Lesson 16: Exponential Growth and Decay

56
. . . . . . Section 3.4 Exponential Growth and Decay V63.0121.027, Calculus I October 27, 2009 Announcements I Quiz 3 this week in recitation

description

When a quantity changes in proportion to itself (for instance, bacteria reproduction or radioactive decay), the growth or decay is exponential in nature. There are many many examples of this to be found.

Transcript of Lesson 16: Exponential Growth and Decay

Page 1: Lesson 16: Exponential Growth and Decay

. . . . . .

Section3.4ExponentialGrowthandDecay

V63.0121.027, CalculusI

October27, 2009

Announcements

I Quiz3thisweekinrecitation

Page 2: Lesson 16: Exponential Growth and Decay

. . . . . .

Outline

Recall

Theequation y′ = ky

Modelingsimplepopulationgrowth

ModelingradioactivedecayCarbon-14Dating

Newton’sLawofCooling

ContinuouslyCompoundedInterest

Page 3: Lesson 16: Exponential Growth and Decay

. . . . . .

Derivativesofexponentialandlogarithmicfunctions

y y′

ex ex

ax (ln a)ax

ln x1x

loga x1ln a

· 1x

Page 4: Lesson 16: Exponential Growth and Decay

. . . . . .

Outline

Recall

Theequation y′ = ky

Modelingsimplepopulationgrowth

ModelingradioactivedecayCarbon-14Dating

Newton’sLawofCooling

ContinuouslyCompoundedInterest

Page 5: Lesson 16: Exponential Growth and Decay

. . . . . .

DefinitionA differentialequation isanequationforanunknownfunctionwhichincludesthefunctionanditsderivatives.

Example

I Newton’sSecondLaw F = ma isadifferentialequation,where a(t) = x′′(t).

I Inaspring, F(x) = −kx, where x isdisplacementfromequilibriumand k isaconstant. So

−kx = mx′′ =⇒ x′′ +km

= 0.

I Themostgeneralsolutionis x(t) = A sinωt+ B cosωt, whereω =

√k/m.

Page 6: Lesson 16: Exponential Growth and Decay

. . . . . .

DefinitionA differentialequation isanequationforanunknownfunctionwhichincludesthefunctionanditsderivatives.

Example

I Newton’sSecondLaw F = ma isadifferentialequation,where a(t) = x′′(t).

I Inaspring, F(x) = −kx, where x isdisplacementfromequilibriumand k isaconstant. So

−kx = mx′′ =⇒ x′′ +km

= 0.

I Themostgeneralsolutionis x(t) = A sinωt+ B cosωt, whereω =

√k/m.

Page 7: Lesson 16: Exponential Growth and Decay

. . . . . .

DefinitionA differentialequation isanequationforanunknownfunctionwhichincludesthefunctionanditsderivatives.

Example

I Newton’sSecondLaw F = ma isadifferentialequation,where a(t) = x′′(t).

I Inaspring, F(x) = −kx, where x isdisplacementfromequilibriumand k isaconstant. So

−kx = mx′′ =⇒ x′′ +km

= 0.

I Themostgeneralsolutionis x(t) = A sinωt+ B cosωt, whereω =

√k/m.

Page 8: Lesson 16: Exponential Growth and Decay

. . . . . .

DefinitionA differentialequation isanequationforanunknownfunctionwhichincludesthefunctionanditsderivatives.

Example

I Newton’sSecondLaw F = ma isadifferentialequation,where a(t) = x′′(t).

I Inaspring, F(x) = −kx, where x isdisplacementfromequilibriumand k isaconstant. So

−kx = mx′′ =⇒ x′′ +km

= 0.

I Themostgeneralsolutionis x(t) = A sinωt+ B cosωt, whereω =

√k/m.

Page 9: Lesson 16: Exponential Growth and Decay

. . . . . .

Theequation y′ = ky

Example

I Find a solutionto y′(t) = y(t).I Findthe mostgeneral solutionto y′(t) = y(t).

Solution

I A solutionis y(t) = et.I Thegeneralsolutionis y = Cet, not y = et + C.

(checkthis)

Page 10: Lesson 16: Exponential Growth and Decay

. . . . . .

Theequation y′ = ky

Example

I Find a solutionto y′(t) = y(t).I Findthe mostgeneral solutionto y′(t) = y(t).

Solution

I A solutionis y(t) = et.

I Thegeneralsolutionis y = Cet, not y = et + C.

(checkthis)

Page 11: Lesson 16: Exponential Growth and Decay

. . . . . .

Theequation y′ = ky

Example

I Find a solutionto y′(t) = y(t).I Findthe mostgeneral solutionto y′(t) = y(t).

Solution

I A solutionis y(t) = et.I Thegeneralsolutionis y = Cet, not y = et + C.

(checkthis)

Page 12: Lesson 16: Exponential Growth and Decay

. . . . . .

Ingeneral

Example

I Findasolutionto y′ = ky.I Findthegeneralsolutionto y′ = ky.

Solution

I y = ekt

I y = Cekt

RemarkWhatis C? Plugin t = 0:

y(0) = Cek·0 = C · 1 = C,

so y(0) = y0, the initialvalue of y.

Page 13: Lesson 16: Exponential Growth and Decay

. . . . . .

Ingeneral

Example

I Findasolutionto y′ = ky.I Findthegeneralsolutionto y′ = ky.

Solution

I y = ekt

I y = Cekt

RemarkWhatis C? Plugin t = 0:

y(0) = Cek·0 = C · 1 = C,

so y(0) = y0, the initialvalue of y.

Page 14: Lesson 16: Exponential Growth and Decay

. . . . . .

Ingeneral

Example

I Findasolutionto y′ = ky.I Findthegeneralsolutionto y′ = ky.

Solution

I y = ekt

I y = Cekt

RemarkWhatis C? Plugin t = 0:

y(0) = Cek·0 = C · 1 = C,

so y(0) = y0, the initialvalue of y.

Page 15: Lesson 16: Exponential Growth and Decay

. . . . . .

ExponentialGrowth

I Itmeanstherateofchange(derivative)isproportionaltothecurrentvalue

I Examples: Naturalpopulationgrowth, compoundedinterest,socialnetworks

Page 16: Lesson 16: Exponential Growth and Decay

. . . . . .

Outline

Recall

Theequation y′ = ky

Modelingsimplepopulationgrowth

ModelingradioactivedecayCarbon-14Dating

Newton’sLawofCooling

ContinuouslyCompoundedInterest

Page 17: Lesson 16: Exponential Growth and Decay

. . . . . .

Bacteria

I Sinceyouneedbacteriatomakebacteria, theamountofnewbacteriaatanymomentisproportionaltothetotalamountofbacteria.

I Thismeansbacteriapopulationsgrowexponentially.

Page 18: Lesson 16: Exponential Growth and Decay

. . . . . .

BacteriaExample

ExampleA colonyofbacteriaisgrownunderidealconditionsinalaboratory. Attheendof3hoursthereare10,000bacteria. Attheendof5hoursthereare40,000. Howmanybacteriawerepresentinitially?

SolutionSince y′ = ky forbacteria, wehave y = y0e

kt. Wehave

10, 000 = y0ek·3 40, 000 = y0e

k·5

Dividingthefirstintothesecondgives4 = e2k =⇒ 2k = ln 4 =⇒ k = ln 2. Nowwehave

10,000 = y0eln 2·3 = y0 · 8

So y0 =10,000

8= 1250.

Page 19: Lesson 16: Exponential Growth and Decay

. . . . . .

BacteriaExample

ExampleA colonyofbacteriaisgrownunderidealconditionsinalaboratory. Attheendof3hoursthereare10,000bacteria. Attheendof5hoursthereare40,000. Howmanybacteriawerepresentinitially?

SolutionSince y′ = ky forbacteria, wehave y = y0e

kt. Wehave

10, 000 = y0ek·3 40, 000 = y0e

k·5

Dividingthefirstintothesecondgives4 = e2k =⇒ 2k = ln 4 =⇒ k = ln 2. Nowwehave

10,000 = y0eln 2·3 = y0 · 8

So y0 =10,000

8= 1250.

Page 20: Lesson 16: Exponential Growth and Decay

. . . . . .

BacteriaExample

ExampleA colonyofbacteriaisgrownunderidealconditionsinalaboratory. Attheendof3hoursthereare10,000bacteria. Attheendof5hoursthereare40,000. Howmanybacteriawerepresentinitially?

SolutionSince y′ = ky forbacteria, wehave y = y0e

kt. Wehave

10, 000 = y0ek·3 40, 000 = y0e

k·5

Dividingthefirstintothesecondgives4 = e2k =⇒ 2k = ln 4 =⇒ k = ln 2. Nowwehave

10,000 = y0eln 2·3 = y0 · 8

So y0 =10,000

8= 1250.

Page 21: Lesson 16: Exponential Growth and Decay

. . . . . .

Couldyoudothatagainplease?

Wehave

10, 000 = y0ek·3

40, 000 = y0ek·5

Dividingthefirstintothesecondgives

40, 00010, 000

=y0e

5k

y0e3k

4 = e2k

ln 4 = ln(e2k) = 2k

k =ln 42

=ln 22

2=

2 ln 22

= ln 2

Page 22: Lesson 16: Exponential Growth and Decay

. . . . . .

Outline

Recall

Theequation y′ = ky

Modelingsimplepopulationgrowth

ModelingradioactivedecayCarbon-14Dating

Newton’sLawofCooling

ContinuouslyCompoundedInterest

Page 23: Lesson 16: Exponential Growth and Decay

. . . . . .

Modelingradioactivedecay

Radioactivedecayoccursbecausemanylargeatomsspontaneouslygiveoffparticles.

Thismeansthatinasampleofabunchofatoms, wecanassumeacertainpercentageofthemwill“gooff”atanypoint. (Forinstance, ifallatomofacertainradioactiveelementhavea20%chanceofdecayingatanypoint,thenwecanexpectinasampleof100that20ofthemwillbedecaying.)

Page 24: Lesson 16: Exponential Growth and Decay

. . . . . .

Modelingradioactivedecay

Radioactivedecayoccursbecausemanylargeatomsspontaneouslygiveoffparticles.

Thismeansthatinasampleofabunchofatoms, wecanassumeacertainpercentageofthemwill“gooff”atanypoint. (Forinstance, ifallatomofacertainradioactiveelementhavea20%chanceofdecayingatanypoint,thenwecanexpectinasampleof100that20ofthemwillbedecaying.)

Page 25: Lesson 16: Exponential Growth and Decay

. . . . . .

Thustherelativerateofdecayisconstant:

y′

y= k

where k is negative.

So

y′ = ky =⇒ y = y0ekt

again!It’scustomarytoexpresstherelativerateofdecayintheunitsofhalf-life: theamountoftimeittakesapuresampletodecaytoonewhichisonlyhalfpure.

Page 26: Lesson 16: Exponential Growth and Decay

. . . . . .

Thustherelativerateofdecayisconstant:

y′

y= k

where k is negative. So

y′ = ky =⇒ y = y0ekt

again!

It’scustomarytoexpresstherelativerateofdecayintheunitsofhalf-life: theamountoftimeittakesapuresampletodecaytoonewhichisonlyhalfpure.

Page 27: Lesson 16: Exponential Growth and Decay

. . . . . .

Thustherelativerateofdecayisconstant:

y′

y= k

where k is negative. So

y′ = ky =⇒ y = y0ekt

again!It’scustomarytoexpresstherelativerateofdecayintheunitsofhalf-life: theamountoftimeittakesapuresampletodecaytoonewhichisonlyhalfpure.

Page 28: Lesson 16: Exponential Growth and Decay

. . . . . .

ExampleThehalf-lifeofpolonium-210isabout138days. Howmuchofa100gsampleremainsafter t years?

SolutionWehave y = y0e

kt, where y0 = y(0) = 100 grams. Then

50 = 100ek·138/365 =⇒ k = −365 · ln 2138

.

Therefore

y(t) = 100e−365·ln 2138 t = 100 · 2−365t/138.

Page 29: Lesson 16: Exponential Growth and Decay

. . . . . .

ExampleThehalf-lifeofpolonium-210isabout138days. Howmuchofa100gsampleremainsafter t years?

SolutionWehave y = y0e

kt, where y0 = y(0) = 100 grams. Then

50 = 100ek·138/365 =⇒ k = −365 · ln 2138

.

Therefore

y(t) = 100e−365·ln 2138 t = 100 · 2−365t/138.

Page 30: Lesson 16: Exponential Growth and Decay

. . . . . .

Carbon-14Dating

Theratioofcarbon-14tocarbon-12inanorganismdecaysexponentially:

p(t) = p0e−kt.

Thehalf-lifeofcarbon-14isabout5700years. Sotheequationfor p(t) is

p(t) = p0e− ln2

5700 t

Anotherwaytowritethiswouldbe

p(t) = p02−t/5700

Page 31: Lesson 16: Exponential Growth and Decay

. . . . . .

ExampleSupposeafossilisfoundwheretheratioofcarbon-14tocarbon-12is10%ofthatinalivingorganism. Howoldisthefossil?

SolutionWearelookingforthevalueof t forwhich

p(t)p(0)

= 0.1

Fromtheequationwehave

2−t/5700 = 0.1

− t5700

ln 2 = ln 0.1

t =ln 0.1ln 2

· 5700 ≈ 18, 940

Sothefossilisalmost19,000yearsold.

Page 32: Lesson 16: Exponential Growth and Decay

. . . . . .

ExampleSupposeafossilisfoundwheretheratioofcarbon-14tocarbon-12is10%ofthatinalivingorganism. Howoldisthefossil?

SolutionWearelookingforthevalueof t forwhich

p(t)p(0)

= 0.1

Fromtheequationwehave

2−t/5700 = 0.1

− t5700

ln 2 = ln 0.1

t =ln 0.1ln 2

· 5700 ≈ 18, 940

Sothefossilisalmost19,000yearsold.

Page 33: Lesson 16: Exponential Growth and Decay

. . . . . .

ExampleSupposeafossilisfoundwheretheratioofcarbon-14tocarbon-12is10%ofthatinalivingorganism. Howoldisthefossil?

SolutionWearelookingforthevalueof t forwhich

p(t)p(0)

= 0.1

Fromtheequationwehave

2−t/5700 = 0.1

− t5700

ln 2 = ln 0.1

t =ln 0.1ln 2

· 5700 ≈ 18, 940

Sothefossilisalmost19,000yearsold.

Page 34: Lesson 16: Exponential Growth and Decay

. . . . . .

ExampleSupposeafossilisfoundwheretheratioofcarbon-14tocarbon-12is10%ofthatinalivingorganism. Howoldisthefossil?

SolutionWearelookingforthevalueof t forwhich

p(t)p(0)

= 0.1

Fromtheequationwehave

2−t/5700 = 0.1

− t5700

ln 2 = ln 0.1

t =ln 0.1ln 2

· 5700 ≈ 18, 940

Sothefossilisalmost19,000yearsold.

Page 35: Lesson 16: Exponential Growth and Decay

. . . . . .

Outline

Recall

Theequation y′ = ky

Modelingsimplepopulationgrowth

ModelingradioactivedecayCarbon-14Dating

Newton’sLawofCooling

ContinuouslyCompoundedInterest

Page 36: Lesson 16: Exponential Growth and Decay

. . . . . .

Newton’sLawofCooling

I Newton’sLawofCooling statesthattherateofcoolingofanobjectisproportionaltothetemperaturedifferencebetweentheobjectanditssurroundings.

I Thisgivesusadifferentialequationoftheform

dTdt

= k(T− Ts)

(where k < 0 again).

Page 37: Lesson 16: Exponential Growth and Decay

. . . . . .

Newton’sLawofCooling

I Newton’sLawofCooling statesthattherateofcoolingofanobjectisproportionaltothetemperaturedifferencebetweentheobjectanditssurroundings.

I Thisgivesusadifferentialequationoftheform

dTdt

= k(T− Ts)

(where k < 0 again).

Page 38: Lesson 16: Exponential Growth and Decay

. . . . . .

GeneralSolutiontoNLC problems

Tosolvethis, changethevariable y(t) = T(t) − Ts. Then y′ = T′

and k(T− Ts) = ky. Theequationnowlookslike

dydt

= ky

whichwecansolve:

y = Cekt

T− Ts = Cekt

=⇒ T = Cekt + Ts

Here C = y0 = T0 − Ts.

Page 39: Lesson 16: Exponential Growth and Decay

. . . . . .

GeneralSolutiontoNLC problems

Tosolvethis, changethevariable y(t) = T(t) − Ts. Then y′ = T′

and k(T− Ts) = ky. Theequationnowlookslike

dydt

= ky

whichwecansolve:

y = Cekt

T− Ts = Cekt

=⇒ T = Cekt + Ts

Here C = y0 = T0 − Ts.

Page 40: Lesson 16: Exponential Growth and Decay

. . . . . .

GeneralSolutiontoNLC problems

Tosolvethis, changethevariable y(t) = T(t) − Ts. Then y′ = T′

and k(T− Ts) = ky. Theequationnowlookslike

dydt

= ky

whichwecansolve:

y = Cekt

T− Ts = Cekt

=⇒ T = Cekt + Ts

Here C = y0 = T0 − Ts.

Page 41: Lesson 16: Exponential Growth and Decay

. . . . . .

ExampleA hard-boiledeggat 98◦C isputinasinkof 18◦C water. After5minutes, theegg’stemperatureis 38◦C. Assumingthewaterhasnotwarmedappreciably, howmuchlongerwillittaketheeggtoreach 20◦C?

SolutionWeknowthatthetemperaturefunctiontakestheform

T(t) = (T0 − Ts)ekt + Ts = 80ekt + 18

Tofind k, plugin t = 5:

38 = T(5) = 80e5k + 18

andsolvefor k.

Page 42: Lesson 16: Exponential Growth and Decay

. . . . . .

ExampleA hard-boiledeggat 98◦C isputinasinkof 18◦C water. After5minutes, theegg’stemperatureis 38◦C. Assumingthewaterhasnotwarmedappreciably, howmuchlongerwillittaketheeggtoreach 20◦C?

SolutionWeknowthatthetemperaturefunctiontakestheform

T(t) = (T0 − Ts)ekt + Ts = 80ekt + 18

Tofind k, plugin t = 5:

38 = T(5) = 80e5k + 18

andsolvefor k.

Page 43: Lesson 16: Exponential Growth and Decay

. . . . . .

Finding k

38 = T(5) = 80e5k + 18

20 = 80e5k

14

= e5k

ln(14

)= 5k

=⇒ k = −15ln 4.

Nowweneedtosolve

20 = T(t) = 80e−t5 ln 4 + 18

for t.

Page 44: Lesson 16: Exponential Growth and Decay

. . . . . .

Finding k

38 = T(5) = 80e5k + 18

20 = 80e5k

14

= e5k

ln(14

)= 5k

=⇒ k = −15ln 4.

Nowweneedtosolve

20 = T(t) = 80e−t5 ln 4 + 18

for t.

Page 45: Lesson 16: Exponential Growth and Decay

. . . . . .

Finding t

20 = 80e−t5 ln 4 + 18

2 = 80e−t5 ln 4

140

= e−t5 ln 4

− ln 40 = − t5ln 4

=⇒ t =ln 4015 ln 4

=5 ln 40ln 4

≈ 13min

Page 46: Lesson 16: Exponential Growth and Decay

. . . . . .

ExampleA murdervictimisdiscoveredatmidnightandthetemperatureofthebodyisrecordedas 31 ◦C. Onehourlater, thetemperatureofthebodyis 29 ◦C. Assumethatthesurroundingairtemperatureremainsconstantat 21 ◦C. Calculatethevictim’stimeofdeath.(The“normal”temperatureofalivinghumanbeingisapproximately 37 ◦C.)

Page 47: Lesson 16: Exponential Growth and Decay

. . . . . .

Solution

I Lettime 0 bemidnight. Weknow T0 = 31, Ts = 21, andT(1) = 29. Wewanttoknowthe t forwhich T(t) = 37.

I Tofind k:

29 = 10ek·1 + 21 =⇒ k = ln 0.8

I Tofind t:

37 = 10et·ln(0.8) + 21

1.6 = et·ln(0.8)

t =ln(1.6)

ln(0.8)≈ −2.10 hr

Sothetimeofdeathwasjustbefore10:00pm.

Page 48: Lesson 16: Exponential Growth and Decay

. . . . . .

Solution

I Lettime 0 bemidnight. Weknow T0 = 31, Ts = 21, andT(1) = 29. Wewanttoknowthe t forwhich T(t) = 37.

I Tofind k:

29 = 10ek·1 + 21 =⇒ k = ln 0.8

I Tofind t:

37 = 10et·ln(0.8) + 21

1.6 = et·ln(0.8)

t =ln(1.6)

ln(0.8)≈ −2.10 hr

Sothetimeofdeathwasjustbefore10:00pm.

Page 49: Lesson 16: Exponential Growth and Decay

. . . . . .

Solution

I Lettime 0 bemidnight. Weknow T0 = 31, Ts = 21, andT(1) = 29. Wewanttoknowthe t forwhich T(t) = 37.

I Tofind k:

29 = 10ek·1 + 21 =⇒ k = ln 0.8

I Tofind t:

37 = 10et·ln(0.8) + 21

1.6 = et·ln(0.8)

t =ln(1.6)

ln(0.8)≈ −2.10 hr

Sothetimeofdeathwasjustbefore10:00pm.

Page 50: Lesson 16: Exponential Growth and Decay

. . . . . .

Outline

Recall

Theequation y′ = ky

Modelingsimplepopulationgrowth

ModelingradioactivedecayCarbon-14Dating

Newton’sLawofCooling

ContinuouslyCompoundedInterest

Page 51: Lesson 16: Exponential Growth and Decay

. . . . . .

Interest

I Ifanaccounthasancompoundinterestrateof r peryearcompounded n times, thenaninitialdepositof A0 dollarsbecomes

A0

(1 +

rn

)nt

after t years.

I Fordifferentamountsofcompounding, thiswillchange. Asn → ∞, weget continouslycompoundedinterest

A(t) = limn→∞

A0

(1 +

rn

)nt

= A0ert.

I Thusdollarsarelikebacteria.

Page 52: Lesson 16: Exponential Growth and Decay

. . . . . .

Interest

I Ifanaccounthasancompoundinterestrateof r peryearcompounded n times, thenaninitialdepositof A0 dollarsbecomes

A0

(1 +

rn

)nt

after t years.I Fordifferentamountsofcompounding, thiswillchange. Asn → ∞, weget continouslycompoundedinterest

A(t) = limn→∞

A0

(1 +

rn

)nt= A0ert.

I Thusdollarsarelikebacteria.

Page 53: Lesson 16: Exponential Growth and Decay

. . . . . .

Interest

I Ifanaccounthasancompoundinterestrateof r peryearcompounded n times, thenaninitialdepositof A0 dollarsbecomes

A0

(1 +

rn

)nt

after t years.I Fordifferentamountsofcompounding, thiswillchange. Asn → ∞, weget continouslycompoundedinterest

A(t) = limn→∞

A0

(1 +

rn

)nt= A0ert.

I Thusdollarsarelikebacteria.

Page 54: Lesson 16: Exponential Growth and Decay

. . . . . .

ExampleHowlongdoesittakeaninitialdepositof$100, compoundedcontinuously, todouble?

SolutionWeneed t suchthat A(t) = 200. Inotherwords

200 = 100ert =⇒ 2 = ert =⇒ ln 2 = rt =⇒ t =ln 2r

.

Forinstance, if r = 6% = 0.06, wehave

t =ln 20.06

≈ 0.690.06

=696

= 11.5 years.

Page 55: Lesson 16: Exponential Growth and Decay

. . . . . .

ExampleHowlongdoesittakeaninitialdepositof$100, compoundedcontinuously, todouble?

SolutionWeneed t suchthat A(t) = 200. Inotherwords

200 = 100ert =⇒ 2 = ert =⇒ ln 2 = rt =⇒ t =ln 2r

.

Forinstance, if r = 6% = 0.06, wehave

t =ln 20.06

≈ 0.690.06

=696

= 11.5 years.

Page 56: Lesson 16: Exponential Growth and Decay

. . . . . .

I-bankinginterviewtipoftheday

I Thefractionln 2r

can

alsobeapproximatedaseither70or72dividedbythepercentagerate(asanumberbetween0and100, notafractionbetween0and1.)

I Thisissometimescalledthe ruleof70 or ruleof72.

I 72haslotsoffactorssoit’susedmoreoften.