Simulation of deuterium trapping in tungsten

Post on 09-Jan-2016

51 views 2 download

description

Simulation of deuterium trapping in tungsten. Tommy Ahlgren Kalle Heinola Mathias Groth Jari Likonen. 5 keV D implantation in W High flux, low energy D irradiation (JET). 1. Multiscale modeling. DFT (Density Functional Theory) MD (Molecular Dynamics Simulations) - PowerPoint PPT Presentation

Transcript of Simulation of deuterium trapping in tungsten

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

Simulation of deuterium trapping in tungsten Tommy Ahlgren

Kalle Heinola

Mathias Groth

Jari Likonen

1

5 keV D implantation in W

High flux, low energy D irradiation (JET)

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

2

DFT (Density Functional Theory)

MD (Molecular Dynamics Simulations)

KMC (Kinetic Monte Carlo)

RE (Rate Equations)

Multiscale modeling

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

Rate Equations (RE)

Continuum theory

Theory of sink strengths

Transition state theory

T. Ahlgren, K. Heinola, K. Vörtler, and J. Keinonen, Journal of Nuclear Materials 427 (2012) 152

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

Rate Equations (RE)

Events not including hydrogen (H) Events with H

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

Hydrogen binding energies in Wmonovacancy

DFT

RE

Parameters to RE

RE KMCMD

DFT

EXP

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

Polycrystalline p-W (Plansee) C impurity concentration ~ 1019 /cm3

O impurity concentration ~ 5x1018 /cm3

Cold worked samples

(dislocation density 108–1012/cm2)

5 keV D implantation in W

Sample:

Experimental: Room temperature implantation (1800 s)

Fluence: 5.8x1016 D/cm2

D profiles by SIMS and NRA

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

MD: 5 keV D irradiation induced defects

0.23 Vacancies and SIAs / Implanted D

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

Matsui et al. JNM 283-287 (2000) 113910 keV D (sc-W)

RE: Simulation of defect and D profiles

G = Grain boundaryR = DislocationC = Carbon impurity atom

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

D binding energy to dislocations and grain boundaries (MD DFT)

D binding energy to C and O impurities (DFT)

RE: Simulation of defect and D profiles

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

1) D flux from sample to plasma2) Total D retention in sample

Polycrystalline WSample:

Experimental: ~6 s JET pulse with ELMs

RE Simulation:

High flux, low energy D irradiation(JET fusion experiment)

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

Inter ELM ~ 18 eV ELM ~ 100 eV

High flux, low energy D irradiation(JET fusion experiment)

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

High flux, low energy D irradiation(JET fusion experiment)

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

1) D flux from sample back to plasma2) Total D retention in sample

High flux, low energy D irradiation(JET fusion experiment)

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTOHELSINGFORS UNIVERSITETUNIVERSITY OF HELSINKI

1) D flux from sample back to plasma2) Total D retention in sample

High flux, low energy D irradiation(JET fusion experiment)