of HLW geological repository ; and

  • laboratory nuclide transportation and retardation testing for

    determination of diffusion coefficient factors in different

    aerobic/anaerobic environments.

    In the buffer/backfi l l material propert ies research, it describes

    the features of bentonite as a candidate material for the buffer

    including physical properties, mineral composition, etc. , in order to

    understand the material composition and prop erties, and to explore

    the thermal properties and hydraul ic properties, to understand

    features of bentonite under different design (such as density, water

    content, etc.), to facil itate subsequent disposal of the reference

    design engineering barrier.

    The work of sub-item two is delegated to study performance /

    safety assessment for the variational scenario. The scopes of sub -item

    two include (1) Analysis and systematic description of research results

    about crust uplift, surface erosion, cl imate change, sea l evel change,

    tsunami and other environmental factors in Taiwan , (2) Analysis of

    environmental factors in the past, recent and future trends, as a

    comprehensive analysis of the disposal s ites for possible future

    changes in ambient conditions and formed a ba sis for impact.

    Earthquake damage to underground constructions is either caused

    by shaking or displacement on old faults. The study conduct s case

    studies related to seismic activies, understanding of seismic activity on

    the damage of underground constructi ons.

    In the performance assessment study, it includes overview of

    current status of international Thermo -Hydro-Mechanical-Chemical

    Coupling (THMC) project for spent nuclear fuel, and analyze the space

    and time scale evolution affected by possible individua l thermal,

    hydraulic, mechanical, chemical and its coupling interactions for space

    scale and time scale to support the research of radionuclides migration

    behavior simulat ions in the near -field.

  • i

    ...................................................................................................................... i

    ................................................................................................................... ii

    ................................................................................................................... v

    1 ........................................................................................................... 1-1

    2 .................................................................................................... 2-1

    3 ............................................................................................ 3-1

    3.1. ......................................................................... 3-1

    3.1.1. ............................................................. 3-1

    3.1.2. ...............................................................3-14

    3.1.3. .......................3-32

    3.2. ...............................................................................3-42

    3.2.1. ...................................................................................3-42

    3.2.2. .......................................................3-46

    3.2.3. ...........................................3-52

    3.2.4. ...................................3-52

    3.2.5. .......................................................3-63

    3.3. ...............................................................3-76

    3.3.1. ...........................................3-76

    3.3.2. .............3-106

    4 ........................................................................................................... 4-1

    5 .................................................................................................... 5-1

  • ii

    3-11 ............................................................... 3-5

    3-21 ....................................................... 3-6

    3-3 1 75.6-78m

    ............................................................................................................................. 3-8

    3-41125-127m ........... 3-8

    3-51212-214m ........... 3-9

    3-61242.6-244m ........ 3-9

    3-7 1 268.7-271m

    ......................................................................................................................3-10

    3-8 1 334-346.5m

    ......................................................................................................................3-10

    3-9 ...............................................3-12

    3-10 .....................................................3-12

    3-11 S-1 .........................................3-13

    3-12K .......................................................................3-18

    3-13K() .................3-19

    3-14DFN_NET ..................................................................3-20

    3-15 .........3-21

    3-16 .............3-22

    3-17 .....................................3-27

    3-1844 .........................3-28

    3-1954 .........................3-29

    3-2054 .3-30

    3-2164 .........................3-31

    3-22 .............................................3-34

    3-23P-S- ...........................................................3-34

    3-24 .............................3-35

    3-25 .............................................3-36

    3-26GPSHGC1MP1MP2 ...............3-39

    3-27GPSHGC2MP1MP2 ...............3-39

    3-28GPSHGC3MP1MP2 ...............3-40

    3-29GPSHGC1 ..........................................................3-40

    3-30GPSHGC2 ..........................................................3-41

    3-31GPSHGC3 ..........................................................3-41

  • iii

    3-32- ....................................................3-44

    3-33 .........................................................................3-44

    3-34 .....................................................................................3-45

    3-35 .............................................................................3-45

    3-36Eh(pe)-pH .................................................3-49

    3-37Eh(pe)-pH .................................................3-50

    3-38Eh(pe)-pH .................................................3-51

    3-39Cs (10E-3M) ..................................3-56

    3-40Cs (10E-8M) ..................................3-57

    3-41Se (10E-3M) .................................3-58

    3-42Se (10E-8M) .................................3-59

    3-43Se (10E-3M) .................................3-60

    3-44Se (10E-8M) .................................3-61

    3-45 .................................................3-62

    3-46 .........................................................3-62

    3-47GMZ-16 ....................3-68

    3-48 .....................................3-68

    3-49Kunigel V1 ................................3-69

    3-50MX-80 ......................................3-69

    3-51 .....................................3-72

    3-52 .........................................3-72

    3-53 .....................................3-73

    3-54Kunigel V1 ....................................3-73

    3-55Kunigel V1 ................................3-74

    3-56- ................................................3-75

    3-57 .........................................................................3-78

    3-58 .....................................................................3-79

    3-59 .....................................................................................3-83

    3-601970-1999 ........................................................3-84

    3-61(5 Myr) .........................3-85

    3-62 .....................................................3-95

    3-63 .....................................................3-96

    3-641906418 .........................................................3-101

    3-651906418 .............................................3-101

    3-661952 ...........................................................3-102

    3-67 ...........................................................................3-102

    3-681976 ...................................3-105

    3-691976650 m .........................3-105

  • iv

    3-70/ ......................3-111

    3-71(0100) .3-112

    3-72-() ............................3-123

    3-73 ...........................3-130

    3-74-- .............3-131

  • v

    3-1 ...................................................................3-23

    3-2 ...........................................................................3-23

    3-3DFN ................................................................3-23

    3-4456 .................................3-26

    3-5(%) ......................................................................3-66

    3-6 ...................................................................3-67

    3-7 ...............................................................................................3-80

    3-8/ ..........................................................3-81

    3-9 ...........................................................3-88

    3-10IPCC ..................................3-90

    3-11 .................................3-90

    3-12 .................................................3-90

    3-1315 .....................................................................3-91

    3-1415 .........................................3-91

    3-15 .............3-97

    3-16DECOVALEX-THMC(2003~) ....3-108

    3-17 ...............................................................3-112

    3-18Debye-Hckel .............................3-117

    3-19 ...........................................................................3-117

  • 1-1

    1

    (2006 7 )

    (2006 7 ) 2005~2017

    2009

    ( SNFD2009

    ) 2017

    ( SNFD2017 )

    2009

    (

    SNFD2009 )

    2010 7

    SNFD2009

    2010 2011 1

    SNFD2009

  • 1-2

    500 / 16 km

    6 3000 m / / /

    SNFD2009

    106 SNFD2017

    SNFD2017 (1)

    (2) (3)

    (1)

    (2)

    SNFD2017

  • 2-1

    2

    (2005~2017)

    2017

    2017 (~2013)

    (~2015)

    /

    (~2017)

    99~101

    (1)

    (a)

    (b)

    (c)

    (2)

    (a)

    (b)

    (c)

    (d)

    (e)

    (3)

  • 2-2

    (a)

    (b)

    106

    100

    (100 )

  • 3-1

    3

    3.1.

    (SNFD2009 )

    3.1.1.

    500 m HQ

    (1)

    P6L

    HQ (Open Hole) 60m

  • 3-2

    100 8 500 m

    (Borehole

    Camera)

    (a)

    29.8 m

    ( 3-1)

    (

    3-1 a,c)

    ( 3-1 c)

    (b)

    75.6-78 m 125-127 m 212-214 m 242.6-244 m

  • 3-3

    268.7-271 m 334-346.5 m ( 3-2)

    ( i ) 75.6-78 m

    30 ( 60 )

    80 30 ( 3-3)

    ( i i ) 125-127 m

    45-80 50-80

    ( 3-4)

    ( i i i) 212-214 m

    40-60

    ( 3-5)

    ( iv) 242.6-244 m

    45-90 30-60

    30 40-60 (

    3-6)

    (v) 268.7-271 m 3

    60 (

    3-7)

    (vi) 334-346.5 m

    337.5-342.5 m 344-346 m

    345 m

    70 60-70

  • 3-4

    15

    60-70 ( 3-8)

  • 3-5

    (a)

    (b)

    (c)

    (d)

    3-11

    (a)56-60m()(b)152-156m(

    )(c)300-304m()(d)456-460m()

  • 3-6

    (a)

    (b)

    (c)

    (d)

    (e)

    3-21

    (a)76-80m(b)124-128m(c)212-216m(d)240-244m

    (e)268-272m

  • 3-7

    (f)

    (g)

    (h)

    3-2( ) 1

    (f)336-340m(g)340-344m(h)344-348m

  • 3-8

    Ground CircleDiagram

    Rose Diagram

    3-3 1 75.6-78m

    (0-3030-6060-90

    )

    Ground CircleDiagram

    Rose Diagram

    3-41125-127m

    (0-3030-6060-90

    )

  • 3-9

    Ground CircleDiagram

    Rose Diagram

    3-51212-214m

    (0-3030-6060-90

    )

    Ground CircleDiagram

    Rose Diagram

    3-61242.6-244m

    (0-3030-6060-90

    )

  • 3-10

    Ground CircleDiagram

    Rose Diagram

    3-7 1 268.7-271m

    (0-3030-6060-90

    )

    Ground CircleDiagram

    Rose Diagram

    3-8 1 334-346.5m

    (0-3030-6060-90

    )

  • 3-11

    (2)

    3-9

    3-10

    (

    )

    Ex Ey

    ( Hx Hy)

    20 cm

    (Hz)

    /

    S1 3-11

    (101 )

    L1 L2 S1

    ( 3-9 )

    3

  • 3-12

    3-9

    W S N E

    MTUEW

    S

    N

    Hx

    Hy

    Hz

    GPS

    Ground

    12V

    +-

    N

    3-10

  • 3-13

    SW NE

    19

    238

    Ohm-m

    3-11 S-1

  • 3-14

    3.1.2.

    99~101

    K

    (1)

    (DFN_NET )

    (a)

    3-12

    ( , )(dip

    direction, dip angle) (315 , 82) (34 ,

    85) (284 , 19)DFN

    (Trace)

    (Priest, 1993a)

    94-97

    K

    KMBH01-02-04

    (b) DFN_NET

  • 3-15

    3-12

    3-13

    3-1 3-2

    (

    2008)

    (Priest, 1993a)

    (Probability Density Funct ion)

    (DFN) ( DFN_NET

    ) 3-14

    (Empirical Cumulated

    Distribution Function ECDF)DFNDFN_NET

    (Marked Point Process,

    MPP)

    (Cluster) DFN_NET

    DFN 3-15(b)

    3-16(b)

    3-3

    (Parent-daughter)

    (Bil laux et al . , 1989; Xu and Dowd, 2010)

  • 3-16

    (Poisson

    point process) (Xu and Dowd, 2010)

    DFN_NET

    50%DFN_NET

    DFN

    3-15(a) 3-16(a)

    (Edge Effect)

    (Xu and Dowd, 2010)

    x- y- z-

    50x50x10m

    DFN ( )

    3-15

    3-15(a) 3-15(b)

    3-12

    3

    66%

  • 3-17

    DFN

    3-16 3-15 3-16

    (c)

    97-99

    (permeabil ity) (Porosity)

    (100 ) K

    DFN_NET

    DFN (101 )

    DFN_NET (Global Optimization)

    (

    )DFN_NET

    DFN

    DFN_OPT

  • 3-18

    3-12K

  • 3-19

    3-13K()

  • 3-20

    DFN

    No

    No

    Yes

    Yes

    DFN

    Yes

    No

    Yes Yes

    NoNo

    DFN

    Yes

    1

    1 No

    3-14DFN_NET

  • 3-21

    (a)

    (b)

    3-15

  • 3-22

    (a)

    (b)

    3-16

  • 3-23

    3-1

    +

    1 (315, 82) 42 1.641 0.982 l = 0.303, l = 0.712

    2 ( 34, 85) 38 1.597 0.886 l = , l = 0.490

    3 (284, 19) 25 1.970 0.978 l = 0.413, l = 0.423

    +

    3-2

    1 (315, 82) 0.792. 0.842 s = -0.759, s =1.224

    2 ( 34, 85) 0.694 0.538 s = -0.658, s =0.861

    3 (284, 19) 0.567 0.663 s = -1.285, s =1.030

    3-3DFN

    1 2 3

    (315, 82) ( 34, 85) (284, 19)

    (#/m3) 0.032082 0.040726 0.011002

    + D = -0.2945

    D = 0.5027

    D = -0.2357

    D = 0.3039

    D = -0.5558

    D = 0.4041 +

  • 3-24

    (2)

    99~101 ( 3-17)

    4 5 6

    ( 3-4

    )

    (a) 4

    2011 03 22 2012 03 29

    12 3-18 4

    6

    (b) 5

    2011 01 13 6 2011 05 05

    12 3-19 5

    2 ( 200-300 m)

    2011 3 14 93.10 m

    89.6 m (2011 3 22 ) 3.5 m

    2011 3 11 1:46 9.0

    (Mw=9.0)

    2011

    03 22 ( 11 )

    1 m 2011 04 10 311

    30 5

    2011 12 20 2012 03 29

    ( 3-20)

    (c) 6

  • 3-25

    2011 03 22 6 2012 03 29

    12 3-21 6

    0.1m

    4 6

    5

    5

    311 4 6

  • 3-26

    3-4456

    (m)

    (m) *

    4 000100 33.713-66.287 101 /

    4 100200 -66.287-166.287 15 /

    4 200300 -166.287-266.287 10 /

    4 300400 -266.287-366.287 102 /

    4 400560 -366.287-466.287 471 /

    5 000100 22.173-77.827 41 /

    5 100200 -77.827-177.827 19 /

    5 200300 -177.827-277.827 48 /

    5 300400 -277.827-377.827 12

    5 400500 -377.827-477.827 25

    6 000100 32.722-67.278 41 /

    6 100200 -67.278-167.278 126 /

    6 200300 -167.278-267.278 84 /

    6 300400 -267.278-367.278 117 /

    6 400500 -367.278-467.278 124 /

    *()()/()

    /()

  • 3-27

    3-17

    4INW/PS9805

    INW/PS9805

  • 3-28

    3-1844

    2011032220120329

  • 3-29

    3-1954

    2011011320110505311

  • 3-30

    3-2054

    2011122020120329

  • 3-31

    3-2164

    2011032220120329

  • 3-32

    3.1.3.

    GPS

    (1)

    99~101 3

    (Shyu et al., 2005)

    ( 3-22)

    3 4

    4

    11 (Near-field Earthquake)

  • 3-33

    100

    P S 10

    (Seismic Analysis Code SAC)

    P S

    ( 3-23)

    (Lee and Lahr, 1972) (HYPO 71)

    2-6 7-8

    9 11

    3-24

    ( 3-25) M L1.2-2.75

    2-19 km

  • 3-34

    ()

    km

    km km

    km

    km

    km

    3-22

    (1970-2002)

    7

    3-23P-S-

  • 3-35

    3-24

    2011/07/11(ABC)(D)

  • 3-36

    3-25

    ML1.2-2.75

  • 3-37

    3-25()

    20km

  • 3-38

    (2) GPS

    (Global Positioning System, GPS)

    GPS

    1-2cm

    99~101GPS

    GPS

    GPS

    GPS ( HGC1

    HGC2 HGC3 )

    GPS ( GPS )

    GPS

    30 GPS

    ( 1994)

    5.0mm+1.0ppm GPS 8

    ( 4 ) 3 ( )

    100 8GPS

    MP1MP2 0.2-0.5m

    ( 3-26 3-28) GPS

    Bernese 5.0

    ( 3-29 3-31) GPS

    (N E) 0.2 0.5cm

    (h) 1-2cm

    GPS

  • 3-39

    HGC1 MP1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    11/08/07 11/08/14 11/08/21 11/08/28 11/09/04 11/09/11 11/09/18

    (//)

    M

    P

    1

    (

    )

    HGC1 MP2

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    11/08/07 11/08/14 11/08/21 11/08/28 11/09/04 11/09/11 11/09/18

    (//)

    M

    P

    2

    (

    )

    HGC1 MP2

    3-26GPSHGC1MP1MP2

    HGC2 MP1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    11/08/07 11/08/14 11/08/21 11/08/28 11/09/04 11/09/11 11/09/18

    (//)

    M

    P

    1

    (

    )

    HGC2 MP1

    HGC2 MP2

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    11/08/07 11/08/14 11/08/21 11/08/28 11/09/04 11/09/11 11/09/18

    (//)

    M

    P

    2

    (

    )

    3-27GPSHGC2MP1MP2

  • 3-40

    HGC3 MP1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    11/08/07 11/08/14 11/08/21 11/08/28 11/09/04 11/09/11 11/09/18

    (//)

    M

    P

    1

    (

    )

    HGC3 MP1

    HGC3 MP2

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    11/08/07 11/08/14 11/08/21 11/08/28 11/09/04 11/09/11 11/09/18

    (//)

    M

    P

    2

    (

    )

    HGC3 MP2

    3-28GPSHGC3MP1MP2

    320325.10

    320325.15

    320325.20

    320325.25

    320325.30

    11/08/05 11/08/10 11/08/15 11/08/20 11/08/25 11/08/30 11/09/04 11/09/09

    (//)

    (m

    )

    (m)

    2692081.40

    2692081.45

    2692081.50

    2692081.55

    2692081.60

    11/08/05 11/08/10 11/08/15 11/08/20 11/08/25 11/08/30 11/09/04 11/09/09

    (//)

    (m

    )

    128.45

    128.50

    128.55

    128.60

    128.65

    11/08/05 11/08/10 11/08/15 11/08/20 11/08/25 11/08/30 11/09/04 11/09/09

    (//)

    3-29GPSHGC1

  • 3-41

    2684590.50

    2684590.55

    2684590.60

    2684590.65

    2684590.70

    11/08/05 11/08/10 11/08/15 11/08/20 11/08/25 11/08/30 11/09/04 11/09/09

    (//)

    (m

    )

    47.80

    47.85

    47.90

    47.95

    48.00

    11/08/05 11/08/10 11/08/15 11/08/20 11/08/25 11/08/30 11/09/04 11/09/09

    (//)

    (m)

    325307.20

    325307.25

    325307.30

    325307.35

    325307.40

    11/08/05 11/08/10 11/08/15 11/08/20 11/08/25 11/08/30 11/09/04 11/09/09

    (//)

    (m

    )

    3-30GPSHGC2

    2682282.15

    2682282.20

    2682282.25

    2682282.30

    2011/08/05 2011/08/10 2011/08/15 2011/08/20 2011/08/25 2011/08/30 2011/09/04 2011/09/09

    (//)

    /

    /

    /

    /

    2011/08/05 2011/08/10 2011/08/15 2011/08/20 2011/08/25 2011/08/30 2011/09/04 2011/09/09

    (//)

    63.40

    63.45

    63.50

    63.55

    63.60

    11/08/05 11/08/10 11/08/15 11/08/20 11/08/25 11/08/30 11/09/04 11/09/09

    (//)

    (m

    )

    (m)

    (m

    )

    3-31GPSHGC3

  • 3-42

    3.2.

    3.2.1.

    (

    ) ( )

    ( 3-32)

    (1)

    MX-80

    ( 2.7 g/cm3 12%)

    3-33 70 mm 30 mm

    6 5 12

    mm 6

    3-32 SR-97 H3 FEBEX

    (Dry Density) 1.59 1.8 g/cm3

    5

    1.6 g/cm3

    (2)

    50x50x25 cm

    ( 3-34) 70 mm

  • 3-43

    ( 4

    3 mm 10 cm)

    5 cm 10 cm

    20 cm

    (3)

    6

    3-35

  • 3-44

    3-32-

    3-33

  • 3-45

    3-34

    3-35

  • 3-46

    3.2.2.

    (Eh) (pH)

    2008

    U Cu Fe

    Eh(pe)-pH

    Eh(pe)-pH Pourbaix (Pourbaix, 1974)

    ( )

    Eh pH

    Cu( ) Fe( )

    U( )

    ( 300-500 m)

    Cu Fe U Eh(pe)-pH

    GWB (Geochemist s Workbench

    Version 8.0)

    thermo.com.V8.R6+.dat EQ3/6 (Version

    8.0) (data0.cmp)

    Cu Fe U 1.0E-06 M pH( ) 0-14

    pe( ) -16.9-+16.9

    1atm

    300-500 m

    ( Kmi) (C Cl S F Si N P)

  • 3-47

    ( Sea)

    Cu FeU

    25 80

    25 Eh(pe)-pH

    80 KBS-3

    (SKBF/KBS 1983)

    pH=4

    pH ( 2011) pH=13

    (Ca)

    ( NaOH KOH) pH

    (SKB, 2002 2009 2010)

    (1) Eh(pe)-pH ( 3-36)

    pH=4-13 Cu ( C o p p e r )

    Cu ( C o p p e r )

    Cu ( C o p p er )

    (2) Eh(pe)-pH ( 3-37)

    pH=4-13Fe ( I ro n )

    Fe ( I ro n ) ( ) (

    Fe+ 2) Fe ( I ro n )

    Fe ( I r o n )

    ( )

    (3) Eh(pe)-pH ( 3-38)

    pH=4-13 UO2 ( U ra n i n i te )

    UO2 ( U ra n i n i t e )

  • 3-48

  • 3-49

    ()

    ()

    (300-500m) ()

    ()(300-500m)

    3-36Eh(pe)-pH

  • 3-50

    () (300-500m) ()

    () ()(300-500m)

    3-37Eh(pe)-pH

  • 3-51

    4

    () (300-500m) ()

    () ()(300-500m)

    3-38Eh(pe)-pH

  • 3-52

    3.2.3.

    2002

    ( ) 400 D

    6 ( ) (H-area Tunnel

    Laboratory, HTL)

    (2018~2028 )

    101 3 20

    3.2.4.

    (1)

    Cs Se

    Cs Se 10E-3M 10E-8M 10E-3M

  • 3-53

    (Heterogeneity)

    (Homogeneity)

    10E-8M

    3-39 3-44 Cs Se

    (2)

    (a)

    10E-9 m2/s x2=2Dt ( x

    D t )

    1 mm

    2 mm 3 mm 5 mm

  • 3-54

    ( )

    3-45 3-46

    (b)

    (Active Transport)

    ( ) (25cm x 25cm x

    25cm)

    (Computer Topography, CT) CT

    CT

  • 3-55

    CT

    CT

    K

    Migration 11

  • 3-56

    -50 0 50 100 150 200 250 300 350 4006.0

    6.5

    7.0

    7.5

    8.0

    100

    150

    200

    250

    300

    -2

    0

    2

    4

    -50 0 50 100 150 200 250 300 350 400

    pH

    time (h)

    pH

    Cs 10E-3 M, aerobic

    Eh (m

    V)

    Eh

    Kd (m

    L/g)

    Kd

    Kd = -2.489 exp(-0.017t) + 2.489

    3-39Cs (10E-3M)

  • 3-57

    -50 0 50 100 150 200 250 300 3506.0

    6.5

    7.0

    7.5

    8.0

    140

    160

    180

    200

    0

    100

    200

    -50 0 50 100 150 200 250 300 350

    pH

    time (h)

    pH

    Cs 10E-8 M, aerobic

    Eh

    (mV

    )

    Eh

    Kd

    (mL/

    g)

    Kd

    Kd = -116 exp(-0.018t) + 116.076

    3-40Cs (10E-8M)

  • 3-58

    -50 0 50 100 150 200 250 300 3506.0

    6.5

    7.0

    7.5

    8.0

    100

    150

    200

    250

    300-0.5

    0.0

    0.5

    1.0

    1.5

    -50 0 50 100 150 200 250 300 350

    pH

    time (h)

    pH

    Se 10E-3 M, aerobic

    Eh

    (mV

    )

    Eh

    Kd

    (mL/

    g)

    Kd

    Kd = -1.156 exp(-0.019t) + 1.156

    3-41Se (10E-3M)

  • 3-59

    -50 0 50 100 150 200 250 300 3506.0

    6.5

    7.0

    7.5

    8.0

    100

    150

    200

    250

    300-2

    0

    2

    4

    -50 0 50 100 150 200 250 300 350

    pH

    time (h)

    pH

    Se 10E-8 M, aerobic

    Eh

    (mV

    )

    Eh

    Kd

    (mL/

    g)

    Kd

    Kd = -3.33 exp(-0.016t) + 3.33

    3-42Se (10E-8M)

  • 3-60

    -50 0 50 100 150 200 250 300 3506.0

    6.5

    7.0

    7.5

    8.0

    -300

    -280

    -260

    -240

    -220

    -200

    -2

    0

    2

    4

    -50 0 50 100 150 200 250 300 350

    pH

    time (h)

    pH

    Se 10E-3 M, Anaerobic

    Eh

    (mV

    )

    Eh

    Kd

    (mL/

    g)

    Kd

    Kd = -0.399 exp(-0.024t) + 0.399

    3-43Se (10E-3M)

  • 3-61

    -50 0 50 100 150 200 250 300 3506.0

    6.5

    7.0

    7.5

    8.0

    -300

    -280

    -260

    -240

    -220

    -200

    -2

    0

    2

    4

    -50 0 50 100 150 200 250 300 350

    pH

    time (h)

    pH

    Se 10E-8 M, Anaerobic

    Eh

    (m

    V)

    Eh

    Kd

    (m

    L/g

    )

    Kd

    Kd = -1.966 exp(-0.021t) + 1.966

    3-44Se (10E-8M)

  • 3-62

    3-45

    3-46

  • 3-63

    3.2.5.

    3.2.5.1.

    (bentonite)

    (1)

    TOT

    10

    (Fukue et al. , 1995)

    (2)

    (3) 80 ~ 120 meq / 100 g

    (cation exchange capacity, CEC ) (Fukue et

    al., 1995) Cs+

    Na+ (Shibutani et al ., 1992)

    Kunigel V1 Kunipia F MX-80 Montigel

    Avonseal

  • 3-64

    3.2.5.2.

    3-5

    (Montmoril lonite)

    3-6 Kunigel V1 Zhisin(

    ) 50%

    3.2.5.3.

    3-6

    2.6~2.8 (Liquid Limit, LL)

    67%

    90 %

    (Plastic Limit, PL)

    MX-80

    (Plasticity Index, PI)

    35

    Kunigel V1 Kunipa FMX-80Avonseal

    MontigelGMZ-16

    3.2.5.4.

    DRP-1 Shotherm-D2

    ( 2010)

    18~22%

    3-47

  • 3-65

    18% 120 MPa

    (Thermal Characteristics)

    (2003) (2004) (2009) (Heat Probe

    Method) 3-48

    (Dry Density) (Water Content)

    (Thermal Conductivity)

    Kunigel V1

    1.8 Mg/m3 30%

    1.6 Mg/m 3

    (Suzuki and Taniguchi, 1999) 3-49

    Kunigel V1

    0.45~2.00 W/mK

    (Swedish Nuclear Fuel and Waste

    Management Company, SKB)MX-80

    (B rgesson et al. , 1994)

    0.8

    3-50 MX-80

    0.6~1.3 W/mK

  • 3-66

    3-5(%)

    Kunigel V1(1,2)

    Kunipia F(1,2)

    MX-80(3) Montigel

    (3) Avonseal

    (3) GMZ(4)

    (Zhisin)(5)

    46-49 98-99 75 66 79 75.4 14

    /

    29-38

  • 3-67

    3-6

    Kunigel V1(1,2,3)

    Kunipia F(1,2)

    MX-80(4) Montige

    l(4) Avonsea

    l(4) GMZ-16(

    5,6)

    (Zhisin) (7)

    Specific gravity

    2.7 2.7 2.7 2.8 2.8 2.6 2.7

    LL (%) 416 993 400 140 257 99.8 67

    PL (%) 21 42 70 50 49 41 18

    PI 395 951 330 90 208 58.8 49

    Montomorillon

    it (%) 46-49 98-99 75 66 79 80 2.3

    CEC (meg/ 100 g)

    52 1117 79 62 82 83.4 70

    Leach cation (meg/ 100 g)

    Na+ 54.6 114.9 56 1.8 46.5 1.6 23.1

    K+ 1.3 1.1 2.3 0.2 0.7 0.34 1.4

    Ca2+ 41.9 20.6 30.1 37.6 39.5 52.92 38.7

    Mg2+ 6.6 2.6 15.6 22.4 7 27.86 6.8

    Na+/Ca2+ ratio

    1.3 5.58 1.86 0.05 1.18 0.03 0.6

    1Ishikawa et al., 19902Ito et al, 19933Suzuki and Fujita,

    1999a4Lajudie et al., 199652004a62004b

    7Chuang et al., 2010

  • 3-68

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    70 80 90 100 110 120 130

    (MPa)

    (W/mK)

    18%

    20%

    22%

    3-47GMZ-16

    (2010)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 1 2 3 4 5 6 7 8

    Water content (%)

    Th

    erm

    al

    con

    du

    ctiv

    ity

    (W

    /m*K

    )

    14 15 16 17 18

    r d (kN/m3)

    3-48

    Chuang et al. (2010)

  • 3-69

    3-49Kunigel V1

    Suzuki and Taniguchi (1999)

    3-50MX-80

    Suzuki and Taniguchi (1999)

  • 3-70

    3.2.5.5.

    (2008)

    1.5~1.7 Mg/m 3 25~80

    (hydraul ic conductivity)

    3-51

    1.7 Mg/m3

    25 80

    1.7 Mg/m 3

    Pusch and Weston(2003)

    (Ca-type bentonite) 1.6 Mg/m3

    (2008) (Vapour Equil ibrium Technique )

    (soil suction) Fredlund

    and Xing model(Fredlund and Xing, 1994; Fredlund et al ., 1994)

    ( 0 1 ) - (soil-water

    characteristic curve, SWCC) (Unsaturated

    hydraulic conductivity)

    3-52 -

    Fredlund and Xing model

    - 25 40

    40 60 3-53

    Fredlund and Xing model

    Kunigel V1

    (Japanese Geotechnical Society

    Standard) JGS T 331 50

    mm 10 mm Kunigel V1 30 %

  • 3-71

    1.6 Mg/m3 1.8 Mg/m3

    3-54 Kunigel V1

    1.6 Mg/m3

    1.8 Mg/m3

    Kunigel V1 -

    (Suzuki and Fujita, 1999) 3-55

    3-56 Kunigel V1 MX-80

    Kunipa F 30% Kunigel V1 -

    Kunipa F MX-80

    Kunigel V1

  • 3-72

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    20 30 40 50 60 70 80 90

    Temperature ()

    Hy

    dra

    uli

    c co

    nd

    uct

    ivit

    y (

    10

    -10 m

    /sec

    )

    1.5

    1.6

    1.7

    r d (Mg/m3)

    3-51

    (2008)

    1.E+00

    1.E+01

    1.E+02

    1.E+03

    1.E+04

    1.E+05

    1.E+06

    0 0.2 0.4 0.6 0.8 1

    Degree of saturation

    Su

    ctio

    n (

    kP

    a)

    25 25

    40 40

    60 60

    Zhisin Clay

    measured simulated

    3-52

    (2008)

  • 3-73

    1.E-10

    1.E-08

    1.E-06

    1.E-04

    1.E-02

    1.E+00

    0 0.2 0.4 0.6 0.8 1

    Degree of Saturation

    Rel

    ati

    ve c

    oeff

    icie

    nt

    of

    per

    mea

    bil

    ity

    BH bentonite

    Zhisin clay

    3-53

    (2008)

    3-54Kunigel V1

    JNC (2000)

  • 3-74

    (a) Kunigel V1

    (b) 30%Kunigel V1

    3-55Kunigel V1

    Suzuki and Fujita (1999)

  • 3-75

    3-56-

    JNC (2000)

  • 3-76

    3.3.

    3.3.1.

    10

    3.3.1.1. /

    /

    /

  • 3-77

    (2009)

    /

    3.3.1.1.1. /

    ( 3-57)

    ( 3-7)

    (

    3-7)

    3,000

    7

    /

    3-8

    / 1990

    GPS

    GPS ( )

    (2002) 1993~1999

  • 3-78

    3-8

    5 mm/yr

    -10~-70 mm/yr

    KuoEn Ching et al.(2011) 199

    GPS 2000 2008

    ( 3-58) 0.2 ~ 18.5

    mm/yr

    3-57

    (2001)

  • 3-79

    3-58

    KuoEn Ching et al. (2011)

    S01R

  • 3-80

    3-7

    Eon

    Era

    Period

    Epoch

    (

    )

    Phanerozoic

    Cenozoic

    Quaternary

    Holocene 0.01

    Pleistocene 1.6

    Tertiary

    Piocene 5.3

    Miocene 23.7

    Oligocene 36.6

    Eocene 57.8

    Paleocene 66.4

    Mesozoic

    Creaceous

    144

    Jurassic 208

    Triassic 245

    Paleozoic

    Permian

    286

    Carboniferous 360

    Devonian 408

    Silurian 438

    Ordovician 505

    Cambrian 570

    Cryptozoic 4600

    (1991)(2009)

  • 3-81

    3-8/

    /(-)

    mm/yr

    5 (1985)

    10.72.2 0.58~0.128 (1982)

    8.91.9 (1982)

    5.00.4 Lin (1999)

    5.00.7 9,000 (1977)

    2 1,500~5,500 (1977)

    5.3 5,500~8,500 (1977)

    1~2 (2005)

    3~4 (2005)

    5~10 (2005)

    -10 (2005)

    -5 ~ -6 (2005)

    -1 ~ -2 (2005)

    (

    )

    -3 ~ -4 (2005)

    5 1993~1999 (2002)

    5 1993~1999 (2002)

    -10 ~ -70 1993~1999 (2002)

    -10 1993~1999 (2002)

    (2009)

  • 3-82

    3.3.1.1.2.

    (1985)

    ( 3-59)

    3 mm/yr ( ) 5.5

    mm/yrDadson et al. (2003) 30 (1970~1999)

    ( 3-60) 500 m

    6 mm/yr

    ( 5 Ma)

    3~6 mm/yr ( 3-61)

    5.5~6 mm/yr

    4

    2500mm

    921

    3.9mm/yr 921 2

    ( 2003)

    Siame, L. L. et al. (2011)

    (suspended sediment load) 50

    5~7 mm/yr

    (2009) (topographic steady state)

  • 3-83

    3-59

    (1985)(2009)

  • 3-84

    3-601970-1999

    Dadson et al. (2003)

    400 km2

  • 3-85

    3-61(5 Myr)

    Dadson et al. (2003)

    mm/yr

  • 3-86

    3.3.1.2.

    / /

    / /

    / / /

    (2009)

    3.3.1.2.1.

    1.8

    (Last Glacial Maximum, LGM)

    1

    ( 3-7)

    1~2

    Bard et al.(1996) 6,000

    ( ) 55 m

    2,000

    1.7

    850 m 6

    1,000 mm 1.3~1

    1.1~1

  • 3-87

    1

    ~

    9,500~4,000 9,500~8,500

    7,000~5,000

    2.4 m 2,000

    1~2

    Church et al . (2001) 2

    120 m

    2~1.4

    6 m 1.4~0.6

    10 m 6,000

    0.3~0.5 m

    (2005)

    20,000 ( )

    1.1~1

    13 mm/yr 10,000~6,500 8~9

    mm/yr 6,500

    3.3.1.2.2.

    IPCC(Intergovernmental Panel on Climate Change ) 2007

    20

    1.2~2.2 mm/yr

    1.5 mm/yr

    (2000)

    18

    (2002)

    20 1.5 mm/yr

  • 3-88

    ( 3-9)

    Tseng Yu-Heng et al .(2010) 1961-2003

    2.4 mm/yr

    1.8 mm/yr 1993-2003

    5.7mm/yr 3.1 mm/yr

    48

    1.9

    mm/yr 2.0 mm/yr

    2.0 mm/yr

    (1.5 mm/yr) 0.5 mm/yr

    3-9

    -1.1 -0.3 0.7 1.2 -7.1 0 0.5

    mm/yr (2002)(2009)

  • 3-89

    3.3.1.2.3.

    IPCC

    ( 3-10)

    ( / )

    (2002) 200 (

    99%) 3-11

    ( ) (2002)

    60~99%

    3-12

    Moren Passe(1999)

    15 (2002)

    3-13

    (Liew et al.,

    1999) (LGM)(

    22,000~19,000 )

    Moren Passe (1999)

    (2002)

    130 m(Yokoyama et al., 2000;

    CLIMAP, 1981) ( 10 )

    130 m

    10 132 12

    6.6 ( 3-14)

  • 3-90

    3-10IPCC

    A1FI

    A1T

    A1B

    A2

    B1 A1

    B2

    (IPCC, 2007)

    3-11

    1990 2025 2050 2075 2100 2150 2200

    0 14 26 46 76 188 374

    0 17 31 52 85 201 391

    0 20 37 61 96 217 412

    0 22 40 65 101 225 422

    0 -7 -10 -5 10 92 248

    0 18 33 55 88 206 397

    0 20 36 59 94 214 408

    cm (2002)(2009)

    99%()

    3-12

    (%) 1990 2025 2050 2075 2100 2150 2200

    60 0 8 16 25 34 59 86

    70 0 10 18 27 39 70 106

    80 0 11 20 32 47 85 133

    90 0 13 25 39 58 111 181

    95 0 15 29 45 68 139 238

    97.5 0 18 33 52 80 171 303

    99 0 20 36 59 94 214 408

    cm (2002)(2009)

    60~99%

  • 3-91

    3-1315

    (kyr)

    0~5

    5~30

    8 20~30 kyr

    30~40 1

    40~70

    60 kyr10

    70~80 5

    80~110

    100 kyr12

    110~130

    130~150

    (Moren and Passe, 19992002)(2009)

    3-1415

    0.5 2.8 4 6.6 8 10 12 13 15

    (m) -22 -88 -11 -110 -55 -132 6.6 -5.5 -99

    (2002)(2009)

    10%

  • 3-92

    3.3.1.3.

    2011 3 11

    9.0

    10

    10

    12

    50 ( 2011)

    (2005) 20

    1960 66

    30 1964

    15 1993 8 8

    29 1998

    1986 11 15

    ( 121.8 23.9 ) 7.8 13.9

    2

    1994 9 16

    147 6.4 45.1 38

    2002 7.1

    20 2006 12 26

  • 3-93

    7.1 40

    ( 2011)

    (2005)

    (

    3-62)

    1000

    50 6.5

    (2011)

    1771 85.4

  • 3-94

    USGS 1000

    (100 8 19

    ) 8.2

    10 15 (

    3-63)

    ( 3-15)

    (Yap)

    2000 8.7

    3

  • 3-95

    3-62

    (2005)

  • 3-96

    3-63

    (100819)

    8.2

  • 3-97

    3-15

    (Mw)

    (m)

    (m)

    (m)

    (m)

    T1 () 8.1 1.4 1.7 2.4 2.5

    T2 (1) 8.2 0.8 0.7 10.0 1.1

    T3 (2) 8.4 0.6 0.7 9.5 0.7

    T4 (3) 8.6 0.3 0.6 5.0 0.5

    T5 (4) 8.0 0.0 0.1 0.6 0.1

    T6 (1) 8.5 0.8 1.1 1.5 1.1

    T7 (2) 8.8 0.7 0.7 1.2 0.9

    T8 () 8.7 2.6 2.5 6.4 3.4

    T9 (1) 8.6 0.8 0.8 1.6 0.9

    T10 (2) 8.8 1.2 1.2 2.0 1.5

    T11 (3) 8.7 0.7 1.1 2.0 1.2

    T12 (4) 8.8 0.8 0.8 2.8 1.4

    T13 (-

    1) 8.7 0.7 0.7 1.5 0.8

    T14 (-

    2) 8.7 0.6 0.7 1.4 0.8

    T15 () 8.8 0.3 0.2 0.7 0.3

    T16 (1) 8.7 0.3 0.3 0.6 0.3

    T17 (2) 8.7 1.2 1.2 1.3 1.5

    T18 (3) 8.5 2.8 2.3 2.5 3.3

    T19 () 7.6 0.3 0.3 2.7 0.3

    T20 (1) 7.5 1.7 1.4 0.0 0.5

    T21 (2) 7.2 0.7 0.8 0.0 1.6

    T22 (1+2) 7.8 1.7 1.4 0.0 1.2

    (100819)

  • 3-98

    3.3.1.4. \

    /

    /

    JNC(2000)

    100

    /

    (perturbation scenario)

    3.3.1.5.

    3.3.1.5.1.

  • 3-99

    (1)

    (2) (Magnitude) (Local

    Magnitude) (Surface Wave) (Body Wave)

    (Seismic Moment)

    (3)

    Iwasaki (1977)

    1.5 3.5

    Owen(1982)

    Pratt (1982)

    100 m 25 cm 500 m

    1976

    800 (Wang, 1985)

    3.3.1.5.2.

    (R shoff, 1989)

    1906 8.3

    3-64 3-65

    Stevens(1977)

    213

    m 1.8 km (San Andreas fault)

  • 3-100

    1.37 m

    206 m

    1.07 km

    1930 7.3

    140 m

    (Tanna fault) 160 m

    2.29 m 55%

    1952 (Kern Country) 7.6

    3-66

    (White Wolf fault)

    3-67 45~70

    m 12~24 in 213 m

    61 m

  • 3-101

    3-641906418

    (http://earthquake.usgs.gov/earthquakes/states/events/1906_04_18.php)

    3-651906418

    (http://geology.com/earthquake/california.shtml)

  • 3-102

    3-661952

    (http://geology.com/earthquake/california.shtml)

    3-67

    (http://geology.com/earthquake/california)

  • 3-103

    3.3.1.5.3.

    0.2-0.5 g

    0.5 g

    1964 8.5 Matanuska

    1970 7.7 16

    MM=VII~VII I(Modified Mercal l i (

    4~5 )

    1976 5.0~5.5

    Welkom 6 km

    2 km 10 cm

    1976 7.8

    12~16 km 11600 3.0~6.0

    7.0

    (PRC)

    3-68

    30 m

    230~450 m

    3-69 650 m

    650 m PRC=VII( 4~5

    )

    PRC=VIII~IX( 5~6 )

  • 3-104

    Bezrodny(1999) Krugobaikalskaya

    Baikal Kultuk 85 km 38

    4

    7.0 5 5.0~6.0

    70 km

    0.01~0.1 mm

    ( 70~1000 m3/hr)

    3.3.1.5.4.

    (1)

    (2)

    (3)

    (4)

  • 3-105

    3-681976

    Wang (1985)

    3-691976650 m

  • 3-106

    3.3.2.

    2017

    3.3.2.1.

    (Evolution) (

    2002)

    (

    ) (Thermal, T)

    (Hydraul ic/Hydro, H) (Mechanical, M) (Chemical , C)

    (Coupled Process)

    1970

    CHEMVAL (VALidation and verif ication of geoCHEMical

    models project)DECOVALEX (DEvelopment of COupled models and

  • 3-107

    their VALidat ion against EXper iments in nuclear waste isolat ion)

    ( ) CHEMVAL

    (VTT, 1999) CHEMVAL (1991-1994)

    (species) -

    (HC)

    (1994-1997) NaOH (quartz)

    Ca2 +/Na+

    (clayey water) (pyrite)

    DECOVALEX (DEvelopment of COupled models and their

    VALidation against EXperiments in nuclear waste isolation)

    1992 (Swedish Nuclear Power Inspectorate,

    SKI)

    (1992-1995)

    (THM) (Bench-Mark Test, BMT) (HM)

    (THM) (Test Case, TC) (J ing et al. , 1995; Tsang et

    al., 2009) KBS-3

    (1995-2000) 2

    (Tsang et al ., 2009) (Task)

    Task A SellafieldNirex

    Task B Kamaishi

    Task C

  • 3-108

    Task D (THM)

    (2000-2003) (Tsang et al. , 2005;

    Tsang et al. , 2009) Task A ENRESAGrimsel

    (Ful l-Scale

    Engineered Barriers Experiment in Crystall ine Host Rock, FEBEX) Task

    B (Drift Scale Test, DST)

    Task C

    (BMT) Task D (THM)

    (THM) DECOVALEX

    2003

    (DECOVALEX-THMC) (Birkholzer et al., 2005a;

    Birkholzer et al ., 2005b; Birkhol zer et al ., 2005c; Tsang et al ., 2009)

    3-16

    3-16DECOVALEX-THMC(2003~)

    Task A Shield

    Task B sp HRL

    Task C Tournemire

    Task D 1.

    2. JNC

    -

    Task E Shield

    (Tsang et al., 2009)

  • 3-109

    3.3.2.2.

    ( )

    100 100

    130 140

    ( g m - 3) (m3

    yr - 1)

    (advection)

    (dispersion) (retardation)

    ( Eh pH

    )

    ( )

    AB A B

    3.3.2.2.1.

    (

    ) ( )

  • 3-110

    ( ) ( )

    TqcTKt

    Tc fHs

    (3 .3-1)

    T (K) sc fc

    ( J m - 3 K - 1) HK - ( J m- 1

    s - 1 K - 1) q (m s - 1 )

    ( , Fourier's

    law) (convective)

    (advective f lux)

    (decay heat)

    40

    ( 2009) (CDBS)

    ( 2002 2003)

    / ( Watts/canister) ( yr) (

    3-70) BWR PWR (order)

    /

  • 3-111

    3-70/

    (1) (TH )

    ( )

    (Buoyancy Effects) 3-71

    (0 100 )

    (White, 1974)

    (Dispersion) (Dispersion Coefficient)

    (Molecular Diffusion Coefficient, Dw)

    (Frick, 1996) 3-17

    ( )

  • 3-112

    3-71(0100)

    3-17

    () Dw/D25

    5 0.55

    10 0.65

    15 0.75

    20 0.87

    25 1.00

    35 1.28

    50 1.76

    70 2.54

    D2525 Dw

    (2) (TM )

    E(T) (T) (VTT, 1999)

    (Uniaxial Stress)

    = T (3.3-2)

  • 3-113

    (Linear Thermal Expansion

    Coefficient, - 1) /

    (Free Displacement)

    (T)

    =E T (3.3-3)

    (Plane Stress) 0x 0y

    0z

    Tv

    Ex

    1 (3.3-4)

    Tv

    Ey

    1 (3.3-5)

    (Poissons Rat io) E /

    (Jaeger and Cook, 1984)

    /

    ( )

    (Plasticity)

    (3) (T C )

    10

    (Arrhenius)

    k 25

  • 3-114

    15.298

    11exp25

    TR

    Ekk a

    (3.3-6)

    Ea (Act ivation Energy, kJ mol- 1) 25k 25

    ( s - 1) R

    ( kJ mol - 1 K - 1) T (K)

    (Activity Coefficients) (Electrostat ic Potentials)

    (Heat Capacity) (Enthalpy)

    (Formation)

    STHKRTG ln (3.3-7)

    K G

    ( kJ mol - 1)H (Enthalpy, kJ mol - 1)

    S (Entropy, kJ mol - 1 K - 1)

    (Helgeson,

    1969)

    T

    PfTf dTCHH15.298

    15.298,, (3.3-8)

    T T

    PfTf dT

    T

    C

    T

    dHSS

    15.298 15.298

    15.298,, (3.3-9)

  • 3-115

    Cp ( kJ mol - 1 K - 1) (f ,T) 298.15

    298.15 K Cp

    i

    ( )

    G.N. Lewis M. Randall

    ( Ionic Strength)

    2

    2

    1ii zC

    (3.3-10)

    C i ( )Z i

    (Extended Debye-Hckel Equation)

    i

    ii

    dB

    zA

    1log

    2

    (3.3-11)

    A B 25

    A=0.5091 B=0.3286108

  • 3-116

    3-18 3-19 d i

    Li+ < Na+

    < K+ < Rb + Li+ > Na+ > K+ > Rb+

    =0.01

    =0.8 =0.05 (

    2001 2011)

    (2002)

    ( Debye-Hckel Davies

    Debye-H ckel Pitzer )

    ( )

    Arrhenius

  • 3-117

    3-18Debye-Hckel

    (C) A B

    0 0.4883 0.3241108

    15 0.5002 0.3267108

    25 0.5091 0.3286108

    40 0.5241 0.3318108

    55 0.5410 0.3353108

    70 0.5599 0.3392108

    (2001)

    3-19

    di () 1 =10-8 cm

    1 2 3

    3

    K+ Br-Cl-ClO3

    -

    ClO4-CN-F-HS-

    I-MnO4-NH4

    +

    NO2-NO3

    -OH-

    4

    Na+ CH3COO

    -HCO3-

    H2PO4-HSO3

    -

    CrO4-2HPO4

    -2

    SO4-2

    PO4-3

    5

    Ba+2Cd+2Hg+2

    Pb+2 CO3

    -2S-2SO3-2

    6 Li+ Ca+2Cu+2Fe+2

    Zn+2

    8 Mg+2

    9 H+ Al+3Cr+3Fe+3

    (2001)

  • 3-118

    3.3.2.2.2.

    ( 2008)

    CKSCx

    CV

    x

    CD

    t

    S

    t

    Cbiobwpb

    2

    2

    (3.3-12)

    C ( kg m - 3) S

    ( kg g - 1) Dp ( m2

    s - 1) Vw ( m s - 1) b

    (apparent density kg m - 3)

    ( s - 1) Kb io ( s- 1) x

    ( m) t ( s) (3.3-12)

    S=f(C))(Cf

    t

    S

    (3.3-12)

    2

    2

    2

    2

    2

    2

    )(1 x

    C

    R

    D

    x

    C

    Cf

    D

    x

    CD

    t

    C

    d

    p

    b

    p

    a

    (3.3-13)

    (Rd , retardation factor)

  • 3-119

    )(1R d

    Cfb (3.3-14)

    (3.3-14) f ' (C) Kd = S/C

    f '(C)

    dbK1R d (3.3-15)

    dR

    dR 1000

    1/1000 dR 1

    /

    (

    2009)

    (1) (H T )

    (Darcy

    Model)

    (2) (HM )

    ( )

  • 3-120

    (3) (H C )

    (Hydraulic Conductivity) 10 - 1 4 m s - 1

    (SKB, 1999; SKB, 2006)

    3.3.2.2.3.

    (Mechanics) (

    ) (static

    equil ibrium) (strain compatibil ity)

    (stresses) (strain) (constitutive)

    (elasticity)

    (l inearly elastic)

    (Hookes law)

    ]][[][ S (3.3-16)

    Txzyzxyzyx ] [][ T

    xzyzxyzyx ] [][ zyx x, y,

    z zyx x, y, z ( N m

    - 2)

    xzyzxy x, y, z (shear strain) xzyzxy (N m- 2)

    (shear strain) [S] (N m - 2) - 1

    -

    3-72 (Dolbow, 2010; Hibbeler,

    2010)

  • 3-121

    (1) (elast ic region) (proportional l imit)

    =EE (elast ic modulus)

    (Youngs modulus ) (elast ic l imit)

    (plastic deformation)

    (2) (yielding)

    (3) (strain hardening)

    (ult imate)

    (4) (necking) (1) (3)

    (

    )

    (in-situ stresses) (displacement)

    (magnitude)

    (Excavation

    Damaged Zone EDZ) (Disturbed Rock Zone, DRZ)

    DECOVALEX-THMC

    (SKI, 2007)

    /

    (

    2009 2010)

    ( 2006 2011)

    (THM) (20032004

    2008 2008 2010)

  • 3-122

    (1) (M T )

    /

    (2) (MH )

    /

    (SKI, 2007)

    (3) (M C )

    /

    /

  • 3-123

    3-72-()

    3.3.2.2.4.

    /

    /

    ( pH Eh )

    (complexing l igands) (competing)

    (adsorption)

    (ion-exchange)

    -

    (species)

    (

  • 3-124

    ) / (

    ) (homogeneous aqueous

    phase) / (heterogeneous)

    i iR (mol m- 3 s - 1 )

    - (precipitation-dissolution, min) (surface

    complexation, sclx) (ion-exchange, ex)

    (biological transformation, bio)

    (redox, red) (complexation, clx) ( 3-73)

    hommin clxiredihetbio

    iexi

    slcxiii RRRRRRR (3.3-17)

    (aq) (reversible)

    aqiR (irreversible)

    miniR

    min

    i

    aq

    ii RRR (3.3-18)

    iR

    -

    (1)

    (act ivity) (

    Eh pH )

  • 3-125

    (fugacity)

    (ionic strength)

    (ionic atmosphere)

    Debye-H ckel

    (activity)

    (activity coefficient)

    ia

    ia = [C] X i (3.3-19)

    aA + bB

    cC + dD

    bB

    aA

    dD

    cC

    bB

    aA

    dD

    cC

    bB

    aA

    dD

    cC K

    BA

    DC

    aa

    aaK

    ][][

    ][][

    (3.3-20)

    K

    (Gibbs free energy) K

    K

  • 3-126

    K

    1( ) K

    = K ( 2011)

    (solubil ity

    product, Ksp)

    (AB

    A BAB(s)A(aq) + B(aq))

    ]][[][][][

    ][][BABA

    AB

    BA

    a

    aaK BA

    AB

    BA

    AB

    BAsp

    (3.3-21)

    1

    (

    1)

    1

    (2)

    ( ion exchange)

    (Stumm,

    1992) (specif ic surface area)

    (montmori l lonite clays) (micas)

    (mole fraction)

  • 3-127

    (cation exchange capacity, CEC)

    (sorption site surface density)

    (selectivity coefficients) /

    (binding constants/equilibrium constants)

    (anion)

    (3)

    ( )

    ( kJ mol - 1)

    (Coulombic)

    Coulchemsorb GGG (3.3-22)

    (isotherm)

    Langmuir Freundlich

    (constants capacitance) (diffuse double layer, DDL)

    Stern

    (a) ( Inner Helmholtz Plane, IHP, C 1)

  • 3-128

    (b) (Outer Helmholtz Plane, OHP, C 2)

    OHP

    (c) (Diffusion layer, C 3)

    - - ( 3-74)

    (4)

    dK (13 kgm )

    dK

    (3.3-23)

    aK (23 mm )

    aK

    (3.3-24)

    (t imescale)

    dK

    (aff inity)

    pH

  • 3-129

    (mechanisms)

    (mobil ity)

    (f itt ing)

    dK -

    (1) (C T )

    ( )

    (2) (CH )

    /

    (3) (CM )

    /

  • 3-130

    (Stress Corrosion)

    3-73

  • 3-131

    3-74--

  • 3-132

    3.3.2.3.

    (1) (THC)

    (2) (TMC) (Transformation)

    /

    (3) (THM) /

    (4) (HMC)

    (5) (THMC) (Thermal and Hydraulic

    Loading) / /

    DECOVALEX 11

    (THM)

    DECOVALEX ( LBNL

    BGR CAS

    JAEA ) (THM)

  • 3-133

    ( 2003 2004 2008

    2008 2010)

    TOUGH-FLAC3D -

    - (Coupled Thermo-Hydro-Mechanical)

    5 10 50 100

    - -

    FEM - - (THM) FEM

    - (TM) FEM FETM

    FEM FGWFS

    0.5 -

    - TOUGH-FLAC3D

    10

    100 400

    /

    3.3.2.1 3.3.2.3 THMC

    THMC DECOVALEX

    TH THM

    THM

    THMC

    Eh pH

  • 3-134

    / Eh-pH /

    101

    Eh pH

    3.3.2.4.

    (

    )

    (1)

    (2)

    (3)

    -

  • 3-135

    (4)

    ( )

    (Birkholzer et al, 2005b)

    (THM) 5 10

    50 100 100

    ( ) 94 61

    10 (

    )

    100

    100

    ( )

    100

    (SKB, 2006 2008 2008 2010)

  • 4-1

    4

    99~101 100

    500

    GPS

    (DFN_NET )

    U Cu Fe

    Eh(pe)-pH

    Cs Se

    ( Kunigel V1 Kunipa F

    MX-80 Avonseal)

  • 4-2

    -

    / -10~+5 mm/yr

    10 -1000~+500 m

    15

    10 132m 12

    6.6m

    8.2

    ( ) 10

    ( ) 3.4

    /

    ( )

  • 4-3

    (THM) 100

  • 5-1

    5

    Bard, E., Hamelin, B., Arnold, M., Montaggioni, L.F., Cabioch, G., Faure,

    C., and Rougerie, F. (1996), Deglacial Sea -Level Record from Tahiti

    Corals and the Timing of Global Meltwater Discharge, Nature,

    Vol.382, pp. 241-244.

    Bil laux, D., Chi les, J .P., Hestir, K., Long, J . (1989), Three-dimensional

    statistical modelling of a fractured rock mass - an example from

    the Fanay-Augres Mine. International Journal of Rock Mechanics

    and Mining Science. v26. 281-299.

    Birkholzer, J.T., Rutqvist, J ., Sonnenthal, E.L., Barr, D., Chij i matsu, M.,

    and Kolditz, O. (2005a), Geomechanical/Geochemical Modeling

    Studies Conducted within the International DECOVALEX Project,

    Lawrence Berkeley National Laboratory, LBNL Paper LBNL -59050.

    Birkholzer, J.T., Rutqvist, J ., Sonnenthal, E. , and Barr, D. (2005b),

    DECOVALEX-THMC Task D: Long-Term Permeability/Porosity

    Changes in the EDZ and Near Field due to THM and THC Processes

    in Volcanic and Crystaline-Bentonite Systems, Status Report

    October 2005, Lawrence Berkeley National Laboratory, LBNL Paper

    LBNL-59122.

    Birkholzer, J .T. , Barr, D., Rutqvist, J., and Sonnenthal, E. (2005c),

    Motivation, Descript ion, and Summary Status of Geomechanical

    and Geochemical Modeling Studies in Task D of the International

    DECOVALEX-THMC Project, Lawrence Berkeley National

    Laboratory, LBNL Paper LBNL-59235_Conf.

    Bonil la, M.G. (1977), Summary of Quaternary Faulting and Elevation

    Change in Taiwan, Mem.Geol. Soc. China, Vol.2, pp.43 -56.

    Brgesson, L., Fredrikson, A., and Johannesson, L. (1994), Heat

    conductivity of buffer material s, Swedish Nuclear Fuel and Waste

    Management Co.

  • 5-2

    Ching, K.-E., M.-L. Hsieh, K. M. Johnson, K. -H. Chen, R.-J. Rau, and M.

    Yang (2011), Modern vertical deformation rates and mountain

    building in Taiwan from precise level ing and continuous GPS

    observat ions, 2000-2008, J. Geophys. Res., 116, B08406,

    doi:10.1029/2011JB008242.

    Chuang, Y. F. , Shih, David C. F., Chuang, W. S. (2010), Review of

    Properties of Potential Buffer Material for Geological Repository

    in Taiwan, 2010 East Asia Forum on Radwaste Management

    Conference, Gyeongju, Korea (2010).

    Church, J .A., Gregory, J.M., Huybrechts, P., Kuhn, M., Lambeck, K.,

    Nhuan, M.T., Qin, D., and Woodworth, P.L. (2001), Changes in Sea

    Level, in: Cl imate Change 2001: The Scientif ic Basis, eds.

    Houghton and Ding, Cambridge Univ. Press, Cambridge.

    CLIMAP (1981), Relative Abundance of Planktic Foraminifera in the 120

    Kyr Time Sl ice Reconstruction of Sediment Core GIK12392 -1,

    doi:10.1594/PANGAEA.51983.

    Dadson, S.J ., Hovius, N., Chen, H., Dade, W.B., Hsieh, M., Wil lett, S.D.,

    Hu, J., Horng, M., Chen, M., Stark, C.P., Lague, D., Lin, J . (2003),

    Links between erosion, runoff variabil ity and seismicity in the

    Taiwan orogen, Nature, v. 426p. 648 -651.

    Dolbow, J . (2010), Computational Mechanics Laboratory of Civil and

    Environmental Engineering at Duke University,

    http://dolbow.cee.duke.edu/TENSILE/tutorial/node4.html .

    Domenico, P.A., and Schwarz, W.S. (1998), Physical and Chemical

    Hydrogeology, 2nd Ed., Singapore: John Wiley & Sons. New York,

    p.824.

    Fredlund, D. G., and Xing, A. (1994), Equations for the soil -water

    characteristic curve, Canadian Geotechnical Journal, Vol. 31,

    pp. 521-532.

    Fredlund, D. G., Xing, A., and Huang, S. (1994), Predicting the

    permeability function for unsaturated soil using the soil -water

    characteristic curve, Canadian Geotechnical Journal, Vol. 31, pp.

    533-546.

  • 5-3

    Freeze, A., and Cherry, A. (1979), Groundwater, Prentice Hall Inc.

    Englewood Cliffs, New Jersey, p.604.

    Frick, U. (1996), An Evaluation of Diffusion in the Groundwater of

    Crystal l ine Rocks., Wettingen: Na tionale Genossenschaft fr die

    Lagerung Radioaktiver Abflle, 133p.

    Fukue, M., Kato, Y., and Komatsuda, S. (1995), Principle of

    Contaminant Transport in Soils, Tokai University Publishing

    Group.

    Helgeson, H.C. (1969), Thermodynamics of Hydrothermal Systems at

    Elevated Ttemperatures and Pressures. American Journal of

    Science, Vol.267, pp.729-804.

    Hibbeler, R.C. (2010), Mechanics of Materials, 10th Ed, Prentice Hal l

    Published, p.888.

    Huyakorn, P.S., and Pinder, G. (1983), Computational Methods in

    Subsurface Flow, NY & Toronto: Academic Press Inc., New York,

    p.473.

    IPCC (2007), IPCC Working Group I to the Fourth Assessment Report,

    Summary for Policymakers, Intergovernmental Panel on Cl imate

    Change, Cambridge University Press, Cambridge, United Kingdom

    and New York, NY, USA.

    Ishikawa, H., Amemiya, K., Yusa, Y., and Sasaki , N. (1990), Comparsion

    of Fundamental Properties of Japanease Bentonite as Buffer

    Material for Waste Disposal, Proc. of the 9th International

    Conference, Sci. Gol. Mm., Vol.87, pp.107 -115 (in Japanese)

    Ito, M., Okamoto, M., Shibata, M., Sasaki, Y., Danhara, T. , Suzuki, K.,

    and Watanabe, T. (1993), Mineral Composition Analysis of

    Bentonite, Power Reactor and Nuclear Fuel Development

    Corporation, PNC TN8430 96-003, p.41 ( in Japanese).

    Iwasaki , T. , Wakabayashi, S., and Tatsuoka, F. (1977), Characteristics

    of Underground Seismic Effects, NBS Special Bul l 477, pp.41 -56.

    Jaeger, J.C. , and Cook, N.G.W. (1984), Fundamentals of Rock

    Mechanics, 3rd ed., Chapman and Hall , London.

  • 5-4

    Jing, L., Tsang, C.F., and Stephansson, O. (1995), DECOVALEX An

    International Co-operative Research Project on Mathematical

    Models of Coupled THM Processes for Safety Analysis of

    Radioactive Waste Repositories, International Journal of Rock

    Mechanics and Mining Science & Geomechan ics Abstracts, Vol.32,

    No.5, pp.389-398.

    JAEA (2009), Study on Perturbation Scenario for Potential Effect of

    Uplift, Denudation, Subsidence and Sedimentation on a HLW

    Disposal System, JAEA-Research 2008-119.

    JNC (2000), H12: Project to Establ ish the Scient if ic and Technical Basics

    for HLW Disposal in Japan, Project Overview Report,

    JNC-TN1410-2000-001.

    Kipp, K.L (1987), HST3D: A Computer Code for Simulation of Heat and

    Solute Transport in Three-Dimensional Groundwater Systems, US

    Geological Survey Water Resources Investigations Report 86 -4095,

    p.517.

    Lajudie, A., Raynal, J., Peite, J. -C. and Toulhoat, P. (1996), Clay -based

    Materials for Engineered Barriers: a Review, Mat. Res. Soc. Symp.

    Proc., Vol. 353, 221-229.

    Lee, W.H.K., and Lahr, J.C. (1972), HYP071: A computer program for

    determining hypocenter, magnitude, and first motion pattern of

    local earthquakes, Open File Report, U. S. Geological Survey,

    100p.

    Liew, P.M., and Tseng, M.H. (1999), Climate Event from the Glacial to

    the Postglacial and Earth Surface Responses in Taiwan, Science

    Reports of Tohoku University, 7th Series (Geography), Vol.49, pp.

    183-195.

    Lin, J .C. (1999), Morphotectonic Evolution of Taiwan, Geomorphology

    and Globe Tectonics, pp.135-146.

    Moren, L., and Passe, T. (1999), Climate and Shore line in Sweden

    during Weichsel and the Next 150,000 years, SKB Technical Report

  • 5-5

    TR01-19, Swedish Nuclear Fuel And Waste Management Company,

    Sweden.

    Owen, G.N. (1982), Earthquake of Large Underground Structures,

    Proceedings Workshop on Seismic Performance o f Underground

    Faci l it ies, Savannah River Lab., Aiken, S.c. DP -1623, pp.107-115.

    Power Reator and Nuclear Fuel Development Corporat ion (1996),

    Present status of research and development for geological

    disposal, PNC TN 1410 96-071 (in Japanese).

    Pourbaix, M. (1974), Atlas of Electrochemical Equil ibria in Aqueous

    Soltions, National Association of Corrosion Engineers, USA.

    Pratt, H.R., Stephenson, G., Zandt, M., Bouchon, M., and Hustrulid,

    W.A. (1982), Eathquake Damage to Underground Faci l it ies and

    Earthquake Related Displacekemnt Fields, Proceeding -1979 Rapid

    Excavation and Tunnelling Conf. Atlanta, pp.43 -74.

    Priest, S.D. (1993a), The collection and analysis of discontinuity

    orientation data for engineering design, with examples. In:

    Hudson, J .A. (Ed.): Compreh ensive Rock Engineering, Principles,

    Practice & Projects, 3, Rock Testing And Site Characterization,

    pp.167-192.

    Priest, S.D. (1993b), Discontinuity analysis for rock engineering,

    Chapman & Hall, London, 473p.

    Rshoff K. (1989), Seismic Effects on Bedrock and Underground

    Constructions. A Literature Survey of Damage on Construct ions;

    Changes in Ground-water Levels and Flow; Changes in Chemistry

    in Groundwater and Gases. SKB TR 89 -30 Svensk

    Krnbrnslehantering AB.

    Shibutani, T. , Yoshikawa, H., Sato, H., and Yui, M. (1992), Research on

    Adsorbing Behavior of Cs and Se to Kunigel V1, Antomic Energy

    Society of Japan ,1992 Autumn Meeting, F45.

    Siame, L. L.; Angelier J.; Chen R. -F.; et al. (2011), Erosion rates in an

    active orogen (NE-Taiwan): A confrontation of cosmogenic

  • 5-6

    measurements with river suspended loads , Quaternary

    Geochronology, Volume 6, Issue 2, Pages 246260.

    SKB (1999), Coupled Thermo-hydro-mechanical Calculations of the

    Water Saturat ion Phase of a KBS -3 Deposition Hole Influence of

    Hydraulic Rock Properties on the Water Saturation Phase,

    TR-99-41.

    SKB (2002), sp Hard Rock Laboratory -Annual report (2002), Swedish

    Nuclear Fuel and Waste Management Company, SKB, TR -03-10.

    SKB (2006), Geochemical Evolution of the Near Field of a KBS -3

    Repository, TR-06-16.

    SKB (2009), Low pH self compacting concrete for deposition tunnel

    plugs, Swedish Nuclear Fuel and Waste Management Company,

    SKB, R-09-07.

    SKB (2010), Design and production of the KBS3 repository, Swedish

    Nuclear Fuel and Waste Management Company, SKB, R-09-07.

    SKBF/KBS (1983), Final Storage of Spent Nuclear Fuel KBS-3. Swedish

    Nuclear Fuel Supply Co./Division KBS, Stockholm, Sweden.

    SKI (2007), DECOVALEX-THMC Project Task A Influence of Near Field

    Coupled THM Phenomena on the Performance of a Spent Fue l

    Repository, Report of Task A1, SKI Report 2007:07.

    Stevens, P.R. (1977), A Review of the Effects of Eartuquakes on

    Underground Mines, US Geology Survey Open File Report 77 -313,

    pp.1-46.

    Stumm, W. (1992), Chemistry of the Solid -water Interface, John Wiley

    & Sons, New York.

    Suzuki, H. and Taniguchi, W. (1999), Thermal properties of buffer

    material ( II ), Japan Nuclear Cycle Development Institute, JNC

    TN8430 99-996 (in Japanese).

    Suzuki, H., and Fujita, T. (1999a), Swelling Characteristics of Buffer

    Material, JNC TN 8400 99-938 (in Japanese), Japan Nuclear Cycle

    Development Institute.

  • 5-7

    Suzuki, H. and Fujita, T. (1999b), Unsaturated hydraulic property of

    buffer material, Japan Nuclear Cycle Development Inst itute,

    JNC-TN8430-99-010 ( in Japanese).

    Teng, L.S., and Lin, A.T. (2004), Cenozoic Tectonics of the China

    Continental Margin: Insights from Taiwan, in Malpas, J., C.J.N.

    Fletcher, J .R. Ali, and Aitchison, J.C. , eds., Aspects of the Tectonic

    Evolution of China, Geological Society, London, Special

    Publication, Vol.226, pp.313-332.

    Tsang, C.F. , J ing, L. , Stephansson, O., and Kautsky, F. (2005), The

    Decovalex I II Project: A Summary of Activit ies and Lessons

    Learned, Lawrence Berkeley National Laboratory, LBNL Paper

    LBNL-57344.

    Tsang, C.F., Stephansson, O., J ing, L., and Kautsky, F. (2009),

    DECOVALEX Project: from 1992 to 2007, Environmental Geology,

    Vol.57, No.6, pp.1221-1237.

    Tseng Yu-Heng, Breaker Larry C. , Chang Emmy T-Y (2010), Sea Level

    Variations in the Regional Seas around Taiwan , Journal of

    Oceanography, Vol. 66, pp. 27 to 39.

    VTT (1999), The Feasibil ity of Modeling Coupled Processes in Safety

    Analysis of Spent Nuclear Fuel Disposal, Technical Research

    Centre of Finland, VTT Tiedotteita Meddelanden Research

    Notes 1973.

    Wang, J . M. (1985), Distr ibution of E arthquake Damage to

    Underground Faci l it ies during the 1976 Tang -Shan Earthquake.

    Earthquake Spectra, Vol.1,No.4, pp.741 757.

    Wang, J. , Su, R., Chen, W., Guo, Y. , J in, Y., Wen, Z. , and Liu, Y. (2006),

    Deep Geological Disposal of High -level Radioactive Wastes in

    China, Chinese Journal of Rock Mechanics and Engineering,

    Vol.25, No.4, pp. 649-658.

    White, F.M. (1974), Viscous Fluid Flow, McGraw -Hil l , New York, p.725.

  • 5-8

    Xu, C., and Dowd, P., (2010), A new computer code for discrete

    fracture network modeling, Comput ers & Geoscienes, 36,

    pp.292-301, doi:10.1016/j.cageo.2009.05.012.

    Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P., and Fif ield,

    L.K. (2000), Timing of the Last Glacial Maximum from Observed

    Sea-level Minima, Nature, Vol.406, pp.713 -716.

    (2011) pH 2011/03/22

    http://www.cwb.gov.tw

    (2010)

    (1991)

    (2008) -

    (2009)

    (2009)

    (2009)

    (2011) 2011

    (2010) - -

    SNFD-INER-90-591

    (2005) 24 1

    ( )

    (2004)

  • 5-9

    (2011)

    http://highscope.ch.ntu.edu.tw/wordpress/?p=27055

    (2008)

    (2005) 20 24 1 (

    )

    (2004) - -

    (2008) - -

    (2002) GPS 2002

    63-82

    (2002) - - -

    42 39-48

    (2003)

    7-1-7-9

    (2008) - -

    (1984)

    3 127-140

    (1977)

    2 57-70

    (2008)

    144

    (2002)

    - -

    SNFD-ERL-90-167

  • 5-10

    (1985)

    (2001)

    http://wwwdata.fy.edu.tw/env/html/08link/handout/pl015/Chapt

    er4/ .doc

    (2004a)

    p.334-339.

    (2004b)

    /

    p.329-333.

    (2003)

    (2002)

    SNFD-INER-90-506

    (2003) SNFD-INER-90-532

    (2002) /

    SNFD-NTU-90-512

    (2000)

    (1982)

    (2008) 129

    (1/3)

    NSC 97-2221-E-007-063-MY3

    (2001)

    (2003) - -

  • 5-11

    (2005)

    2005

    47-58