Lesson 16: Exponential Growth and Decay

Post on 26-May-2015

6.006 views 0 download

Tags:

description

When a quantity changes in proportion to itself (for instance, bacteria reproduction or radioactive decay), the growth or decay is exponential in nature. There are many many examples of this to be found.

Transcript of Lesson 16: Exponential Growth and Decay

. . . . . .

Section3.4ExponentialGrowthandDecay

V63.0121.027, CalculusI

October27, 2009

Announcements

I Quiz3thisweekinrecitation

. . . . . .

Outline

Recall

Theequation y′ = ky

Modelingsimplepopulationgrowth

ModelingradioactivedecayCarbon-14Dating

Newton’sLawofCooling

ContinuouslyCompoundedInterest

. . . . . .

Derivativesofexponentialandlogarithmicfunctions

y y′

ex ex

ax (ln a)ax

ln x1x

loga x1ln a

· 1x

. . . . . .

Outline

Recall

Theequation y′ = ky

Modelingsimplepopulationgrowth

ModelingradioactivedecayCarbon-14Dating

Newton’sLawofCooling

ContinuouslyCompoundedInterest

. . . . . .

DefinitionA differentialequation isanequationforanunknownfunctionwhichincludesthefunctionanditsderivatives.

Example

I Newton’sSecondLaw F = ma isadifferentialequation,where a(t) = x′′(t).

I Inaspring, F(x) = −kx, where x isdisplacementfromequilibriumand k isaconstant. So

−kx = mx′′ =⇒ x′′ +km

= 0.

I Themostgeneralsolutionis x(t) = A sinωt+ B cosωt, whereω =

√k/m.

. . . . . .

DefinitionA differentialequation isanequationforanunknownfunctionwhichincludesthefunctionanditsderivatives.

Example

I Newton’sSecondLaw F = ma isadifferentialequation,where a(t) = x′′(t).

I Inaspring, F(x) = −kx, where x isdisplacementfromequilibriumand k isaconstant. So

−kx = mx′′ =⇒ x′′ +km

= 0.

I Themostgeneralsolutionis x(t) = A sinωt+ B cosωt, whereω =

√k/m.

. . . . . .

DefinitionA differentialequation isanequationforanunknownfunctionwhichincludesthefunctionanditsderivatives.

Example

I Newton’sSecondLaw F = ma isadifferentialequation,where a(t) = x′′(t).

I Inaspring, F(x) = −kx, where x isdisplacementfromequilibriumand k isaconstant. So

−kx = mx′′ =⇒ x′′ +km

= 0.

I Themostgeneralsolutionis x(t) = A sinωt+ B cosωt, whereω =

√k/m.

. . . . . .

DefinitionA differentialequation isanequationforanunknownfunctionwhichincludesthefunctionanditsderivatives.

Example

I Newton’sSecondLaw F = ma isadifferentialequation,where a(t) = x′′(t).

I Inaspring, F(x) = −kx, where x isdisplacementfromequilibriumand k isaconstant. So

−kx = mx′′ =⇒ x′′ +km

= 0.

I Themostgeneralsolutionis x(t) = A sinωt+ B cosωt, whereω =

√k/m.

. . . . . .

Theequation y′ = ky

Example

I Find a solutionto y′(t) = y(t).I Findthe mostgeneral solutionto y′(t) = y(t).

Solution

I A solutionis y(t) = et.I Thegeneralsolutionis y = Cet, not y = et + C.

(checkthis)

. . . . . .

Theequation y′ = ky

Example

I Find a solutionto y′(t) = y(t).I Findthe mostgeneral solutionto y′(t) = y(t).

Solution

I A solutionis y(t) = et.

I Thegeneralsolutionis y = Cet, not y = et + C.

(checkthis)

. . . . . .

Theequation y′ = ky

Example

I Find a solutionto y′(t) = y(t).I Findthe mostgeneral solutionto y′(t) = y(t).

Solution

I A solutionis y(t) = et.I Thegeneralsolutionis y = Cet, not y = et + C.

(checkthis)

. . . . . .

Ingeneral

Example

I Findasolutionto y′ = ky.I Findthegeneralsolutionto y′ = ky.

Solution

I y = ekt

I y = Cekt

RemarkWhatis C? Plugin t = 0:

y(0) = Cek·0 = C · 1 = C,

so y(0) = y0, the initialvalue of y.

. . . . . .

Ingeneral

Example

I Findasolutionto y′ = ky.I Findthegeneralsolutionto y′ = ky.

Solution

I y = ekt

I y = Cekt

RemarkWhatis C? Plugin t = 0:

y(0) = Cek·0 = C · 1 = C,

so y(0) = y0, the initialvalue of y.

. . . . . .

Ingeneral

Example

I Findasolutionto y′ = ky.I Findthegeneralsolutionto y′ = ky.

Solution

I y = ekt

I y = Cekt

RemarkWhatis C? Plugin t = 0:

y(0) = Cek·0 = C · 1 = C,

so y(0) = y0, the initialvalue of y.

. . . . . .

ExponentialGrowth

I Itmeanstherateofchange(derivative)isproportionaltothecurrentvalue

I Examples: Naturalpopulationgrowth, compoundedinterest,socialnetworks

. . . . . .

Outline

Recall

Theequation y′ = ky

Modelingsimplepopulationgrowth

ModelingradioactivedecayCarbon-14Dating

Newton’sLawofCooling

ContinuouslyCompoundedInterest

. . . . . .

Bacteria

I Sinceyouneedbacteriatomakebacteria, theamountofnewbacteriaatanymomentisproportionaltothetotalamountofbacteria.

I Thismeansbacteriapopulationsgrowexponentially.

. . . . . .

BacteriaExample

ExampleA colonyofbacteriaisgrownunderidealconditionsinalaboratory. Attheendof3hoursthereare10,000bacteria. Attheendof5hoursthereare40,000. Howmanybacteriawerepresentinitially?

SolutionSince y′ = ky forbacteria, wehave y = y0e

kt. Wehave

10, 000 = y0ek·3 40, 000 = y0e

k·5

Dividingthefirstintothesecondgives4 = e2k =⇒ 2k = ln 4 =⇒ k = ln 2. Nowwehave

10,000 = y0eln 2·3 = y0 · 8

So y0 =10,000

8= 1250.

. . . . . .

BacteriaExample

ExampleA colonyofbacteriaisgrownunderidealconditionsinalaboratory. Attheendof3hoursthereare10,000bacteria. Attheendof5hoursthereare40,000. Howmanybacteriawerepresentinitially?

SolutionSince y′ = ky forbacteria, wehave y = y0e

kt. Wehave

10, 000 = y0ek·3 40, 000 = y0e

k·5

Dividingthefirstintothesecondgives4 = e2k =⇒ 2k = ln 4 =⇒ k = ln 2. Nowwehave

10,000 = y0eln 2·3 = y0 · 8

So y0 =10,000

8= 1250.

. . . . . .

BacteriaExample

ExampleA colonyofbacteriaisgrownunderidealconditionsinalaboratory. Attheendof3hoursthereare10,000bacteria. Attheendof5hoursthereare40,000. Howmanybacteriawerepresentinitially?

SolutionSince y′ = ky forbacteria, wehave y = y0e

kt. Wehave

10, 000 = y0ek·3 40, 000 = y0e

k·5

Dividingthefirstintothesecondgives4 = e2k =⇒ 2k = ln 4 =⇒ k = ln 2. Nowwehave

10,000 = y0eln 2·3 = y0 · 8

So y0 =10,000

8= 1250.

. . . . . .

Couldyoudothatagainplease?

Wehave

10, 000 = y0ek·3

40, 000 = y0ek·5

Dividingthefirstintothesecondgives

40, 00010, 000

=y0e

5k

y0e3k

4 = e2k

ln 4 = ln(e2k) = 2k

k =ln 42

=ln 22

2=

2 ln 22

= ln 2

. . . . . .

Outline

Recall

Theequation y′ = ky

Modelingsimplepopulationgrowth

ModelingradioactivedecayCarbon-14Dating

Newton’sLawofCooling

ContinuouslyCompoundedInterest

. . . . . .

Modelingradioactivedecay

Radioactivedecayoccursbecausemanylargeatomsspontaneouslygiveoffparticles.

Thismeansthatinasampleofabunchofatoms, wecanassumeacertainpercentageofthemwill“gooff”atanypoint. (Forinstance, ifallatomofacertainradioactiveelementhavea20%chanceofdecayingatanypoint,thenwecanexpectinasampleof100that20ofthemwillbedecaying.)

. . . . . .

Modelingradioactivedecay

Radioactivedecayoccursbecausemanylargeatomsspontaneouslygiveoffparticles.

Thismeansthatinasampleofabunchofatoms, wecanassumeacertainpercentageofthemwill“gooff”atanypoint. (Forinstance, ifallatomofacertainradioactiveelementhavea20%chanceofdecayingatanypoint,thenwecanexpectinasampleof100that20ofthemwillbedecaying.)

. . . . . .

Thustherelativerateofdecayisconstant:

y′

y= k

where k is negative.

So

y′ = ky =⇒ y = y0ekt

again!It’scustomarytoexpresstherelativerateofdecayintheunitsofhalf-life: theamountoftimeittakesapuresampletodecaytoonewhichisonlyhalfpure.

. . . . . .

Thustherelativerateofdecayisconstant:

y′

y= k

where k is negative. So

y′ = ky =⇒ y = y0ekt

again!

It’scustomarytoexpresstherelativerateofdecayintheunitsofhalf-life: theamountoftimeittakesapuresampletodecaytoonewhichisonlyhalfpure.

. . . . . .

Thustherelativerateofdecayisconstant:

y′

y= k

where k is negative. So

y′ = ky =⇒ y = y0ekt

again!It’scustomarytoexpresstherelativerateofdecayintheunitsofhalf-life: theamountoftimeittakesapuresampletodecaytoonewhichisonlyhalfpure.

. . . . . .

ExampleThehalf-lifeofpolonium-210isabout138days. Howmuchofa100gsampleremainsafter t years?

SolutionWehave y = y0e

kt, where y0 = y(0) = 100 grams. Then

50 = 100ek·138/365 =⇒ k = −365 · ln 2138

.

Therefore

y(t) = 100e−365·ln 2138 t = 100 · 2−365t/138.

. . . . . .

ExampleThehalf-lifeofpolonium-210isabout138days. Howmuchofa100gsampleremainsafter t years?

SolutionWehave y = y0e

kt, where y0 = y(0) = 100 grams. Then

50 = 100ek·138/365 =⇒ k = −365 · ln 2138

.

Therefore

y(t) = 100e−365·ln 2138 t = 100 · 2−365t/138.

. . . . . .

Carbon-14Dating

Theratioofcarbon-14tocarbon-12inanorganismdecaysexponentially:

p(t) = p0e−kt.

Thehalf-lifeofcarbon-14isabout5700years. Sotheequationfor p(t) is

p(t) = p0e− ln2

5700 t

Anotherwaytowritethiswouldbe

p(t) = p02−t/5700

. . . . . .

ExampleSupposeafossilisfoundwheretheratioofcarbon-14tocarbon-12is10%ofthatinalivingorganism. Howoldisthefossil?

SolutionWearelookingforthevalueof t forwhich

p(t)p(0)

= 0.1

Fromtheequationwehave

2−t/5700 = 0.1

− t5700

ln 2 = ln 0.1

t =ln 0.1ln 2

· 5700 ≈ 18, 940

Sothefossilisalmost19,000yearsold.

. . . . . .

ExampleSupposeafossilisfoundwheretheratioofcarbon-14tocarbon-12is10%ofthatinalivingorganism. Howoldisthefossil?

SolutionWearelookingforthevalueof t forwhich

p(t)p(0)

= 0.1

Fromtheequationwehave

2−t/5700 = 0.1

− t5700

ln 2 = ln 0.1

t =ln 0.1ln 2

· 5700 ≈ 18, 940

Sothefossilisalmost19,000yearsold.

. . . . . .

ExampleSupposeafossilisfoundwheretheratioofcarbon-14tocarbon-12is10%ofthatinalivingorganism. Howoldisthefossil?

SolutionWearelookingforthevalueof t forwhich

p(t)p(0)

= 0.1

Fromtheequationwehave

2−t/5700 = 0.1

− t5700

ln 2 = ln 0.1

t =ln 0.1ln 2

· 5700 ≈ 18, 940

Sothefossilisalmost19,000yearsold.

. . . . . .

ExampleSupposeafossilisfoundwheretheratioofcarbon-14tocarbon-12is10%ofthatinalivingorganism. Howoldisthefossil?

SolutionWearelookingforthevalueof t forwhich

p(t)p(0)

= 0.1

Fromtheequationwehave

2−t/5700 = 0.1

− t5700

ln 2 = ln 0.1

t =ln 0.1ln 2

· 5700 ≈ 18, 940

Sothefossilisalmost19,000yearsold.

. . . . . .

Outline

Recall

Theequation y′ = ky

Modelingsimplepopulationgrowth

ModelingradioactivedecayCarbon-14Dating

Newton’sLawofCooling

ContinuouslyCompoundedInterest

. . . . . .

Newton’sLawofCooling

I Newton’sLawofCooling statesthattherateofcoolingofanobjectisproportionaltothetemperaturedifferencebetweentheobjectanditssurroundings.

I Thisgivesusadifferentialequationoftheform

dTdt

= k(T− Ts)

(where k < 0 again).

. . . . . .

Newton’sLawofCooling

I Newton’sLawofCooling statesthattherateofcoolingofanobjectisproportionaltothetemperaturedifferencebetweentheobjectanditssurroundings.

I Thisgivesusadifferentialequationoftheform

dTdt

= k(T− Ts)

(where k < 0 again).

. . . . . .

GeneralSolutiontoNLC problems

Tosolvethis, changethevariable y(t) = T(t) − Ts. Then y′ = T′

and k(T− Ts) = ky. Theequationnowlookslike

dydt

= ky

whichwecansolve:

y = Cekt

T− Ts = Cekt

=⇒ T = Cekt + Ts

Here C = y0 = T0 − Ts.

. . . . . .

GeneralSolutiontoNLC problems

Tosolvethis, changethevariable y(t) = T(t) − Ts. Then y′ = T′

and k(T− Ts) = ky. Theequationnowlookslike

dydt

= ky

whichwecansolve:

y = Cekt

T− Ts = Cekt

=⇒ T = Cekt + Ts

Here C = y0 = T0 − Ts.

. . . . . .

GeneralSolutiontoNLC problems

Tosolvethis, changethevariable y(t) = T(t) − Ts. Then y′ = T′

and k(T− Ts) = ky. Theequationnowlookslike

dydt

= ky

whichwecansolve:

y = Cekt

T− Ts = Cekt

=⇒ T = Cekt + Ts

Here C = y0 = T0 − Ts.

. . . . . .

ExampleA hard-boiledeggat 98◦C isputinasinkof 18◦C water. After5minutes, theegg’stemperatureis 38◦C. Assumingthewaterhasnotwarmedappreciably, howmuchlongerwillittaketheeggtoreach 20◦C?

SolutionWeknowthatthetemperaturefunctiontakestheform

T(t) = (T0 − Ts)ekt + Ts = 80ekt + 18

Tofind k, plugin t = 5:

38 = T(5) = 80e5k + 18

andsolvefor k.

. . . . . .

ExampleA hard-boiledeggat 98◦C isputinasinkof 18◦C water. After5minutes, theegg’stemperatureis 38◦C. Assumingthewaterhasnotwarmedappreciably, howmuchlongerwillittaketheeggtoreach 20◦C?

SolutionWeknowthatthetemperaturefunctiontakestheform

T(t) = (T0 − Ts)ekt + Ts = 80ekt + 18

Tofind k, plugin t = 5:

38 = T(5) = 80e5k + 18

andsolvefor k.

. . . . . .

Finding k

38 = T(5) = 80e5k + 18

20 = 80e5k

14

= e5k

ln(14

)= 5k

=⇒ k = −15ln 4.

Nowweneedtosolve

20 = T(t) = 80e−t5 ln 4 + 18

for t.

. . . . . .

Finding k

38 = T(5) = 80e5k + 18

20 = 80e5k

14

= e5k

ln(14

)= 5k

=⇒ k = −15ln 4.

Nowweneedtosolve

20 = T(t) = 80e−t5 ln 4 + 18

for t.

. . . . . .

Finding t

20 = 80e−t5 ln 4 + 18

2 = 80e−t5 ln 4

140

= e−t5 ln 4

− ln 40 = − t5ln 4

=⇒ t =ln 4015 ln 4

=5 ln 40ln 4

≈ 13min

. . . . . .

ExampleA murdervictimisdiscoveredatmidnightandthetemperatureofthebodyisrecordedas 31 ◦C. Onehourlater, thetemperatureofthebodyis 29 ◦C. Assumethatthesurroundingairtemperatureremainsconstantat 21 ◦C. Calculatethevictim’stimeofdeath.(The“normal”temperatureofalivinghumanbeingisapproximately 37 ◦C.)

. . . . . .

Solution

I Lettime 0 bemidnight. Weknow T0 = 31, Ts = 21, andT(1) = 29. Wewanttoknowthe t forwhich T(t) = 37.

I Tofind k:

29 = 10ek·1 + 21 =⇒ k = ln 0.8

I Tofind t:

37 = 10et·ln(0.8) + 21

1.6 = et·ln(0.8)

t =ln(1.6)

ln(0.8)≈ −2.10 hr

Sothetimeofdeathwasjustbefore10:00pm.

. . . . . .

Solution

I Lettime 0 bemidnight. Weknow T0 = 31, Ts = 21, andT(1) = 29. Wewanttoknowthe t forwhich T(t) = 37.

I Tofind k:

29 = 10ek·1 + 21 =⇒ k = ln 0.8

I Tofind t:

37 = 10et·ln(0.8) + 21

1.6 = et·ln(0.8)

t =ln(1.6)

ln(0.8)≈ −2.10 hr

Sothetimeofdeathwasjustbefore10:00pm.

. . . . . .

Solution

I Lettime 0 bemidnight. Weknow T0 = 31, Ts = 21, andT(1) = 29. Wewanttoknowthe t forwhich T(t) = 37.

I Tofind k:

29 = 10ek·1 + 21 =⇒ k = ln 0.8

I Tofind t:

37 = 10et·ln(0.8) + 21

1.6 = et·ln(0.8)

t =ln(1.6)

ln(0.8)≈ −2.10 hr

Sothetimeofdeathwasjustbefore10:00pm.

. . . . . .

Outline

Recall

Theequation y′ = ky

Modelingsimplepopulationgrowth

ModelingradioactivedecayCarbon-14Dating

Newton’sLawofCooling

ContinuouslyCompoundedInterest

. . . . . .

Interest

I Ifanaccounthasancompoundinterestrateof r peryearcompounded n times, thenaninitialdepositof A0 dollarsbecomes

A0

(1 +

rn

)nt

after t years.

I Fordifferentamountsofcompounding, thiswillchange. Asn → ∞, weget continouslycompoundedinterest

A(t) = limn→∞

A0

(1 +

rn

)nt

= A0ert.

I Thusdollarsarelikebacteria.

. . . . . .

Interest

I Ifanaccounthasancompoundinterestrateof r peryearcompounded n times, thenaninitialdepositof A0 dollarsbecomes

A0

(1 +

rn

)nt

after t years.I Fordifferentamountsofcompounding, thiswillchange. Asn → ∞, weget continouslycompoundedinterest

A(t) = limn→∞

A0

(1 +

rn

)nt= A0ert.

I Thusdollarsarelikebacteria.

. . . . . .

Interest

I Ifanaccounthasancompoundinterestrateof r peryearcompounded n times, thenaninitialdepositof A0 dollarsbecomes

A0

(1 +

rn

)nt

after t years.I Fordifferentamountsofcompounding, thiswillchange. Asn → ∞, weget continouslycompoundedinterest

A(t) = limn→∞

A0

(1 +

rn

)nt= A0ert.

I Thusdollarsarelikebacteria.

. . . . . .

ExampleHowlongdoesittakeaninitialdepositof$100, compoundedcontinuously, todouble?

SolutionWeneed t suchthat A(t) = 200. Inotherwords

200 = 100ert =⇒ 2 = ert =⇒ ln 2 = rt =⇒ t =ln 2r

.

Forinstance, if r = 6% = 0.06, wehave

t =ln 20.06

≈ 0.690.06

=696

= 11.5 years.

. . . . . .

ExampleHowlongdoesittakeaninitialdepositof$100, compoundedcontinuously, todouble?

SolutionWeneed t suchthat A(t) = 200. Inotherwords

200 = 100ert =⇒ 2 = ert =⇒ ln 2 = rt =⇒ t =ln 2r

.

Forinstance, if r = 6% = 0.06, wehave

t =ln 20.06

≈ 0.690.06

=696

= 11.5 years.

. . . . . .

I-bankinginterviewtipoftheday

I Thefractionln 2r

can

alsobeapproximatedaseither70or72dividedbythepercentagerate(asanumberbetween0and100, notafractionbetween0and1.)

I Thisissometimescalledthe ruleof70 or ruleof72.

I 72haslotsoffactorssoit’susedmoreoften.