DNA Capture Into Solid-State Nanopores€¦ · Using osmotic pressure to enhance DNA capture Rate...

Post on 17-Aug-2020

8 views 0 download

Transcript of DNA Capture Into Solid-State Nanopores€¦ · Using osmotic pressure to enhance DNA capture Rate...

DNA Capture Into Solid‐State Nanopores

Meni WanunuMeni Wanunu

ERBM4, Liege, 2008

Solid‐state nanopores for single‐molecule (SM) analysis

• Chemically robust (pH, solvents, ionic strengths, oxidizers, etc.)

• Physically robust (vibrations, pressure changes)

• Tunable size and interface

• Fixed coordinates (pore position always the same)

Capture rate determines sensitivity

h d f d f “ l l l ” lThousands of events are required for “single‐molecule” analysis

α‐hemolysin solid‐state pores

Song, 1996 Kim, 2006

Meller, 2003Chen, 2004,

DNA capture displays non‐obvious behavior3 5 nm SiN nanopore

Voltage DNA size

3.5 nm SiN nanopore

Temperature

1 nM 400 bp DNA

400 bp1,200 bp6,000 bp

D 1~η∝ RD 1

DdcRc π2≠

gR

Q: How can we improve capture efficiency?

A: Pressure!

Using osmotic pressure to enhance DNA captureRate enhanced with sucrose or PEG in trans chamber

PEG 12,000water

30% sucrose 

ΔP ≈ (RT vw ) ln(χ cis χ trans)wv = molar volume of water

χ = water molar fraction

See also: Gu et al, PNAS, 2003

Osmotic gradient causes fluid “bathtub” effect

320=IcR v

c ICapture rate in drain with flow

For a hemispherical point absorber (no bias):

321 −− ec vICapture rate in drain with flow 

DIr vc π43= Defined capture radius

F l i (i β 0)

PLREPLI d

pv Δ≈+Δ=η

σπβκσ8

4

For purely osmotic case (i.e., β=0):

σ: osmolyte filtration coefficient

water

σ: osmolyte filtration coefficient,30% sucrose β: electro‐osmotic flow coefficient,

κ: pore conductivity

But: Sucrose ≤1 nmPore: 3.5 nm

There is always a compromise…

Increasing the Voltage:

• Increases capture rate, decreases signal duration

Decreasing temperature:

• Decreases ion mobility degrading the signal• Decreases ion mobility, degrading the signal

Addition of osmolytes:

• Increases viscosity, which decreases ion mobility

• Results in frequent pore clogging

• Limited examples of osmolytes, particularly for larger pores

Q2: How else can we improve capture efficiency?

A2: Salt gradient (in the right direction) 

Salt gradient (in the right direction) enhances DNA capture

1M/1M 0.2M/1M 1M/0.2M

⎥⎦

⎤⎢⎣

⎡−= −

trans

ciso Cl

ClF

RTV log⎦⎣

Capture rate still scales with DNA concentration 

Experiments reveal Poissonian δt distributions, linearity of Rc with [DNA]:

Enhancement not due to multiple blockades from same molecule

Picomolar/attomole detection of 8,000 bp

38 pM 8,000 bp

1 3 l ll

b

1‐3 μl cell

3.8 pM 8,000 bp

Q3: What about the translocation dynamics?

Translocations are slower with lower salt in cis chamber!

It’s not the gradient, it’s the ionic strength

20.1ms

8,000 bp

8.1ms

7.9ms

Going from 1M to 0 2M:Going from 1M to 0.2M:• 40% change for 400 bp• 280% change for 2,000 bp!

Summary

Capture in SiN pores: 

• V, T dependence suggest diffusion isn’t the rate‐limiting step, but the time near 

the pore!the pore!

Osmotic pressure: 

• enhances DNA capture rate

• can be explained by osmotically‐driven convection

Salt gradient

d l d h d h• dynamics suggest electrostatic interactions dominate with reducing ionic strength

• capture rate is enhanced dramatically

This enables

• attomole detection

• working at physiological conditions

Acknowledgements

BU Harvard

Organizers

Amit Meller

Jason Sutin

Gautam Soni

David Nelson

Greg Lakatos

Center for Nanoscale Systems (CNS)Gautam Soni

Ben McNally

Alon Singer

Allison Squires

Center for Nanoscale Systems (CNS)

The rest of the Meller group

wanunu@gmail.com

ERBM4 Boncelles BE, 2008