What is thermodynamics and what is it for? II. Continuum physics – constitutive theory Peter Ván...

Post on 12-Jan-2016

256 views 1 download

Tags:

Transcript of What is thermodynamics and what is it for? II. Continuum physics – constitutive theory Peter Ván...

What is thermodynamics and what is it for? II. Continuum physics – constitutive theory

Peter Ván HAS, RIPNP, Department of Theoretical Physics

– Introduction – Constitutive space and constitutive functions– Classical irreversible thermodynamics– Weakly non-local extensions

• Internal variables, heat conduction and fluids

– Discussion

Centre of Nonlinear Studies, Tallinn, Estonia, 19/6/2006.

Thermo-Dynamic theory

)a(fa Dynamic law:

,...),c,v(a

1 Statics (equilibrium properties)

S

aa

S,,

T

1

e

S

2 Dynamics

0)a(f)a(DSa)a(DS)a(S

1 + 2 + closed system

S is a Ljapunov function of the equilibrium of the dynamic law

Constructive application:

)()),(()(0)()( aDSaaDSLafafaDS force current

general framework of anyThermodynamics (?) macroscopic (?)

continuum (?) theories

Thermodynamics science of macroscopic energy changes

Thermodynamics

science of temperature

Why nonequilibrium thermodynamics?

reversibility – special limit

General framework: – fundamental balances– objectivity - frame indifference– Second Law

Basic state, constitutive state and constitutive functions:

ee q

– basic state:(wanted field: T(e))

e

)(Cq),( eeC

Heat conduction – Irreversible Thermodynamics

),( ee ))(),(( eTeT T q )())(),((),( eTeTeTee q

Fourier heat conduction:

But: qq LT qqq 21LLT Cattaneo-VernoteGuyer-Krumhansl

– constitutive state:– constitutive functions:

,...),,,,( 2eeeee ???

1)

)(C ),( v C

Local state – Euler equation

0

0

Pv

v

2)

– basic state:– constitutive state:– constitutive function:

Fluid mechanics

Nonlocal extension - Navier-Stokes equation:v

se

p1

),,()()( 2

IP

vIvvP 2))((),( p

But: 22)( IP prKor

),,,( 2 vC),( v

)(CP

Korteweg fluid

fa

a

s

a

sLa

Internal variable

– basic state: aa– constitutive state:

– constitutive function:

A) Local state - relaxation

da

dsLff

da

ds 0

3)

B) Nonlocal extension - Ginzburg-Landau

aaa 2,,

),( aaa

sL

alaslaaasaas )('ˆ,

2)(ˆ),( 2 e.g.

)(Cf

)0)('ˆ( as

Space Time

Strongly nonlocal

Space integrals Memory functionals

Weakly nonlocal

Gradient dependent

constitutive functions

Rate dependent constitutive functions

Relocalized

Current multipliers Internal variables

Nonlocalities:

Restrictions from the Second Law.change of the entropy currentchange of the entropy

Change of the constitutive space

Second Law:

aa ja basic balances ,...),( va

– basic state:– constitutive state:– constitutive functions:

a

)C(aj,...),,(C aaa

weakly nonlocalSecond law:

0)()( sCCs J

Constitutive theory

Method: Liu procedure

(universality)

(and more)

Irreversible thermodynamics:

0

J

0ja

sa

– basic state:

– constitutive state:– constitutive functions:

a

Jj ,, sa

),( aa C

primary!!Liu procedure (Farkas lemma):

A) Liu equations:

0a

j

a

J0

aa

ass ,,

)(),()('ˆ),(

),(ˆ),(

0 ajaajaaJ

aaa

aas

ss

Te

s qqJ

Heat conduction: a=e

B) Dissipation inequality:

0'ˆ

a

jjs

s aa0

12

TTT

qq

What is explained:

The origin of Clausius-Duhem inequality: - form of the entropy current - what depends on what

Conditions of applicability!!

- the key is the constitutive space

Logical reduction:

the number of independent physical assumptions!

Mathematician: ok but…Physicist:

no need of such thinking, I am satisfied well and used to my analogiesno need of thermodynamics in general

Engineer:consequences??

Philosopher: …Popper, Lakatos:

excellent, in this way we can refute

Ginzburg-Landau (variational):

dVaasas ))(2

)(ˆ()( 2

))('ˆ( aasla – Variational (!) – Second Law?– ak

aassa )('ˆ

sla a

Weakly nonlocal internal variables

dVaasas ))(2

)(ˆ()( 2

sla a

Ginzburg-Landau (thermodynamic, relocalized)

),,( 2aaa

J),,( sf

Liu procedure (Farkas’s lemma)

)(as

0' fss J

constitutive state space

constitutive functions

fa 0 Js

),( aa J

?

local state

a

saaaa

),(),( BJ

0')(' sfss BB

a

sL

a

sLa 2211

'' 2221 sLsLf B

'' 1211 sLsL B

isotropy

))('( aasla

current multiplier

Ginzburg-Landau (thermodynamic, non relocalizable)

fa

0 Js

),,( 2aaa

J),,( sf

Liu procedure (Farkas’s lemma)

),( aas ),()()( 0 aaCfa

sC

jJ

0

fa

s

a

ss

a

s

a

sLa

state space

constitutive functions 0 fa

Weakly nonlocal extended thermodynamics

),,,,( 2qqq ee

J),,( sG

Liu procedure (Farkas’s lemma):

),( qes

),,( qqJ e

0

Gs

e

ss q

qJ

constitutive space

constitutive functions

0 qe

0 Js0Gq

solution?

local state:

),( qe state space

qqmqq ),(2

1)(),( 0 eeses

qqqBqqJ ),,(),,( ee

extended (Gyarmati) entropy

entropy current (Nyíri)(B – current multiplier)

0)(:

qmBqIB

Ge

ss

qqmB 2221 LLG qqIB 1211 LL

e

s

qqIqqqm 22211211 LLe

sLL

gradientGuyer-Krumhansl equation

Korteweg fluids (weakly nonlocal in density, second grade)

),,( v C ),,,( v wnlC

)(),(),( CCCs PJ

Liu procedure (Farkas’s lemma):

constitutive state

constitutive functions

0 v

0)()( CCs J0Pv )C(

...J)(ess ),(),( ess

),( v basic state

0:s2

ss2

1 22

s

vIP

rv PPP

reversible pressurerP

Potential form: nlr U P

)()( eenl ssU Euler-Lagrange form

Variational origin

Schrödinger-Madelung fluid2

22),(

SchM

SchMs

2

8

1 2IP rSchM

(Fisher entropy)

Bernoulli equation

Schrödinger equation

v ie

Thermodynamics = theory of material stability

Ideas:– Phase transitions in gradient systems?In quantum fluids:– There is a family of equilibrium (stationary) solutions.

0v .constEUU SchM – There is a thermodynamic Ljapunov function:

dVEUL

22

22

1

2),(

v

v

semidefinite in a gradient (Soboljev ?) space

2

xD)(xU

2

Mov1.exe

Conclusions- Dynamic stability, Ljapunov function???- Universality – independent on the micro-modell- Constructivity – Liu + force-current systems- Variational principles: an explanation

Second Law

Problems, perspectives: objectivity (material frame indifference):

mechanics (hyperstress and strain)!electrodynamics (special relativity)

),,( aaaC

But: heat conduction, two component fluids (sand), Cahn-Hilliard, complex Ginzburg-Landau, Korteweg-de Vries, …. , weakly non-local statistical physics, …

Thank you for your attention!