Tutorial PES ISGT Asia Prof. Saifur Rahman 20 May 2014 Virginia … · 2014. 5. 22. · 1 Part A...

Post on 24-Sep-2020

5 views 0 download

Transcript of Tutorial PES ISGT Asia Prof. Saifur Rahman 20 May 2014 Virginia … · 2014. 5. 22. · 1 Part A...

1

Part A

TutorialProf. Saifur RahmanVirginia Tech, USA

PES ISGT Asia20 May 2014

Kuala Lumpur, Malaysia

(c) Saifur Rahman

Part 1: Operational Issues for Wind Energy Technology

• Wind turbine technology• Global deployment of wind energy technology• Interactions between wind electricity output and electrical power

demand

Part 2: Operational Issues for Solar Energy Technology

• Solar energy technologies – solar thermal and photovoltaics• Global deployment of solar energy technology• Interactions between solar electricity output and electrical power

demand

2

(c) Saifur Rahman

Part 3: Demand Response Technologies

• Demand response and demand side management (DSM) • Demand response technologies – supply side and demand side• Performance of demand response technologies

Part 4: Demand Response Planning and Operations

• Sample demand response programs in operation • Customer incentives and participation• Impact of demand response on the electrical load shape

3

5/21/2014 4

©Saifur Rahman 

** Others include solar, wind, geothermal, biofuels and waste, and heat

Source: International Energy Agency (IEA) 2007, 2010 and 2013 Key World Energy Statistics

5/21/2014 5

©Saifur Rahman 2014

WORLD 1971-2011*

(Mtoe)OECD 1971-2012*

(Mtoe)

* Includes aviation and international marine bunkers * Includes aviation and international marine bunkers, excludes electricity trade

Biomass and Wast

Hydro

Nuclear

Natural Gas

Oil

Coal/Peat

Source: International Energy Agency (IEA) Key World Energy Statistics 2013

(c) Saifur Rahman6

(c) Saifur Rahman 7

Wind Solar

BiomassGeothermal

HydroTidal Power

Unique features & variability

(c) Saifur Rahman 8

Off-shore Wind turbines, Blyth, U.K.

Wind Energy

(c) Saifur Rahman

Global Installed Wind Capacity (MW)1996-2013 (Cumulative)

Source: Global Wind Energy Council, Global Wind Statistics (2013)

© Saifur Rahman 2014

(c) Saifur Rahman

Future Wind Power Capacity (MW) 1997-2020

World Wind Energy Association, World Wind Energy Report 2012

© Saifur Rahman 2014

(c) Saifur Rahman

Top 10 Countries (Installed Wind Capacity)December 2010

China

USA

GermanySpain

India

Italy

FranceUK  CanadaDenmarkRest of the World

Source: Global Wind Energy Council (2011)

© Saifur Rahman 2014

(c) Saifur Rahman

Top 10 Countries (Installed Wind Capacity)by December 2013

Source: Global Wind Energy Council, Global Wind Statistics (2013)

© Saifur Rahman 2014

(c) Saifur Rahman

Annual Installed Wind Capacity by Region (MW)(2005-2013)

Source: Global Wind Energy Council, Global Wind Statistics (2013)

© Saifur Rahman 2014

(c) Saifur Rahman

Wildorado Wind Ranch-Siemens

Source: http://www.nikkiphotography.com/category/environmental-issues/ http://www.cielowind.com/projects/completed-developments/wildorado-wind-ranc

LOCATION: Wildorado, TX25 miles west of Amarillo in Oldham, Potter and Randall Counties

SIZE: 161 MW

COMMERCIAL OPERATIONS DATE: April 2007

UTILITY: Xcel Energy (Southwestern Public Service Company)

TURBINE EQUIPMENT: 70 Siemens 2.3 MW Mk II

© Saifur Rahman 2014

(c) Saifur Rahman

Nysted Wind Farm-Siemens

Nysted Wind FarmLocated in the Baltic Sea, it is one of the world’s largest wind farms.

Owner: DONG Energy, Denmark (80%) and E.ON Sweden (20%).

Layout: The wind farm is made up of 8 rows of 9 turbines, of which the nearest are placed some ten kilometers offshore.

Turbine: each can generate 2.3 MW. The combined effect is 165.6 MW.

Commercially handed over: Dec. 1st, 2004

Source: http://www.dongenergy.com/Nysted/EN/Pages/index.aspx

© Saifur Rahman 2014

(c) Saifur Rahman

Wind Power Issues

Source: IISD Report, Clean Energy Investment in Developing Countries, Wind power in Egypt, October 2009

Opportunities:

Generate electricity to replace fossil fuel and serve remote area loads.

Challenges:

In-country technology base

Available manpower

Power system operatioin issues due to high penetration of wind turbines

Transmission line upgrades

© Saifur Rahman 2014

(c) Saifur Rahman

Wind Turbine Equipment

17

Tower: Tubular steelHeight: 263 feet (80 meters)Weight: 100-150 tons

Blades:Length: 112 ft (34 m)Weight: 20 tons (for all three).Rotor Diameter: 231 ft (70.5 meters)(about 10% longer than the wingspan of a jumbo jet)Swept Area: 41,995 sq. feet per turbine

Colorado Green 162 MW Wind Project

Source: PPM Energy

(c) Saifur Rahman

Wind Turbine Nacelle & Hub

18Source: General Electric

(c) Saifur Rahman

Inside the GE 1.5MW Nacelle 

19Source: General Electric

(c) Saifur Rahman

Wind Power ‐ Classification

20

Source: Z. Aljarboua, “The National Energy Strategy for S. Arabia”, 2009

20

(c) Saifur Rahman

Wind Output & Load Mismatch (PJM) (A peak day in June, 06/08/2011)

Data source: http://www.pjm.com/markets-and-operations/ops-analysis.aspx

 500  

 700  

 900  

 1,100  

 1,300  

 1,500  

 1,700  

 1,900  

 2,100  

 2,300  

 2,500  

 60,000  

 70,000  

 80,000  

 90,000  

 100,000  

 110,000  

 120,000  

 130,000  

 140,000  

 150,000  

 160,000  

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24 

PJM W

ind Po

wer Outpu

t (MW) 

PJM Loa

d (M

W) 

Time (Hour) 

PJM Load ‐ a Peak Day in June 2011 

Wind Power Output 

21

(c) Saifur Rahman

Wind Output & Load Mismatch (PJM) (A peak day in July, 07/22/2011)

Data source: http://www.pjm.com/markets-and-operations/ops-analysis.aspx

 ‐    

 200  

 400  

 600  

 800  

 1,000  

 1,200  

 1,400  

 1,600  

 1,800  

 60,000  

 70,000  

 80,000  

 90,000  

 100,000  

 110,000  

 120,000  

 130,000  

 140,000  

 150,000  

 160,000  

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24 

PJM W

ind Po

wer Outpu

t (MW) 

PJM Loa

d (M

W) 

Time (Hour) 

PJM Load ‐ a Peak Day in July 2011 

Wind Power Output 

22

(c) Saifur Rahman

ERCOT (Texas) Load vs Actual Wind Output (10/11/2011 ‐ 10/18/2011)

Data source: http://www.ercot.com/gridinfo/generation/windintegration/

23

(c) Saifur Rahman

ERCOT (Texas) Load vs Actual Wind Output (08/17/2011 ‐ 08/24/2011)

Data source: http://www.ercot.com/gridinfo/generation/windintegration/

24

(c) Saifur Rahman

Minute‐by‐minuteVariations in a Wind Farm

Source: NREL

Wind output drops 43.7 MW in 1 minute

25

(c) Saifur Rahman

Source: NREL

Wind output can drop 113 MW in 10 minutes, and increase 106 MW in 10 minutes

26

10‐MinuteVariations in a Wind Farm

(c) Saifur Rahman

Solar Energy

Solar Photovoltaics (PV) Solar Thermal (CSP)

27

(c) Saifur Rahman

Solar Photovoltaics

5/21/2014

28

Central Station Solar Photovoltaics

Roof-top Solar Photovoltaics © Saifur Rahman

© Saifur Rahman

(c) Saifur Rahman

2012 Global Cumulative Installed PV Capacity (MW)

5/21/2014

29

Source: EPIA Global Market Outlook for PV 2013-2017

(c) Saifur Rahman

Solar PV Applications

Grid connected central station Roof-top applications Building Integrated PV (BIPV) Remote area applications

30

(c) Saifur Rahman

600 kW Grid‐connected Project in Thailand

31

© Saifur Rahman

(c) Saifur Rahman

100 kW Grid‐connected Project in China

32

© Saifur Rahman

(c) Saifur Rahman

10 MW Solar PV at Masdar, Abu Dhabi

33

Source: www.ameinfo.com

(c) Saifur Rahman

2 MW Solar PV at KAUST, S. Arabia

34

Source: KAUST

(c) Saifur Rahman

LehrterTrain Station, Germany

Source: http://www.cler.org/predac/article.php3?id_article=511

Number of module: 1,440Total area: 3,311 m2

PV output: 325 kWElectricity generation:

274,000 kWh/yr

35

(c) Saifur Rahman

Building Integrated PV in Thailand

Source: Solartron, Thailand

36

(c) Saifur Rahman

Roof‐top Solar PV in Virginia, USA

37

© Saifur Rahman

(c) Saifur Rahman

Roof‐top Solar Photovoltaics in Bangladesh

38

© Saifur Rahman

(c) Saifur Rahman

Roof‐top Solar Photovoltaics in Japan

Source: Energybiz Magazine

39

(c) Saifur Rahman 40

(c) Saifur Rahman

Balance of System

41

© Saifur Rahman

(c) Saifur Rahman

Transformer/Switchgear

42

© Saifur Rahman

© Saifur Rahman

(c) Saifur Rahman

Grid Interconnection

43

© Saifur Rahman

(c) Saifur Rahman

Concentrator PV Technology

Source: SolFocus Inc.

Provides the highest energy output and lowest cost of any solar technology available

Concept:

44

(c) Saifur Rahman

0

100

200

300

400

500

Solar P

V Outpu

t (Watts)

7‐Day Solar PV Output (Watts)Location: Manhattan, Kansas

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

45

(c) Saifur Rahman

A 24‐hour Solar PV Output (kW)Location: Manhattan, Kansas

Month: April

80% drop and increase in kW

output in 5 minutes

46

(c) Saifur Rahman

A 24‐hour Solar PV Output (kW)Location: Blacksburg, Virginia

Month: September

95% increase in kW output in 10 minutes

47

(c) Saifur Rahman

Solar Thermal

Concentrated Solar Power (CSP)

48

Source: Solarclipse

(c) Saifur Rahman

Source: Platforma De Almeria, Annual Report 2007

Central Receiver Solar Power Plants

15 MWe Molten Salt Solar Thermal Power Plant, Almeria, Spain, 2008

49

(c) Saifur Rahman

Source: http://en.wikipedia.org/wiki/Solar_power_in_Spain

Central Receiver Solar Power Plants11 MW PS-10 and 20 MW PS-20 Solar Tower Plant, Seville, Spain

50

(c) Saifur Rahman 51

Source: http://www.esolar.com/l

5MW Sierra SunTower CSP Plant, CA, USA

(c) Saifur Rahman 52

Source: http://www.esolar.com/l

5 MW Sierra SunTower Project CA, USA 

(c) Saifur Rahman

Source: http://www.msnbc.msn.com/id/20068703/

The Mojave Desert has nine solar power plants in operation with a capacity of 354 MW.

Project: Mojave solar park (6000 acres)

Location: California, U.S.A.

Capacity: 553 MW (for 400,000 homes)

No of mirrors: 1.2 million

In service: 2012

Solar Thermal ProjectMojave Desert, USA

53

(c) Saifur Rahman

Source: http://www.msnbc.msn.com/id/20068703/

Details of Solar Heat Collection

54

(c) Saifur Rahman 55

Source: Platforma De Almeria, Annual Report 2007

Point Focus Solar Collectors

DISTAL I, Dish/Stirling Engine System, Almeria, Spain

(c) Saifur Rahman 56

Source: Platforma De Almeria, Annual Report 2007

Point Focus Solar Collectors

DISTAL II, Dish/Stirling Engine System, Almeria, Spain

(c) Saifur Rahman 57

CSP Project in Spain

(c) Saifur Rahman 58

CSP Technology

(c) Saifur Rahman

Biomass Technologies

5/21/2014

59

BAGASSEMUNICIPAL SOLID WASTE

LANDFILLCELLULOSE

SWITCH GRASS

(c) Saifur Rahman

Biogas from Bagasse

5/21/2014

60

A bagasse-powered co-generation power plant at Porto Feliz in Brazil owned and operated by LANXESS, a chemical industrial plant producing iron-oxide pigments used for dying. The power plant produces 4.5 MW of electricity and steam at an efficiency of up to 90 percent. It is fueled by sugarcane bagasse, readily available in the area. The project started in 2008 and cost around EUR 8 million ($10.9m). Source:LANXESS.co

m

(c) Saifur Rahman

Biogas from Municipal Solid Waste

5/21/2014

61©Saifur Rahman

Source: http://www.rise.org.au/info/Res/waste/index.html

An automatic grab transfers the municipal solid waste (MSW) from the reception bin on to a conveyor that feeds the combustion plant.

Municipal Solid Waste Land Fill

(c) Saifur Rahman

Landfill Gas Management for Electricity

5/21/2014

62©Saifur Rahman

Source: http://www.capitalregionlandfill.com/operations/

Landfill gas collection well

Landfill gas power generation facility

Landfill gas-powered electric generator

(c) Saifur Rahman

Biomass Cogeneration Power Plant

5/21/2014

63©Saifur Rahman

Source: LANXESS.com

(c) Saifur Rahman

Geothermal Power Plants

5/21/2014

64

http://en.wikipedia.org/wiki/Power_station

Nesjavellir Geothermal Power Station, Iceland 120 MWe

(c) Saifur Rahman

Hydro Power PlantHow Does It Work

5/21/2014

65

(c) Saifur Rahman

Three Gorges Dam in China

5/21/2014

6

© Saifur Rahman

(c) Saifur Rahman

26 x 700 = 18,200 MW

5/21/2014

6

© Saifur Rahman

(c) Saifur Rahman

Hydro Power PlantTypical Costs

5/21/2014

(c) Saifur Rahman

Environmental Impacts of Hydro Power Plants

5/21/2014

6

FLOODING OF TREES AND OTHER BIOMASS FROM DAMMING OFRIVERS CAUSES SIGNIFICANT CO2 IMPACTS

FLOODED VEGETATION LOSES ITS ABILITY TO ABSORB CO2

THE ROTTING BIOMASS RELEASES SIGNIFICANT AMOUNTS OFMETHANE, A GREENHOUSE GAS.

(c) Saifur Rahman

Small-Hydro

5/21/2014

(c) Saifur Rahman

Benefits of Small-Hydro

5/21/2014

71

(c) Saifur Rahman

La Rance Tidal Power Plant, France

5/21/2014

72

http://en.wikipedia.org/wiki/Rance_Tidal_Power_Station

(c) Saifur Rahman

La Rance Power Plant, France

5/21/2014

73

Source: George Hagerman

(c) Saifur Rahman 21 May 2014

74

La Rance Tidal Power Plant Arrangement

Sea-side entrance to navigation lock

Powerhouse section(24 x 10 MWe units)

Sluice gates

Source: George Hagerman

(c) Saifur Rahman

Tidal Power

5/21/2014

75

Two-way generation

The rate of water discharge can

be varied to raise or lower the power level

(c) Saifur Rahman 76

Thank you

Saifur Rahman

Email: srahman@vt.edu

www.saifurrahman.org