MCTM Strategies & Games

Post on 03-Nov-2014

12 views 1 download

Tags:

description

 

Transcript of MCTM Strategies & Games

© Joan A. Cotter, Ph.D., 2012

Teaching the Arithmetic Facts Using Strategies and Games

MCTMMay 4, 2012

Duluth, Minnesota

by Joan A. Cotter, Ph.D.JoanCotter@RightStartMath.com

7 3 8 16 24 32 40

PowerPoint Presentation & HandoutRightStartMath.com >Resources

© Joan A. Cotter, Ph.D., 2012

Learning the Facts

© Joan A. Cotter, Ph.D., 2012

Learning the Facts

• Based on counting.

Limited success when:

Whether dots, fingers, number lines, or counting words.

© Joan A. Cotter, Ph.D., 2012

Learning the Facts

• Based on counting.

Limited success when:

• Based on rote memory.

Whether dots, fingers, number lines, or counting words.

Whether by flash cards or timed tests.

© Joan A. Cotter, Ph.D., 2012

Learning the Facts

• Based on counting.

• Based on skip counting for multiplication facts.

Limited success when:

• Based on rote memory.

Whether dots, fingers, number lines, or counting words.

Whether by flash cards or timed tests.

© Joan A. Cotter, Ph.D., 2012

Counting ModelFrom a child's perspective

© Joan A. Cotter, Ph.D., 2012

Counting ModelFrom a child's perspective

Because we’re so familiar with 1, 2, 3, we’ll use letters.

A = 1B = 2C = 3D = 4E = 5, and so forth

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

F + E

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

A

F + E

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

A B

F + E

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

A CB

F + E

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

A FC D EB

F + E

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

AA FC D EB

F + E

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

A BA FC D EB

F + E

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

A C D EBA FC D EB

F + E

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

A C D EBA FC D EB

F + E

What is the sum?(It must be a letter.)

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

K

G I J KHA FC D EB

F + E

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

E + G

Add with your fingers.

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

H+ D

Add without your fingers.

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

Now memorize the facts!!

G + D

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

Now memorize the facts!!

G + D

H + F

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

Now memorize the facts!!

G + D

H + F

D + C

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

Now memorize the facts!!

G + D

H + F

C + G

D + C

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

E

+ I

Now memorize the facts!!

G + D

H + F

C + G

D + C

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

H – E

Subtract with your fingers.

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

J – F

Subtract without using your fingers.

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

Try skip counting by B’s to T: B, D, . . . T.

© Joan A. Cotter, Ph.D., 2012

Counting Model From a child's perspective

Try skip counting by B’s to T: B, D, . . . T.

What is D x E?

© Joan A. Cotter, Ph.D., 2012

Memorizing Math

© Joan A. Cotter, Ph.D., 2012

Memorizing Math

Percentage Recall

Immediately After 1 day After 4 wks

Rote 32 23 8

Concept 69 69 58

Some research:

© Joan A. Cotter, Ph.D., 2012

Memorizing Math

Percentage Recall

Immediately After 1 day After 4 wks

Rote 32 23 8

Concept 69 69 58

Some research:

© Joan A. Cotter, Ph.D., 2012

Memorizing Math

Percentage Recall

Immediately After 1 day After 4 wks

Rote 32 23 8

Concept 69 69 58

Some research:

© Joan A. Cotter, Ph.D., 2012

Memorizing Math

Percentage Recall

Immediately After 1 day After 4 wks

Rote 32 23 8

Concept 69 69 58

Some research:

© Joan A. Cotter, Ph.D., 2012

Memorizing Math

Percentage Recall

Immediately After 1 day After 4 wks

Rote 32 23 8

Concept 69 69 58

Some research:

© Joan A. Cotter, Ph.D., 2012

Memorizing Math

Percentage Recall

Immediately After 1 day After 4 wks

Rote 32 23 8

Concept 69 69 58

Some research:

© Joan A. Cotter, Ph.D., 2012

Memorizing Math

Percentage Recall

Immediately After 1 day After 4 wks

Rote 32 23 8

Concept 69 69 58

Some research:

© Joan A. Cotter, Ph.D., 2012

Memorizing Math 9 + 7Flash cards:

© Joan A. Cotter, Ph.D., 2012

• Are often used to teach rote.

Memorizing Math 9 + 7Flash cards:

© Joan A. Cotter, Ph.D., 2012

• Are often used to teach rote.

• Are liked by those who don’t need them.

Memorizing Math 9 + 7Flash cards:

© Joan A. Cotter, Ph.D., 2012

• Are often used to teach rote.

• Are liked by those who don’t need them.

• Don’t work for those with learning disabilities.

Memorizing Math 9 + 7Flash cards:

© Joan A. Cotter, Ph.D., 2012

• Are often used to teach rote.

• Are liked by those who don’t need them.

• Don’t work for those with learning disabilities.

• Give the false impression that math isn’t about thinking.

Memorizing Math 9 + 7Flash cards:

© Joan A. Cotter, Ph.D., 2012

• Are often used to teach rote.

• Are liked by those who don’t need them.

• Don’t work for those with learning disabilities.

• Give the false impression that math isn’t about thinking.

• Often produce stress – children under stress stop learning.

Memorizing Math 9 + 7Flash cards:

© Joan A. Cotter, Ph.D., 2012

• Are often used to teach rote.

• Are liked by those who don’t need them.

• Don’t work for those with learning disabilities.

• Give the false impression that math isn’t about thinking.

• Often produce stress – children under stress stop learning.

• Are not concrete – they use abstract symbols.

Memorizing MathFlash cards:

9 + 7

© Joan A. Cotter, Ph.D., 2012

AN ALTERNATIVE:

SUBITIZINGand

GAMES

© Joan A. Cotter, Ph.D., 2012

Subitizing QuantitiesIdentifying without counting

© Joan A. Cotter, Ph.D., 2012

Subitizing QuantitiesIdentifying without counting

• Five-month-old infants can subitize to 3.

© Joan A. Cotter, Ph.D., 2012

Subitizing QuantitiesIdentifying without counting

• Three-year-olds can subitize to 5.

• Five-month-old infants can subitize to 3.

© Joan A. Cotter, Ph.D., 2012

Subitizing QuantitiesIdentifying without counting

• Three-year-olds can subitize to 5.

• Five-year-olds can subitize 6 to 10 by using five as a subbase.

• Five-month-old infants can subitize to 3.

© Joan A. Cotter, Ph.D., 2012

AddingName the quantity (practice subitizing).

© Joan A. Cotter, Ph.D., 2012

AddingName the quantity (practice subitizing).

© Joan A. Cotter, Ph.D., 2012

AddingName the quantity (practice subitizing).

© Joan A. Cotter, Ph.D., 2012

Adding

4 + 3 =

© Joan A. Cotter, Ph.D., 2012

Adding

4 + 3 =

© Joan A. Cotter, Ph.D., 2012

Adding

4 + 3 =

© Joan A. Cotter, Ph.D., 2012

Adding

4 + 3 = 7

© Joan A. Cotter, Ph.D., 2012

Adding

4 + 3 =

© Joan A. Cotter, Ph.D., 2012

Characteristics of a Good Game

© Joan A. Cotter, Ph.D., 2012

Characteristics of a Good Game

• Produces learning through playing.

© Joan A. Cotter, Ph.D., 2012

Characteristics of a Good Game

• Produces learning through playing.

• Incorporates manipulatives.

© Joan A. Cotter, Ph.D., 2012

Characteristics of a Good Game

• Produces learning through playing.

• Incorporates manipulatives.

• Teaches strategies.

© Joan A. Cotter, Ph.D., 2012

Characteristics of a Good Game

• Produces learning through playing.

• Incorporates manipulatives.

• Teaches strategies.

• Encourages mental work.

© Joan A. Cotter, Ph.D., 2012

Characteristics of a Good Game

• Produces learning through playing.

• Incorporates manipulatives.

• Teaches strategies.

• Encourages mental work.

• Detects errors; provides continuous assessment.

© Joan A. Cotter, Ph.D., 2012

Characteristics of a Good Game

• Produces learning through playing.

• Incorporates manipulatives.

• Teaches strategies.

• Encourages mental work.

• Detects errors; provides continuous assessment.

• Is enjoyable.

© Joan A. Cotter, Ph.D., 2012

Go to the Dump GameObjective: To learn the facts that total 10:

1 + 92 + 83 + 74 + 65 + 5

© Joan A. Cotter, Ph.D., 2012

Go to the Dump GameObjective: To learn the facts that total 10:

1 + 92 + 83 + 74 + 65 + 5

Object of the game: To collect the most pairs that equal ten.

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

6 + = 10

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

6 + = 10

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

6 + 4 = 10

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

Starting

© Joan A. Cotter, Ph.D., 2012

7 2 7 9 5

7 42 61 3 8 3 4 9

Go to the Dump Game

Starting

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

Finding pairs

7 2 7 9 5

7 42 61 3 8 3 4 9

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

Finding pairs

7 2 7 9 5

7 42 61 3 8 3 4 9

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

Finding pairs

7 2 7 9 5

7 42 61 3 8 3 4 9

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

Finding pairs

7 2 7 9 5

7 2 1 3 8 3 4 9

4 6

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

Finding pairs

7 2 7 9 5

7 2 1 3 8 3 4 9

4 6

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

Finding pairs

7 2 7 9 5

7 2 1 3 8 3 4 9

4 6

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

Finding pairs

7 2 7 9 5

2 1 8 3 4 9

4 67 3

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

Finding pairs

7 2 7 9 5

1 3 4 9

4 62 82 8

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

Playing

7 2 7 9 5

1 3 4 9

4 62 82 8

© Joan A. Cotter, Ph.D., 2012

Go to the Dump GameBlueCap, do you

have a 3?BlueCap, do you

have an 3?

Playing

7 2 7 9 5

1 3 4 9

4 62 82 8

© Joan A. Cotter, Ph.D., 2012

Go to the Dump GameBlueCap, do you

have a 3?BlueCap, do you

have an 3?

Playing

7 2 7 9 5

1

3

4 9

4 62 82 8

© Joan A. Cotter, Ph.D., 2012

Go to the Dump GameBlueCap, do you

have a 3?BlueCap, do you

have an 3?

Playing

2 7 9 5

1 4 9

4 62 82 8

7 3

© Joan A. Cotter, Ph.D., 2012

Go to the Dump GameBlueCap, do you

have a 3?BlueCap, do you

have an 8?

Playing

2 7 9 5

1 4 9

4 62 82 8

7 3

© Joan A. Cotter, Ph.D., 2012

Go to the Dump GameBlueCap, do you

have a 3?BlueCap, do you

have an 8?

Go to the dump.Playing

2 7 9 5

1 4 9

4 62 82 8

7 3

© Joan A. Cotter, Ph.D., 2012

2

Go to the Dump GameBlueCap, do you

have a 3?BlueCap, do you

have an 8?

Go to the dump.Playing

2 7 9 5

1 4 9

4 62 82 8

7 3

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

Playing

2 2 7 9 5

1 4 9

4 62 82 8

7 3

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

PinkCap, do youhave a 6?Playing

2 2 7 9 5

1 4 9

4 62 82 8

7 3

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

PinkCap, do youhave a 6?PlayingGo to the dump.

2 2 7 9 5

1 4 9

4 62 82 8

7 3

© Joan A. Cotter, Ph.D., 2012

5

Go to the Dump Game

Playing

2 2 7 9 5

1 4 9

4 62 82 8

7 3

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

Playing

5

2 2 7 9 5

1 4 9

4 62 82 8

7 3

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

YellowCap, doyou have a 9? Playing

5

2 2 7 9 5

1 4 9

4 62 82 8

7 3

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

YellowCap, doyou have a 9? Playing

5

2 2 7 5

1 4 9

4 62 82 8

7 3

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

YellowCap, doyou have a 9? Playing

5

2 2 7 5

1 4 9

4 62 82 8

7 3

9

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

Playing

5

2 2 7 5

4 9

4 62 81 9

7 3

© Joan A. Cotter, Ph.D., 2012

2 9 1 7 7

Go to the Dump Game

Playing

5

2 2 7 5

4 9

4 62 81 9

7 3

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

Winner?

5 54 6

9 1

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

Winner?

5546

91

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

Winner?

5546

91

© Joan A. Cotter, Ph.D., 2012

Go to the Dump Game

Play it again.

© Joan A. Cotter, Ph.D., 2012

Fact Strategies

© Joan A. Cotter, Ph.D., 2012

Fact Strategies

• A strategy is a way to learn a new fact or recall a forgotten fact.

© Joan A. Cotter, Ph.D., 2012

Fact Strategies

• A strategy is a way to learn a new fact or recall a forgotten fact.

• A visualizable representation is part of a powerful strategy.

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesComplete the Ten

9 + 5 =

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesComplete the Ten

9 + 5 =

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesComplete the Ten

9 + 5 =

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesComplete the Ten

9 + 5 =

Take 1 from the 5 and give it to the 9.

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesComplete the Ten

9 + 5 =

Take 1 from the 5 and give it to the 9.

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesComplete the Ten

9 + 5 =

Take 1 from the 5 and give it to the 9.

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesComplete the Ten

9 + 5 = 14

Take 1 from the 5 and give it to the 9.

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesTwo Fives

8 + 6 =

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesTwo Fives

8 + 6 =

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesTwo Fives

8 + 6 =

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesTwo Fives

8 + 6 =

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesTwo Fives

8 + 6 =

10 + 4 = 14

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesTwo Fives

7 + 5 =

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesTwo Fives

7 + 5 =

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesTwo Fives

7 + 5 = 12

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesGoing Down

15 – 9 =

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesGoing Down

15 – 9 =

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesGoing Down

15 – 9 =

Subtract 5;then 4.

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesGoing Down

15 – 9 =

Subtract 5;then 4.

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesGoing Down

15 – 9 =

Subtract 5;then 4.

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesGoing Down

15 – 9 = 6

Subtract 5;then 4.

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesSubtract from 10

15 – 9 =

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesSubtract from 10

15 – 9 =

Subtract 9 from 10.

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesSubtract from 10

15 – 9 =

Subtract 9 from 10.

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesSubtract from 10

15 – 9 =

Subtract 9 from 10.

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesSubtract from 10

15 – 9 = 6

Subtract 9 from 10.

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesGoing Up

15 – 9 =

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesGoing Up

15 – 9 =

Start with 9; go up to 15.

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesGoing Up

15 – 9 =

Start with 9; go up to 15.

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesGoing Up

15 – 9 =

Start with 9; go up to 15.

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesGoing Up

15 – 9 =

Start with 9; go up to 15.

© Joan A. Cotter, Ph.D., 2012

Fact StrategiesGoing Up

15 – 9 =

1 + 5 = 6

Start with 9; go up to 15.

© Joan A. Cotter, Ph.D., 2012

Rows and Columns Game

Objective: To find a total of 15 by adding 2, 3, or 4 cards in row or column.

© Joan A. Cotter, Ph.D., 2012

Rows and Columns Game

Objective: To find a total of 15 by adding 2, 3, or 4 cards in row or column.

Object of the game: To collect the most cards.

© Joan A. Cotter, Ph.D., 2012

Rows and Columns Game8 7 1 9

6 4 3 3

2 2 5 6

6 3 8 8

© Joan A. Cotter, Ph.D., 2012

Rows and Columns Game8 7 1 9

6 4 3 3

2 2 5 6

6 3 8 8

© Joan A. Cotter, Ph.D., 2012

Rows and Columns Game8 7 1 9

6 4 3 3

2 2 5 6

6 3 8 8

© Joan A. Cotter, Ph.D., 2012

Rows and Columns Game1 9

6 4 3 3

6 3 8 8

© Joan A. Cotter, Ph.D., 2012

Rows and Columns Game1 9

6 4 3 3

6 3 8 8

7 6

2 1 5 1

© Joan A. Cotter, Ph.D., 2012

Rows and Columns Game1 9

6 4 3 3

6 3 8 8

7 6

2 1 5 1

© Joan A. Cotter, Ph.D., 2012

Rows and Columns Game1 9

6 4 3 3

6 3 8 8

7 6

2 1 5 1

© Joan A. Cotter, Ph.D., 2012

Rows and Columns Game1

6 4 3 3

3 8 8

1 5 1

© Joan A. Cotter, Ph.D., 2012

Rows and Columns Game

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

6 4 =(6 taken 4 times)

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

6 4 =(6 taken 4 times)

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

6 4 =(6 taken 4 times)

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

6 4 =(6 taken 4 times)

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

6 4 =(6 taken 4 times)

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

9 3 =

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

9 3 =

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

9 3 =

30

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

9 3 =

30 – 3 = 27

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

4 8 =

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

4 8 =

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

4 8 =

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

4 8 =

20 + 12 = 32

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

7 7 =

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

7 7 =

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

7 7 =

25

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

7 7 =

25 + 10 + 10

© Joan A. Cotter, Ph.D., 2012

Multiplication StrategiesBasic facts

7 7 =

25 + 10 + 10 + 4 = 49

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsTwos

2 4 6 8 10

12 14 16 18 20

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsTwos

2 4 6 8 10

12 14 16 18 20

The ones repeat in the second row.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsFours

4 8 12 16 20

24 28 32 36 40

The ones repeat in the second row.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsSixes and Eights

6 12 18 24 30

36 42 48 54 60

8 16 24 32 40

48 56 64 72 80

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsSixes and Eights

6 12 18 24 30

36 42 48 54 60

8 16 24 32 40

48 56 64 72 80

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsSixes and Eights

6 12 18 24 30

36 42 48 54 60

8 16 24 32 40

48 56 64 72 80

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsSixes and Eights

6 12 18 24 30

36 42 48 54 60

8 16 24 32 40

48 56 64 72 80

The ones in the 8s show the multiples of 2.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsSixes and Eights

6 12 18 24 30

36 42 48 54 60

8 16 24 32 40

48 56 64 72 80

The ones in the 8s show the multiples of 2.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsSixes and Eights

6 12 18 24 30

36 42 48 54 60

8 16 24 32 40

48 56 64 72 80

The ones in the 8s show the multiples of 2.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsSixes and Eights

6 12 18 24 30

36 42 48 54 60

8 16 24 32 40

48 56 64 72 80

The ones in the 8s show the multiples of 2.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsSixes and Eights

6 12 18 24 30

36 42 48 54 60

8 16 24 32 40

48 56 64 72 80

The ones in the 8s show the multiples of 2.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsSixes and Eights

6 12 18 24 30

36 42 48 54 60

8 16 24 32 40

48 56 64 72 80

6 4

6 4 is the fourth number (multiple).

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsSixes and Eights

6 12 18 24 30

36 42 48 54 60

8 16 24 32 40

48 56 64 72 80 8 7

8 7 is the seventh number (multiple).

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsNines

9 18 27 36 45

90 81 72 63 54

The second row is written in reverse order.Also the digits in each number add to 9.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: Observe the ones.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: Observe the ones.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: Observe the ones.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: Observe the ones.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: Observe the ones.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: Observe the ones.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: Observe the ones.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: Observe the ones.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: Observe the ones.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: Observe the ones.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: Observe the ones.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: The tens are the same in each row.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: Add the digits in the columns.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: Add the digits in the columns.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: Add the digits in the columns.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: Add the “opposites.”

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: Add the “opposites.”

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: Add the “opposites.”

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsThrees

3 6 9

12 15 18

21 24 27

30

The 3s have several patterns: Add the “opposites.”

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsSevens

7 14 21

28 35 42

49 56 63

70

The 7s have the 1, 2, 3… pattern.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsSevens

7 14 21

28 35 42

49 56 63

70

The 7s have the 1, 2, 3… pattern.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsSevens

7 14 21

28 35 42

49 56 63

70

The 7s have the 1, 2, 3… pattern.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsSevens

7 14 21

28 35 42

49 56 63

70

The 7s have the 1, 2, 3… pattern.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsSevens

7 14 21

28 35 42

49 56 63

70

Look at the tens.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsSevens

7 14 21

28 35 42

49 56 63

70

Look at the tens.

© Joan A. Cotter, Ph.D., 2012

Multiples PatternsSevens

7 14 21

28 35 42

49 56 63

70

Look at the tens.

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

Objective: To help the players learn the multiples patterns.

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

Object of the game: To be the first player to collect all ten cards of a multiple in order.

Objective: To help the players learn the multiples patterns.

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

The 7s envelope contains 10 cards, each with one of the numbers listed.

7 14 2128 35 4249 56 63

70

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

The 8s envelope contains 10 cards, each with one of the numbers listed.

8 16 24 32 4048 56 64 72 80

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

7 14 2128 35 4249 56 6370

7 14 2128 35 4249 56 6370

8 16 24 32 4048 56 64 72 80

8 16 24 32 4048 56 64 72 80

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

7 14 2128 35 4249 56 6370

7 14 2128 35 4249 56 6370

8 16 24 32 4048 56 64 72 80

8 16 24 32 4048 56 64 72 80

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

7 14 2128 35 4249 56 6370

7 14 2128 35 4249 56 6370

8 16 24 32 4048 56 64 72 80

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

14

8 16 24 32 4048 56 64 72 80

7 14 2128 35 4249 56 6370

7 14 2128 35 4249 56 6370

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

8 16 24 32 4048 56 64 72 80

7 14 2128 35 4249 56 6370

7 14 2128 35 4249 56 6370

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

8 16 24 32 4048 56 64 72 80

7 14 2128 35 4249 56 6370

8 16 24 32 4048 56 64 72 80

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

40

8 16 24 32 4048 56 64 72 80

7 14 2128 35 4249 56 6370

8 16 24 32 4048 56 64 72 80

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

8 16 24 32 4048 56 64 72 80

7 14 2128 35 4249 56 6370

8 16 24 32 4048 56 64 72 80

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

8 16 24 32 4048 56 64 72 80

7 14 2128 35 4249 56 6370

7 14 2128 35 4249 56 6370

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

8

8 16 24 32 4048 56 64 72 80

7 14 2128 35 4249 56 6370

7 14 2128 35 4249 56 6370

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

8 16 24 32 4048 56 64 72 80

7 14 2128 35 4249 56 6370

7 14 2128 35 4249 56 6370

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

8 16 24 32 4048 56 64 72 80

7 14 2128 35 4249 56 6370

8 16 24 32 4048 56 64 72 80

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

8

8 16 24 32 4048 56 64 72 80

7 14 2128 35 4249 56 6370

8 16 24 32 4048 56 64 72 80

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

8 16 24 32 4048 56 64 72 80

88

7 14 2128 35 4249 56 6370

8 16 24 32 4048 56 64 72 80

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

8 16 24 32 4048 56 64 72 80

8856

7 14 2128 35 4249 56 6370

8 16 24 32 4048 56 64 72 80

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

8 16 24 32 4048 56 64 72 80

88

7 14 2128 35 4249 56 6370

8 16 24 32 4048 56 64 72 80

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

8 16 24 32 4048 56 64 72 80

88

7 14 2128 35 4249 56 6370

7 14 2128 35 4249 56 6370

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

8 16 24 32 4048 56 64 72 80

88

7

7 14 2128 35 4249 56 6370

7 14 2128 35 4249 56 6370

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

8 16 24 32 4048 56 64 72 80

88

7

7 14 2128 35 4249 56 6370

7 14 2128 35 4249 56 6370

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

8 16 24 32 4048 56 64 72 80

88

7

14

7 14 2128 35 4249 56 6370

7 14 2128 35 4249 56 6370

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

8 16 24 32 4048 56 64 72 80

88

7 14

7 14 2128 35 4249 56 6370

7 14 2128 35 4249 56 6370

© Joan A. Cotter, Ph.D., 2012

Multiples Memory

8 16 24 32 4048 56 64 72 80

88

7 14

24

7 14 2128 35 4249 56 6370

7 14 2128 35 4249 56 6370

© Joan A. Cotter, Ph.D., 2012

7 14 2128 35 4249 56 6370

Multiples Memory

8 16 24 32 4048 56 64 72 80

88

7 14

7 14 2128 35 4249 56 6370

8 16 24 32 4048 56 64 72 80

© Joan A. Cotter, Ph.D., 2012

7 14 2128 35 4249 56 6370

Multiples Memory

8 16 24 32 4048 56 64 72 80

8 16 24 32 4048 56 64 72 80

7 14 2128 35 4249 56 6370

© Joan A. Cotter, Ph.D., 2012

Multiplication Memory

Objective: To help the players master themultiplication facts.

© Joan A. Cotter, Ph.D., 2012

Multiplication Memory

Objective: To help the players master themultiplication facts.

Object of the game: To collect the most cards by matching the multiplier with the product.

© Joan A. Cotter, Ph.D., 2012

Multiplication Memory

Materials Needed:

© Joan A. Cotter, Ph.D., 2012

Multiplication Memory

Materials Needed:• Ten basic cards, numbered 1 to 10

3 4 5

8 9 10

2

7

1

6

© Joan A. Cotter, Ph.D., 2012

3

Multiplication Memory

Materials Needed:• Ten basic cards, numbered 1 to 10• A set of product cards (3s used here)

3 4 5

8 9 10

2

7

1

6

6 61827

91221

3

30

1524

© Joan A. Cotter, Ph.D., 2012

3

Multiplication Memory

Materials Needed:• Ten basic cards, numbered 1 to 10• A set of product cards (3s used here) • A stickie note with “3 x” written on it

3 4 5

8 9 10

2

7

1

6

3 x 6 61827

91221

3

30

1524

© Joan A. Cotter, Ph.D., 2012

3

Multiplication Memory

Materials Needed:• Ten basic cards, numbered 1 to 10• A set of product cards (3s used here) • A stickie with “3 x” written on it• A stickie with “=” written on it

3 4 5

8 9 10

2

7

1

6

3 x 6 61827

91221

3

30

1524

© Joan A. Cotter, Ph.D., 2012

3

Multiplication Memory

Materials Needed:• Ten basic cards, numbered 1 to 10• A set of product cards (3s used here) • A stickie with “3 x” written on it• A stickie with “=” written on it• A manipulative with groups of five

3 4 5

8 9 10

2

7

1

6

3 x 6 61827

91221

3

30

1524

© Joan A. Cotter, Ph.D., 2012

3 x

Multiplication Memory

6 61827

91221

3

30

1524

© Joan A. Cotter, Ph.D., 2012

3 x

Multiplication Memory

6 61827

91221

3

30

1524

© Joan A. Cotter, Ph.D., 2012

3 x

Multiplication Memory

6 61827

91221

3

30

1524

5

© Joan A. Cotter, Ph.D., 2012

3 x

Multiplication Memory

6 61827

91221

3

30

1524

5

© Joan A. Cotter, Ph.D., 2012

3 x

Multiplication Memory

6 61827

91221

3

30

1524

5

© Joan A. Cotter, Ph.D., 2012

3 x

Multiplication Memory

6 61827

91221

3

30

1524

5

3 taken 5 timesequals 15.

© Joan A. Cotter, Ph.D., 2012

3 x

Multiplication Memory

21

6 61827

91221

3

30

1524

5

3 taken 5 timesequals 15.

© Joan A. Cotter, Ph.D., 2012

Multiplication Memory

6 61827

91221

3

30

1524

3 x

© Joan A. Cotter, Ph.D., 2012

Multiplication Memory

6 61827

91221

3

30

1524

3 x

© Joan A. Cotter, Ph.D., 2012

Multiplication Memory

6 61827

91221

3

30

1524

3 x7

© Joan A. Cotter, Ph.D., 2012

Multiplication Memory

6 61827

91221

3

30

1524

3 x7

© Joan A. Cotter, Ph.D., 2012

Multiplication Memory

6 61827

91221

3

30

1524

3 x7

© Joan A. Cotter, Ph.D., 2012

Multiplication Memory

6 61827

91221

3

30

1524

7

3 taken 7 timesequals 21.

3 x

© Joan A. Cotter, Ph.D., 2012

Multiplication Memory

21

6 61827

91221

3

30

1524

73 x

3 taken 7 timesequals 21.

© Joan A. Cotter, Ph.D., 2012

Multiplication Memory

6 61827

91221

3

30

1524

3 x

7 21

3 taken 7 timesequals 21.

© Joan A. Cotter, Ph.D., 2012

2

Multiplication Memory

6 61827

91221

3

30

1524

3 x

7 21

© Joan A. Cotter, Ph.D., 2012

2

Multiplication Memory

6 61827

91221

3

30

1524

33 x

7 21

© Joan A. Cotter, Ph.D., 2012

2

Multiplication Memory

6 61827

91221

3

30

1524

33 x

7 21

© Joan A. Cotter, Ph.D., 2012

2

Multiplication Memory

6 61827

91221

3

30

1524

33 x

7 21

3 taken 3 timesequals 9.

© Joan A. Cotter, Ph.D., 2012

2

Multiplication Memory

12

6 61827

91221

3

30

1524

33 x

7 21

3 taken 3 timesequals 9.

© Joan A. Cotter, Ph.D., 2012

Multiplication Memory

6 61827

91221

3

30

1524

3 x

7 21

© Joan A. Cotter, Ph.D., 2012

Multiplication Memory

6 61827

91221

3

30

1524

3 x

7 21

© Joan A. Cotter, Ph.D., 2012

Multiplication Memory

6 61827

91221

3

30

1524

5

3 x

7 21

© Joan A. Cotter, Ph.D., 2012

Multiplication Memory

6 61827

91221

3

30

1524

5

3 x

7 21

© Joan A. Cotter, Ph.D., 2012

Multiplication Memory

6 61827

91221

3

30

1524

5

3 x

7 21

3 taken 5 timesequals 15.

© Joan A. Cotter, Ph.D., 2012

Multiplication Memory

6 61827

91221

3

30

1524

5

153 x

7 21

3 taken 5 timesequals 15.

© Joan A. Cotter, Ph.D., 2012

7

Multiplication Memory

6 61827

91221

3

30

1524

3 x

215 15

3 taken 5 timesequals 15.

© Joan A. Cotter, Ph.D., 2012

7

Multiplication Memory

6 61827

91221

3

30

1524

3 x

215 15

© Joan A. Cotter, Ph.D., 2012

1

Multiplication Memory

6 61827

91221

3

30

1524

3 x

38 24

© Joan A. Cotter, Ph.D., 2012

Framing the Future of Mathematics in Minnesota

Math in Minnesota starts with the youngest.

Let’s build on their natural ability to subitize.

Keep joy in math; use games, not flash cards.

Help them to use their minds to visualize.

© Joan A. Cotter, Ph.D., 2012

Teaching the Arithmetic Facts Using Strategies and Games

MCTMMay 4, 2012

Duluth, Minnesota

by Joan A. Cotter, Ph.D.JoanCotter@RightStartMath.com

7 3 8 16 24 32 40

PowerPoint Presentation & HandoutRightStartMath.com >Resources