Presentation Lesson 04 Linear Motion - stemgarage.orgstemgarage.org/Toolbox_Physics/Physics...

Post on 24-Jun-2020

3 views 0 download

Transcript of Presentation Lesson 04 Linear Motion - stemgarage.orgstemgarage.org/Toolbox_Physics/Physics...

SCIENCE – PHYSICSSTEM GARAGE

Linear Motion  

Chin-Sung Lin

SCIENCE – PHYSICSSTEM GARAGE

Relative Motion  

SCIENCE – PHYSICSSTEM GARAGE

Relative Motion

Motion is Relative

q  All motion is relative

q  Motion is meaningless unless we specify motion relative to a specific object

q  Each such choice is known as a frame of reference

SCIENCE – PHYSICSSTEM GARAGE

Relative Motion

Frame of Reference

q  An arbitrary coordinate system with reference to which the position or motion of something is described or physical laws are formulated

SCIENCE – PHYSICSSTEM GARAGE

Relative Motion

Frame of Reference

q  Two frames of reference moving relative to each other with a constant velocity are completely equivalent, and the same laws of mechanics hold in both

SCIENCE – PHYSICSSTEM GARAGE

Distance & Displacement  

SCIENCE – PHYSICSSTEM GARAGE

Distance  

A distance (d) is a scalar quantity A distance is a numerical description of how far

apart objects are or the initial to the final position of an object

Unit: meter (m)

Distance  

SCIENCE – PHYSICSSTEM GARAGE

Displacement  

A displacement (d) is a vector quantity A displacement represents the length and direction

of the shortest distance from the initial to the final position of an object

Its direction is from the initial location to the final location

Unit: meter (m)

Displacement  

SCIENCE – PHYSICSSTEM GARAGE

Speed & Velocity  

SCIENCE – PHYSICSSTEM GARAGE

Speed  

A speed (v) is a scalar quantity

Distance (d) covered per unit of time (t). Speed is a measure of how fast something is moving. It is the rate at which distance is covered

Unit: meters per second (m/s), miles per hour (mi/h), kilometers per hour (km/h)

SCIENCE – PHYSICSSTEM GARAGE

Average Speed  

Average speed (v):

v = d / t

d = total distance covered (m)

t = time interval (s)

t  

d  slope    =  v  

SCIENCE – PHYSICSSTEM GARAGE

Instantaneous Speed  

The speed (v) at any instance of an object is called the instantaneous speed

It is equal to the slope of the tangent line at that moment

t  

d  slope    =  v  

SCIENCE – PHYSICSSTEM GARAGE

Approximation of Instantaneous Speed  

SCIENCE – PHYSICSSTEM GARAGE

Constant Speed  

The speed at any instance of an object is constant

t  

d  

slope    =  vx  

t  

v  

slope    =  0  

vx    

SCIENCE – PHYSICSSTEM GARAGE

Constant Speed  

The speed at any instance of an object is constant

t  

d  slope    =  vx  

t  

v  

slope    =  0  

vx    

SCIENCE – PHYSICSSTEM GARAGE

Constant Speed  

The speed at any instance of an object is constant

t  

d  slope    =    0  

t  

v  

slope    =  0  

0    

SCIENCE – PHYSICSSTEM GARAGE

Velocity  

A velocity (v) is a vector quantity Velocity is the measurement of the rate and

direction of change in the displacement (d) of an object

v = d / t The speed is the magnitude of velocity

Unit: meters per second (m/s), miles per hour (mi/h), kilometers per hour (km/h)

SCIENCE – PHYSICSSTEM GARAGE

Speed & Velocity  

Speed has only magnitude Velocity has magnitude and direction

SCIENCE – PHYSICSSTEM GARAGE

Average Velocity  

Average velocity (v):

v = d / t

d = total displacement (m)

t = time interval (s)

t  

d  slope    =  v  

SCIENCE – PHYSICSSTEM GARAGE

Instantaneous Velocity  

The velocity (v) at any instance of an object is called the instantaneous velocity

It is equal to the slope of the tangent line at that moment

t  

d  slope    =  v  

SCIENCE – PHYSICSSTEM GARAGE

Constant Velocity  

To have a constant velocity requires both constant speed and constant direction

Motion at constant velocity is motion in a straight line at constant speed

t  

d  

slope    =  vx  

t  

v  

slope    =  0  

vx    

SCIENCE – PHYSICSSTEM GARAGE

Constant Velocity  

The velocity at any instance of an object is constant

t  

d  slope    =  vx  

t  

v  

slope    =  0  

vx    

SCIENCE – PHYSICSSTEM GARAGE

Constant Velocity  

The velocity at any instance of an object is constant

t  

d  slope    =    0  

t  

v  

slope    =  0  

0    

SCIENCE – PHYSICSSTEM GARAGE

Constant Velocity  

The velocity at any instance of an object is constant

t  

d  

slope    =  vx  

t  

v  

slope    =  0  

vx    

SCIENCE – PHYSICSSTEM GARAGE

Constant Velocity  

The velocity at any instance of an object is constant

t  

d  

slope    =  vx   t  

v  

slope    =  0  

vx    

SCIENCE – PHYSICSSTEM GARAGE

Change Velocity  

Either speed or direction (or both) is changing and then the velocity is changing

SCIENCE – PHYSICSSTEM GARAGE

Change Velocity  

Motion at constant speed can have changing velocity all the time when it moves along a curved path

Constant speed

Changing velocity

SCIENCE – PHYSICSSTEM GARAGE

Change Velocity  

Car example:

In a car there are three controls that are used to change the velocity: the gas pedal, the brake and the steering wheel

SCIENCE – PHYSICSSTEM GARAGE

Acceleration  

SCIENCE – PHYSICSSTEM GARAGE

Acceleration  

An acceleration (a) is a vector quantity acceleration is the rate of change of velocity with time

a = Δv / t

a = acceleration (m/s2) Δv = change of velocity (m/s) t = time interval (s)

SCIENCE – PHYSICSSTEM GARAGE

Acceleration  

Acceleration: the slope of the velocity-time (v-t) graph

t  

v  

slope    =  ax  (accelera5on)  

SCIENCE – PHYSICSSTEM GARAGE

Constant Acceleration  

The acceleration at any instance of an object is constant. In high school physics. We only deal with constant

acceleration.

t  

v  

slope    =  ax  

t  

a  

slope    =  0  

ax    

SCIENCE – PHYSICSSTEM GARAGE

Constant Acceleration  

The acceleration in the negative direction is also called deceleration. In high school physics, we only deal with constant acceleration.

t  

v  

slope    =  ax  

t  

a  

slope    =  0  

ax    

SCIENCE – PHYSICSSTEM GARAGE

Constant Acceleration  

The acceleration at any instance of an object is constant. Initial velocity is negative.

t  

v  slope    =  ax  

t  

a  

slope    =  0  

ax    

vi    

Ini5al  velocity  is  nega5ve  

velocity  is  zero  

SCIENCE – PHYSICSSTEM GARAGE

Constant Acceleration  

The acceleration in the negative direction is also called deceleration.

Initial velocity is positive.

t  

v  

slope    =  ax  

t  

a  

slope    =  0  

ax    

Ini5al  velocity  is  posi5ve  

velocity  is  zero  

SCIENCE – PHYSICSSTEM GARAGE

Displacement, Velocity & Acceleration  

d-t

t  

v  slope    =  ax  

t  

aslope    =  0  

ax    

t  

d   slope    =    increasing  at  constant  rate  

v-t a-t

SCIENCE – PHYSICSSTEM GARAGE

Displacement, Velocity & Acceleration  

d-t

t  

v  

slope    =  ax  t  

a

slope    =  0  

ax    t  

d   slope    =    decreasing  at  constant  rate  

v-t a-t

SCIENCE – PHYSICSSTEM GARAGE

Change Acceleration  

Either speed or direction (or both) is changing, i.e., changes in the state of motion, and then the acceleration is changing

The acceleration applies to increases as well as decreases in speed

The decrease in speed is also called deceleration, or negative acceleration

SCIENCE – PHYSICSSTEM GARAGE

Acceleration  An acceleration (a) is also a scalar quantity

When linear (straight-line) motion is considered, it is common to use speed and velocity interchangeably and the acceleration may be expressed as the rate at which speed changes

a = Δv / t

a = acceleration (m/s2) Δv = change of speed (m/s) t = time interval (s)

SCIENCE – PHYSICSSTEM GARAGE

Acceleration  

Car example:

Cars having good acceleration means being able to change velocity quickly and does not necessarily refer to how fast something is moving

SCIENCE – PHYSICSSTEM GARAGE

Free Fall  

SCIENCE – PHYSICSSTEM GARAGE

Free Fall  

When there is no air resistance and the gravity is the only thing affecting a falling object

SCIENCE – PHYSICSSTEM GARAGE

Elapsed Time  

The elapsed time is the time that has elapsed, or passed, since the beginning of the fall

SCIENCE – PHYSICSSTEM GARAGE

Acceleration due to Gravity  

Acceleration due to gravity (g): The free falling object is experiencing acceleration, i.e., a change in speed

The value of acceleration (g) is about 10 m/s2. More accurately, g is 9.81 m/s2

The speed increase 9.81 m/s per second

g is 9.81 m/s2  

SCIENCE – PHYSICSSTEM GARAGE

Acceleration due to Gravity  

0  s  

1  s   5  s  

2  s   4  s  

3  s  

6  s  

7  s  

v  =  30  m/s  

v  =  20  m/s  

v  =  10  m/s  

v  =  0  m/s  

v  =  -­‐40  m/s  

v  =  -­‐30  m/s  

v  =  -­‐20  m/s  

v  =  -­‐10  m/s  

v  =  0  m/s  

SCIENCE – PHYSICSSTEM GARAGE

Acceleration due to Gravity  

t  

a  

Constant  Accelera5on  

g    

a-t

g  =  -­‐9.81  m/s2  

SCIENCE – PHYSICSSTEM GARAGE

g  =  -­‐9.81  m/s2  

Velocity Change due to Gravity  

t  

v  

slope    =  g  

v-t v  =  0  

SCIENCE – PHYSICSSTEM GARAGE

Displacement Change due to Gravity  

d-t

t  

d   slope  decreasing  at  constant  rate  dy  

 

v  =  0  

g  =  -­‐9.81  m/s2  

d  =  dy  

d  =  0  

SCIENCE – PHYSICSSTEM GARAGE

Displacement, Velocity & Acceleration due to Gravity  

d-t

t  

v  

slope    =  g  t  

a

slope    =  0  

g    t  

d   slope  decreasing  at  constant  rate  

v-t a-t

dy    

SCIENCE – PHYSICSSTEM GARAGE

Displacement, Velocity & Acceleration due to Gravity  

d-t

t  

v  

slope    =  g  t  

a

slope    =  0  

g    t  

d   slope  decreasing  at  constant  rate  

v-t a-t

dy    

Constant  Direct  Propor5on  

Quadra5c    Parabola  

SCIENCE – PHYSICSSTEM GARAGE

Displacement, Velocity & Acceleration due to Gravity  

d-t

t  

v   slope    =  g  

t  

a

slope    =  0  

g    

t  

d   slope  increasing  at  constant  rate  

v-t a-t

dy    

Slope  of  v-­‐t  Area  under  v-­‐t  

SCIENCE – PHYSICSSTEM GARAGE

Instantaneous Velocity in Free Falling  

t  

v  

slope    =  g  

v-t

t  =  tf  

v  =  vf  

vf = ?

SCIENCE – PHYSICSSTEM GARAGE

Instantaneous Velocity in Free Falling  

t  

v  

slope    =  g  

v-t

t  =  tf  

v  =  vf  

vf = ?

v = gt

vf = gtf

SCIENCE – PHYSICSSTEM GARAGE

Instantaneous Velocity in Free Falling  

t  

v  

slope    =  g  

v-t

t  =  tf  

v  =  vf  

The instantaneous velocity of an object falling from rest:

instantaneous velocity = acceleration x elapsed time

v = gt

SCIENCE – PHYSICSSTEM GARAGE

Instantaneous Velocity in Free Falling  

t  

v  

slope    =  g  

v-t t  =  tf  

v  =  vf  

When the falling object has initial velocity (vi), whether the object is moving upward or downward, the acceleration due to gravity is always the same (–9.81 m/s2) the entire time

The final velocity (vf), the instantaneous velocity, is:

vf = vi + gt v  =  vi  

SCIENCE – PHYSICSSTEM GARAGE

Instantaneous Velocity in Free Falling  

t  

v  

slope    =  g  

v-t t  =  tf  

v  =  vf  

When the falling object has initial velocity (vi), whether the object is moving upward or downward, the acceleration due to gravity is always the same (–9.81 m/s2) the entire time

The final velocity (vf), the instantaneous velocity, is:

vf = vi + gt g = (vf - vi) / t

v  =  vi  

SCIENCE – PHYSICSSTEM GARAGE

Instantaneous Velocity in Free Falling  

t  

v  

slope    =  g  

v-t t  =  tf  

v  =  vf  

When the falling object has initial velocity (vi), whether the object is moving upward or downward, the acceleration due to gravity is always the same (–9.81 m/s2) the entire time

The final velocity (vf), the instantaneous velocity, is:

vf = vi + gt g = (vf - vi) / t g = Δv / t

v  =  vi  

SCIENCE – PHYSICSSTEM GARAGE

Average velocity in Free Falling  

t  

v  

slope    =  g  

v-t

tf  

vf  

For any object moving in linear motion with constant acceleration, the average velocity (v) is:

average velocity = (initial velocity + final velocity) / 2

0  

vi  

v  

v = vi + vf 2

SCIENCE – PHYSICSSTEM GARAGE

Displacement-Time Formula  Given initial velocity (vi) and time (t), and based on the

formulas we have gotten, find the displacement-time formula

v = vi + vf

2

vf = vi + gt

v = d / t

SCIENCE – PHYSICSSTEM GARAGE

Displacement-Time Formula  Given initial velocity (vi) and time (t), and based on the

formulas we have gotten, find the displacement-time formula

v = vi + vf

2

vf = vi + gt

v = d / t

d = vit + ½ gt2

SCIENCE – PHYSICSSTEM GARAGE

Displacement Change due to Gravity  

d-t

t  

d  Parabola  dy  

 

v  =  0  

g  =  -­‐9.81  m/s2  

d  =  dy  

d  =  0  

d = dy + vit + ½ gt2

SCIENCE – PHYSICSSTEM GARAGE

Distance Change due to Gravity  

d-t

t  

d  Parabola  

v  =  0  

g  =  9.81  m/s2  

d  =  0  

d  =  dy  

d = vit + ½ gt2

SCIENCE – PHYSICSSTEM GARAGE

Displacement-Velocity Formula  Given initial velocity (vi) and displacement (d), and based

on the formulas we have gotten, find the displacement-velocity formula

d = vit + ½ gt2

g = (vf - vi) / t

SCIENCE – PHYSICSSTEM GARAGE

Displacement-Velocity Formula  Given initial velocity (vi) and displacement (d), and based

on the formulas we have gotten, find the displacement-velocity formula

d = vit + ½ gt2

g = (vf - vi) / t vf

2 = vi2 + 2gd

SCIENCE – PHYSICSSTEM GARAGE

Summary of Free Falling Formulas  

v = vi + vf

2

vf = vi + gt v = d / t

d = vit + ½ gt2 g = Δv / t

vf2 = vi

2 + 2gd

SCIENCE – PHYSICSSTEM GARAGE

Summary of Linear Motion Formulas  

v = vi + vf

2

vf = vi + at v = d / t

d = vit + ½ at2 a = Δv / t

vf2 = vi

2 + 2ad

SCIENCE – PHYSICSSTEM GARAGE

The End