Gaze-Dependent Simulation of Light Perception in Virtual Reality · 2020. 10. 30. ·...

Post on 18-Jan-2021

3 views 0 download

Transcript of Gaze-Dependent Simulation of Light Perception in Virtual Reality · 2020. 10. 30. ·...

Gaze-Dependent Simulation of Light Perception

in Virtual Reality

Research Division of Computer Graphics

Institute of Visual Computing & Human-Centered Technology

TU Wien, Austria

ISMAR 2020

Laura R. Luidolt1

Michael Wimmer1

Katharina Krösl2

1TU Wien, 2VRVis Forschungs-GmbH1 2

Motivation ▪

Overview ▫

Methodology ▫

Evaluation ▫

Conclusion ▫

Introduction

L. R. Luidolt2

<brightness range

tone mapping

Motivation ▪

Overview ▫

Methodology ▫

Evaluation ▫

Conclusion ▫

Introduction

L. R. Luidolt3

Motivation ▪

Overview ▫

Methodology ▫

Evaluation ▫

Conclusion ▫

Introduction

▪ → Perceptual algorithms necessary!

▪ Medically based

▪ Account for viewing direction, pupil size

L. R. Luidolt4

Motivation ▪

Overview ▫

Methodology ▫

Evaluation ▫

Conclusion ▫

Contribution

▪ Post-processing workflow

▪ Accurate simulation of light perception in VR/AR

▪ Medically-based, perceptual effects

▪ In real-time VR/AR

▪ Following optometrist advice

▪ Eye tracking for measuring light incidence

▪ Pilot user study, comparison of

▪ Real-world low-light situation

▪ And VR simulation

L. R. Luidolt5

Motivation ▫

Overview ▪

Methodology ▫

Evaluation ▫

Conclusion ▫

L. R. Luidolt6

Visual adjustment to

bright and dark

Adaptation of rods

and cones over time

Temporal Eye Adaptation

Colorful patterns

when viewing bright

light sources

Scattering of light in

the eye

PerceptualGlare

Blurred details in low

light scenes

Rods not present in

fovea (point of

sharpest vision)

Visual Acuity Reduction

Color shift towards

blue in low light

scenes

Rods more sensitive

to longer wavelength

light than cones

Scotopic Color Vision

Based on Krawczyk et al., 2005and Ritschel et al., 2009

Motivation ▫

Overview ▪

Methodology ▫

Evaluation ▫

Conclusion ▫

L. R. Luidolt0 0 2 1,.4 -0.02 0.15 2.2 2.98

Visual adjustment to

bright and dark

Adaptation of rods

and cones over time

Temporal Eye Adaptation

Colorful patterns

when viewing bright

light sources

Scattering of light in

the eye

PerceptualGlare

Blurred details in low

light scenes

Rods not present in

fovea (point of

sharpest vision)

Visual Acuity Reduction

Color shift towards

blue in low light

scenes

Rods more sensitive

to longer wavelength

light than cones

Scotopic Color Vision

Based on Krawczyk et al., 2005and Ritschel et al., 2009

Motivation ▫

Overview ▪

Methodology ▫

Evaluation ▫

Conclusion ▫

L. R. Luidolt10

Visual adjustment to

bright and dark

Adaptation of rods

and cones over time

Temporal Eye Adaptation

Colorful patterns

when viewing bright

light sources

Scattering of light in

the eye

PerceptualGlare

Blurred details in low

light scenes

Rods not present in

fovea (point of

sharpest vision)

Visual Acuity Reduction

Color shift towards

blue in low light

scenes

Rods more sensitive

to longer wavelength

light than cones

Scotopic Color Vision

Based on Krawczyk et al., 2005and Ritschel et al., 2009

Motivation ▫

Overview ▪

Methodology ▫

Evaluation ▫

Conclusion ▫

L. R. Luidolt12

Visual adjustment to

bright and dark

Adaptation of rods

and cones over time

Temporal Eye Adaptation

Colorful patterns

when viewing bright

light sources

Scattering of light in

the eye

PerceptualGlare

Blurred details in low

light scenes

Rods not present in

fovea (point of

sharpest vision)

Visual Acuity Reduction

Color shift towards

blue in low light

scenes

Rods more sensitive

to longer wavelength

light than cones

Scotopic Color Vision

Based on Krawczyk et al., 2005and Ritschel et al., 2009

Motivation ▫

Overview ▪

Methodology ▫

Evaluation ▫

Conclusion ▫

L. R. Luidolt14

Visual adjustment to

bright and dark

Adaptation of rods

and cones over time

Temporal Eye Adaptation

Colorful patterns

when viewing bright

light sources

Scattering of light in

the eye

PerceptualGlare

Blurred details in low

light scenes

Rods not present in

fovea (point of

sharpest vision)

Visual Acuity Reduction

Color shift towards

blue in low light

scenes

Rods more sensitive

to longer wavelength

light than cones

Scotopic Color Vision

Based on Krawczyk et al., 2005and Ritschel et al., 2009

Motivation ▫

Overview ▫

Methodology ▼

Adaptation ▪

Glare ▫

VA reduction ▫

Color shift ▫

Evaluation ▫

Conclusion ▫

Temporal Eye Adaptation

L. R. Luidolt15

▪ 𝐿𝑖 = 𝐿𝑖−1 + (𝑌 − 𝐿𝑖−1) ∙

1 − 𝑒− ൗft 𝜏(𝑌)

▪ Target luminance Y

▪ Temporally filtered

luminance Li of frame i

▪ Photoreceptor adaptation

times τ

L. R. Luidolt16Image adapted fromcommons.wikimedia.org/wiki/File:Eyesection.svg

Motivation ▫

Overview ▫

Methodology ▼

Adaptation ▫

Glare ▪

VA reduction ▫

Color shift ▫

Evaluation ▫

Conclusion ▫

Perceptual Glare

L. R. Luidolt17Image adapted fromcommons.wikimedia.org/wiki/File:Eyesection.svg

Motivation ▫

Overview ▫

Methodology ▼

Adaptation ▫

Glare ▪

VA reduction ▫

Color shift ▫

Evaluation ▫

Conclusion ▫

Perceptual Glare

L. R. Luidolt18Image adapted fromcommons.wikimedia.org/wiki/File:Eyesection.svg

Motivation ▫

Overview ▫

Methodology ▼

Adaptation ▫

Glare ▪

VA reduction ▫

Color shift ▫

Evaluation ▫

Conclusion ▫

Perceptual Glare

𝑀 𝑥, 𝑦 =1

𝜆𝑑 2

1

𝑁∙ ℱ 𝑃(𝑥, 𝑦) ∙ 𝑒

i 𝜋𝜆𝑑

𝑥2+𝑦22

After Ritschel et al., 2009

Diffraction on the retina of a

single wavelength light source

Monochromatic PSF

Combination of multiple

wavelengths to simulate spectral

light

Spectral PSF

L. R. Luidolt19

Motivation ▫

Overview ▫

Methodology ▼

Adaptation ▫

Glare ▪

VA reduction ▫

Color shift ▫

Evaluation ▫

Conclusion ▫

Perceptual Glare

Diffraction on the retina of a

single wavelength light source

Monochromatic PSF

Combination of multiple

wavelengths to simulate spectral

light

Spectral PSF

L. R. Luidolt20

Motivation ▫

Overview ▫

Methodology ▼

Adaptation ▫

Glare ▪

VA reduction ▫

Color shift ▫

Evaluation ▫

Conclusion ▫

Perceptual Glare

Perceptual Glare

L. R. Luidolt21

Motivation ▫

Overview ▫

Methodology ▼

Adaptation ▫

Glare ▪

VA reduction ▫

Color shift ▫

Evaluation ▫

Conclusion ▫

· (1 - ) + ·

=

Perceptual Glare

L. R. Luidolt22

Motivation ▫

Overview ▫

Methodology ▼

Adaptation ▫

Glare ▪

VA reduction ▫

Color shift ▫

Evaluation ▫

Conclusion ▫

Visual Acuity Reduction

L. R. Luidolt23

Motivation ▫

Overview ▫

Methodology ▼

Adaptation ▫

Glare ▫

VA reduction ▪

Color shift ▫

Evaluation ▫

Conclusion ▫

▪ 𝜎 𝐿 = max(1 − 𝐿, 0)

▪ Gaussian variance 𝜎

▪ Pixel’s lightness L

Scotopic Color Vision

L. R. Luidolt24

OnOff

Motivation ▫

Overview ▫

Methodology ▼

Adaptation ▫

Glare ▫

VA reduction ▫

Color shift ▪

Evaluation ▫

Conclusion ▫

Evaluation

Qualitative user study with 5 participants

Motivation ▫

Overview ▫

Methodology ▫

Evaluation ▪

Conclusion ▫

L. R. Luidolt25

Real-time VR/AR post-processing workflow

Using eye tracking

Based on medical research

Pilot user study

ConclusionMotivation ▫

Overview ▫

Methodology ▫

Evaluation ▫

Conclusion ▪

L. R. Luidolt26

▪ temporal eye adaptation▪ perceptual glare▪ visual acuity reduction▪ scotopic color vision

Related article: “CatARact: Simulating Cataracts in Augmented Reality”, Krösl et al., 2020

Laura R. Luidolt, luidolt@cg.tuwien.ac.at

Michael Wimmer, wimmer@cg.tuwien.ac.at

Katharina Krösl, kroesl@vrvis.at

Gaze-Dependent Simulation of Light

Perception in Virtual Reality

Than

k yo

u f

or

you

r at

ten

tio

n!