Approximation Techniques for Special Eigenvalue Problems ... fileApproximation Techniques for...

Post on 16-Oct-2019

26 views 0 download

Transcript of Approximation Techniques for Special Eigenvalue Problems ... fileApproximation Techniques for...

Technische Universitat Munchen

Approximation Techniques for SpecialEigenvalue Problems

Konrad Waldherr

June 2011

Joint work with Thomas Huckle

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 1

Technische Universitat Munchen

Outline1 Problem Setting: Computation of Ground States

Physical ModelMathematical Model

2 Data-Sparse Representation Formats

3 Matrix Product StatesFormalismComputations with MPSUniqueness of MPSMinimization in terms of MPS

4 Subspace Methods in Terms of MPS

5 Numerical results

6 Conclusions

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 2

Technische Universitat Munchen

Problem: Computation of Ground StatesGiven:

• Physical system: 1D spin chain with N particles

1 2 3 4 5

• Interaction within the system (e.g. nearest-neighbor interaction)

1 2 3 4 5

• External interaction (e.g. exterior magnetic field)

1 2 3 4 5

Goal:• Find ground state, i.e. the state related to the smallest energy of

the system.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 3

Technische Universitat Munchen

Problem: Computation of Ground StatesGiven:

• Physical system: 1D spin chain with N particles

1 2 3 4 5

• Interaction within the system (e.g. nearest-neighbor interaction)

1 2 3 4 5

• External interaction (e.g. exterior magnetic field)

1 2 3 4 5

Goal:• Find ground state, i.e. the state related to the smallest energy of

the system.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 3

Technische Universitat Munchen

Problem: Computation of Ground StatesGiven:

• Physical system: 1D spin chain with N particles

1 2 3 4 5

• Interaction within the system (e.g. nearest-neighbor interaction)

1 2 3 4 5

• External interaction (e.g. exterior magnetic field)

1 2 3 4 5

Goal:• Find ground state, i.e. the state related to the smallest energy of

the system.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 3

Technische Universitat Munchen

Problem: Computation of Ground StatesGiven:

• Physical system: 1D spin chain with N particles

1 2 3 4 5

• Interaction within the system (e.g. nearest-neighbor interaction)

1 2 3 4 5

• External interaction (e.g. exterior magnetic field)

1 2 3 4 5

Goal:• Find ground state, i.e. the state related to the smallest energy of

the system.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 3

Technische Universitat Munchen

Mathematical Model• Any state of the system is represented by a vector x ∈ C2N

.• The physical system can be described by the HamiltonianH ∈ C2N×2N

.

• The Hamiltonian may be formulated as a weighted sum ofKronecker products of Pauli and identity matrices.

• Pauli matrices:

σx =

(0 11 0

), σy =

(0 −ii 0

), σz =

(1 00 −1

).

• Kronecker product:

A⊗B :=

a11 . . . a1n

.... . .

...am1 . . . amn

⊗B =

a11B . . . a1nB...

. . ....

am1B . . . amnB

• Then, the ground state corresponds to the eigenvector related

to the smallest eigenvalue.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 4

Technische Universitat Munchen

Mathematical Model• Any state of the system is represented by a vector x ∈ C2N

.• The physical system can be described by the HamiltonianH ∈ C2N×2N

.• The Hamiltonian may be formulated as a weighted sum of

Kronecker products of Pauli and identity matrices.• Pauli matrices:

σx =

(0 11 0

), σy =

(0 −ii 0

), σz =

(1 00 −1

).

• Kronecker product:

A⊗B :=

a11 . . . a1n

.... . .

...am1 . . . amn

⊗B =

a11B . . . a1nB...

. . ....

am1B . . . amnB

• Then, the ground state corresponds to the eigenvector relatedto the smallest eigenvalue.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 4

Technische Universitat Munchen

Mathematical Model• Any state of the system is represented by a vector x ∈ C2N

.• The physical system can be described by the HamiltonianH ∈ C2N×2N

.• The Hamiltonian may be formulated as a weighted sum of

Kronecker products of Pauli and identity matrices.• Pauli matrices:

σx =

(0 11 0

), σy =

(0 −ii 0

), σz =

(1 00 −1

).

• Kronecker product:

A⊗B :=

a11 . . . a1n

.... . .

...am1 . . . amn

⊗B =

a11B . . . a1nB...

. . ....

am1B . . . amnB

• Then, the ground state corresponds to the eigenvector related

to the smallest eigenvalue.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 4

Technische Universitat Munchen

Example: Ising-type Hamiltonian

1 2 3 4 5

H = σz ⊗ σz ⊗ I ⊗ I ⊗ I

+ I ⊗ σz ⊗ σz ⊗ I ⊗ I+ I ⊗ I ⊗ σz ⊗ σz ⊗ I+ I ⊗ I ⊗ I ⊗ σz ⊗ σz+ σx ⊗ I ⊗ I ⊗ I ⊗ I+ I ⊗ σx ⊗ I ⊗ I ⊗ I+ I ⊗ I ⊗ σx ⊗ I ⊗ I+ I ⊗ I ⊗ I ⊗ σx ⊗ I+ I ⊗ I ⊗ I ⊗ I ⊗ σx

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 5

Technische Universitat Munchen

Example: Ising-type Hamiltonian

1 2 3 4 5

H = σz ⊗ σz ⊗ I ⊗ I ⊗ I+ I ⊗ σz ⊗ σz ⊗ I ⊗ I

+ I ⊗ I ⊗ σz ⊗ σz ⊗ I+ I ⊗ I ⊗ I ⊗ σz ⊗ σz+ σx ⊗ I ⊗ I ⊗ I ⊗ I+ I ⊗ σx ⊗ I ⊗ I ⊗ I+ I ⊗ I ⊗ σx ⊗ I ⊗ I+ I ⊗ I ⊗ I ⊗ σx ⊗ I+ I ⊗ I ⊗ I ⊗ I ⊗ σx

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 5

Technische Universitat Munchen

Example: Ising-type Hamiltonian

1 2 3 4 5

H = σz ⊗ σz ⊗ I ⊗ I ⊗ I+ I ⊗ σz ⊗ σz ⊗ I ⊗ I+ I ⊗ I ⊗ σz ⊗ σz ⊗ I

+ I ⊗ I ⊗ I ⊗ σz ⊗ σz+ σx ⊗ I ⊗ I ⊗ I ⊗ I+ I ⊗ σx ⊗ I ⊗ I ⊗ I+ I ⊗ I ⊗ σx ⊗ I ⊗ I+ I ⊗ I ⊗ I ⊗ σx ⊗ I+ I ⊗ I ⊗ I ⊗ I ⊗ σx

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 5

Technische Universitat Munchen

Example: Ising-type Hamiltonian

1 2 3 4 5

H = σz ⊗ σz ⊗ I ⊗ I ⊗ I+ I ⊗ σz ⊗ σz ⊗ I ⊗ I+ I ⊗ I ⊗ σz ⊗ σz ⊗ I+ I ⊗ I ⊗ I ⊗ σz ⊗ σz

+ σx ⊗ I ⊗ I ⊗ I ⊗ I+ I ⊗ σx ⊗ I ⊗ I ⊗ I+ I ⊗ I ⊗ σx ⊗ I ⊗ I+ I ⊗ I ⊗ I ⊗ σx ⊗ I+ I ⊗ I ⊗ I ⊗ I ⊗ σx

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 5

Technische Universitat Munchen

Example: Ising-type Hamiltonian

1 2 3 4 5

H = σz ⊗ σz ⊗ I ⊗ I ⊗ I+ I ⊗ σz ⊗ σz ⊗ I ⊗ I+ I ⊗ I ⊗ σz ⊗ σz ⊗ I+ I ⊗ I ⊗ I ⊗ σz ⊗ σz+ σx ⊗ I ⊗ I ⊗ I ⊗ I

+ I ⊗ σx ⊗ I ⊗ I ⊗ I+ I ⊗ I ⊗ σx ⊗ I ⊗ I+ I ⊗ I ⊗ I ⊗ σx ⊗ I+ I ⊗ I ⊗ I ⊗ I ⊗ σx

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 5

Technische Universitat Munchen

Example: Ising-type Hamiltonian

1 2 3 4 5

H = σz ⊗ σz ⊗ I ⊗ I ⊗ I+ I ⊗ σz ⊗ σz ⊗ I ⊗ I+ I ⊗ I ⊗ σz ⊗ σz ⊗ I+ I ⊗ I ⊗ I ⊗ σz ⊗ σz+ σx ⊗ I ⊗ I ⊗ I ⊗ I+ I ⊗ σx ⊗ I ⊗ I ⊗ I

+ I ⊗ I ⊗ σx ⊗ I ⊗ I+ I ⊗ I ⊗ I ⊗ σx ⊗ I+ I ⊗ I ⊗ I ⊗ I ⊗ σx

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 5

Technische Universitat Munchen

Example: Ising-type Hamiltonian

1 2 3 4 5

H = σz ⊗ σz ⊗ I ⊗ I ⊗ I+ I ⊗ σz ⊗ σz ⊗ I ⊗ I+ I ⊗ I ⊗ σz ⊗ σz ⊗ I+ I ⊗ I ⊗ I ⊗ σz ⊗ σz+ σx ⊗ I ⊗ I ⊗ I ⊗ I+ I ⊗ σx ⊗ I ⊗ I ⊗ I+ I ⊗ I ⊗ σx ⊗ I ⊗ I

+ I ⊗ I ⊗ I ⊗ σx ⊗ I+ I ⊗ I ⊗ I ⊗ I ⊗ σx

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 5

Technische Universitat Munchen

Example: Ising-type Hamiltonian

1 2 3 4 5

H = σz ⊗ σz ⊗ I ⊗ I ⊗ I+ I ⊗ σz ⊗ σz ⊗ I ⊗ I+ I ⊗ I ⊗ σz ⊗ σz ⊗ I+ I ⊗ I ⊗ I ⊗ σz ⊗ σz+ σx ⊗ I ⊗ I ⊗ I ⊗ I+ I ⊗ σx ⊗ I ⊗ I ⊗ I+ I ⊗ I ⊗ σx ⊗ I ⊗ I+ I ⊗ I ⊗ I ⊗ σx ⊗ I

+ I ⊗ I ⊗ I ⊗ I ⊗ σx

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 5

Technische Universitat Munchen

Example: Ising-type Hamiltonian

1 2 3 4 5

H = σz ⊗ σz ⊗ I ⊗ I ⊗ I+ I ⊗ σz ⊗ σz ⊗ I ⊗ I+ I ⊗ I ⊗ σz ⊗ σz ⊗ I+ I ⊗ I ⊗ I ⊗ σz ⊗ σz+ σx ⊗ I ⊗ I ⊗ I ⊗ I+ I ⊗ σx ⊗ I ⊗ I ⊗ I+ I ⊗ I ⊗ σx ⊗ I ⊗ I+ I ⊗ I ⊗ I ⊗ σx ⊗ I+ I ⊗ I ⊗ I ⊗ I ⊗ σx

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 5

Technische Universitat Munchen

Problem Setting• General formulation of the Hamiltonian H:

H =

M∑k=1

αkQ(k)1 ⊗ · · · ⊗Q(k)

N , Q(k)i ∈ {id, σx, σy, σz} ⊂ C2×2

• Variational ansatz: Minimization of the Rayleigh quotient:

minx 6=0

xHHx

xHx

• Problems:

• the vector space V = C2N

grows exponentially in N ,• the problem is not generic.

• Idea: Find data-sparse representation formats that allow toovercome the curse of dimensionality.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 6

Technische Universitat Munchen

Problem Setting• General formulation of the Hamiltonian H:

H =

M∑k=1

αkQ(k)1 ⊗ · · · ⊗Q(k)

N , Q(k)i ∈ {id, σx, σy, σz} ⊂ C2×2

• Variational ansatz: Minimization of the Rayleigh quotient:

minx 6=0

xHHx

xHx

• Problems:

• the vector space V = C2N

grows exponentially in N ,• the problem is not generic.

• Idea: Find data-sparse representation formats that allow toovercome the curse of dimensionality.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 6

Technische Universitat Munchen

Problem Setting• General formulation of the Hamiltonian H:

H =

M∑k=1

αkQ(k)1 ⊗ · · · ⊗Q(k)

N , Q(k)i ∈ {id, σx, σy, σz} ⊂ C2×2

• Variational ansatz: Minimization of the Rayleigh quotient:

minx 6=0

xHHx

xHx

• Problems:• the vector space V = C2N

grows exponentially in N ,• the problem is not generic.

• Idea: Find data-sparse representation formats that allow toovercome the curse of dimensionality.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 6

Technische Universitat Munchen

Problem Setting• General formulation of the Hamiltonian H:

H =

M∑k=1

αkQ(k)1 ⊗ · · · ⊗Q(k)

N , Q(k)i ∈ {id, σx, σy, σz} ⊂ C2×2

• Variational ansatz: Minimization of the Rayleigh quotient:

minx 6=0

xHHx

xHx

• Problems:• the vector space V = C2N

grows exponentially in N ,• the problem is not generic.

• Idea: Find data-sparse representation formats that allow toovercome the curse of dimensionality.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 6

Technische Universitat Munchen

Data-sparse representation formats• The data-sparse format has to allow for

1. proper reproduction of the physical setting (e.g.nearest-neighbor interaction),

2. representations that are only polynomial in N ,3. good approximation properties,4. efficient evaluation of the Rayleigh quotient

minx∈U

xHHx

xHx(1)

=⇒ efficient computation of both Hx and yHx.

• Problem setting:• Not: Find a data-sparse format of a given data structure• But: Use the data-sparse format as an ansatz for the

minimization of the Rayleigh quotient (1).

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 7

Technische Universitat Munchen

Data-sparse representation formats• The data-sparse format has to allow for

1. proper reproduction of the physical setting (e.g.nearest-neighbor interaction),

2. representations that are only polynomial in N ,3. good approximation properties,4. efficient evaluation of the Rayleigh quotient

minx∈U

xHHx

xHx(1)

=⇒ efficient computation of both Hx and yHx.• Problem setting:

• Not: Find a data-sparse format of a given data structure• But: Use the data-sparse format as an ansatz for the

minimization of the Rayleigh quotient (1).

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 7

Technische Universitat Munchen

Tensor Decompositions• Any state x ∈ C2N

may be considered as a N th order tensor:

x = (xi1i2...iN )ij=0,1

i1 i2 iN

• Goal: Find convenient tensor decomposition as ansatz for (1)• Classical decomposition formats:

• Tucker decomposition,• Canonical decomposition.

• Physically motivated formats:• Matrix Product States (MPS) for 1D problems,• Projected Entangled Pair States (PEPS) for 2D problems.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 8

Technische Universitat Munchen

Tensor Decompositions• Any state x ∈ C2N

may be considered as a N th order tensor:

x = (xi1i2...iN )ij=0,1

i1 i2 iN

• Goal: Find convenient tensor decomposition as ansatz for (1)

• Classical decomposition formats:• Tucker decomposition,• Canonical decomposition.

• Physically motivated formats:• Matrix Product States (MPS) for 1D problems,• Projected Entangled Pair States (PEPS) for 2D problems.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 8

Technische Universitat Munchen

Tensor Decompositions• Any state x ∈ C2N

may be considered as a N th order tensor:

x = (xi1i2...iN )ij=0,1

i1 i2 iN

• Goal: Find convenient tensor decomposition as ansatz for (1)• Classical decomposition formats:

• Tucker decomposition,• Canonical decomposition.

• Physically motivated formats:• Matrix Product States (MPS) for 1D problems,• Projected Entangled Pair States (PEPS) for 2D problems.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 8

Technische Universitat Munchen

Tensor Decompositions• Any state x ∈ C2N

may be considered as a N th order tensor:

x = (xi1i2...iN )ij=0,1

i1 i2 iN

• Goal: Find convenient tensor decomposition as ansatz for (1)• Classical decomposition formats:

• Tucker decomposition,• Canonical decomposition.

• Physically motivated formats:• Matrix Product States (MPS) for 1D problems,• Projected Entangled Pair States (PEPS) for 2D problems.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 8

Technische Universitat Munchen

Decompositions of a tensor• Tucker decomposition:

Not advantageous in our case of a binary tensor.

• Canonical decomposition (CP):

Allows generalizations in several ways: (see [Huckle 2011])• blockings and mixed blockings,• permutations.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 9

Technische Universitat Munchen

Decompositions of a tensor• Tucker decomposition:

Not advantageous in our case of a binary tensor.• Canonical decomposition (CP):

Allows generalizations in several ways: (see [Huckle 2011])• blockings and mixed blockings,• permutations.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 9

Technische Universitat Munchen

Matrix Product States (MPS)• Consider again the linear 1D spin chain.

b b b b b

site j

• Each site j is related to a matrix pair A(0)j , A

(1)j ∈ CDj×Dj+1

b b b b b

A(ij)j

• For i = (i1, i2, . . . , iN )2, the vector component xi is given by

xi = xi1i2...iN = tr(A

(i1)1 ·A(i2)

2 · · ·A(iN )N

)

b b b b b

ij−1 ij ij+1 ij+2 ij+3

mj−1 mj mj+1 mj+2

(1.X)

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 10

Technische Universitat Munchen

Matrix Product States (MPS)• Consider again the linear 1D spin chain.

b b b b b

site j

• Each site j is related to a matrix pair A(0)j , A

(1)j ∈ CDj×Dj+1

b b b b b

A(ij)j

• For i = (i1, i2, . . . , iN )2, the vector component xi is given by

xi = xi1i2...iN = tr(A

(i1)1 ·A(i2)

2 · · ·A(iN )N

)

b b b b b

ij−1 ij ij+1 ij+2 ij+3

mj−1 mj mj+1 mj+2

(1.X)

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 10

Technische Universitat Munchen

Matrix Product States (MPS)• Consider again the linear 1D spin chain.

b b b b b

site j

• Each site j is related to a matrix pair A(0)j , A

(1)j ∈ CDj×Dj+1

b b b b b

A(ij)j

• For i = (i1, i2, . . . , iN )2, the vector component xi is given by

xi = xi1i2...iN = tr(A

(i1)1 ·A(i2)

2 · · ·A(iN )N

)

b b b b b

ij−1 ij ij+1 ij+2 ij+3

mj−1 mj mj+1 mj+2

(1.X)

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 10

Technische Universitat Munchen

Matrix Product States• Thus, the vector x may be written as

x =

2N∑i=1

xiei =∑

i1,...,ip

tr(A

(i1)1 ·A(i2)

2 · · ·A(iN )N

)︸ ︷︷ ︸

=xi=xi1,...,iN

ei1i2...iN︸ ︷︷ ︸=ei

.

• Binary version of the Tensor Train concept. (see [Oseledets andTyrtyshnikov, 2009])

• MPS representation requires 2ND2 instead of 2N entries. (2.X)• Any state can be represented exactly by an MPS (but at the cost

of exponentially growing matrix dimension D),• For approximation problems, D has to scale only polynomially.

(3.X)

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 11

Technische Universitat Munchen

Matrix Product States• Thus, the vector x may be written as

x =

2N∑i=1

xiei =∑

i1,...,ip

tr(A

(i1)1 ·A(i2)

2 · · ·A(iN )N

)︸ ︷︷ ︸

=xi=xi1,...,iN

ei1i2...iN︸ ︷︷ ︸=ei

.

• Binary version of the Tensor Train concept. (see [Oseledets andTyrtyshnikov, 2009])

• MPS representation requires 2ND2 instead of 2N entries. (2.X)

• Any state can be represented exactly by an MPS (but at the costof exponentially growing matrix dimension D),

• For approximation problems, D has to scale only polynomially.(3.X)

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 11

Technische Universitat Munchen

Matrix Product States• Thus, the vector x may be written as

x =

2N∑i=1

xiei =∑

i1,...,ip

tr(A

(i1)1 ·A(i2)

2 · · ·A(iN )N

)︸ ︷︷ ︸

=xi=xi1,...,iN

ei1i2...iN︸ ︷︷ ︸=ei

.

• Binary version of the Tensor Train concept. (see [Oseledets andTyrtyshnikov, 2009])

• MPS representation requires 2ND2 instead of 2N entries. (2.X)• Any state can be represented exactly by an MPS (but at the cost

of exponentially growing matrix dimension D),• For approximation problems, D has to scale only polynomially.

(3.X)

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 11

Technische Universitat Munchen

Matrix Product StatesExample

• Consider the case N = 2 and D = 1:

ψ =

1∑i1,i2=0

(a

(i1)1 a

(i2)2

)︸ ︷︷ ︸

=xi=xi1i2

(ei1 ⊗ ei2)︸ ︷︷ ︸=ei=ei1i2

=

a

(0)1 a

(0)2

a(0)1 a

(1)2

a(1)1 a

(0)2

a(1)1 a

(1)2

!=

x1

x2

x3

x4

• For exact representation:

x1x4 = x2x3

• e1, e2, e3, e4 can be represented,• However, e1 + e4 = (1, 0, 0, 1)T cannot be represented.

• MPS are not closed under addition!

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 12

Technische Universitat Munchen

Matrix Product StatesExample

• Consider the case N = 2 and D = 1:

ψ =

1∑i1,i2=0

(a

(i1)1 a

(i2)2

)︸ ︷︷ ︸

=xi=xi1i2

(ei1 ⊗ ei2)︸ ︷︷ ︸=ei=ei1i2

=

a

(0)1 a

(0)2

a(0)1 a

(1)2

a(1)1 a

(0)2

a(1)1 a

(1)2

!=

x1

x2

x3

x4

• For exact representation:

x1x4 = x2x3

• e1, e2, e3, e4 can be represented,• However, e1 + e4 = (1, 0, 0, 1)T cannot be represented.

• MPS are not closed under addition!

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 12

Technische Universitat Munchen

Matrix Product StatesExample

• Consider the case N = 2 and D = 1:

ψ =

1∑i1,i2=0

(a

(i1)1 a

(i2)2

)︸ ︷︷ ︸

=xi=xi1i2

(ei1 ⊗ ei2)︸ ︷︷ ︸=ei=ei1i2

=

a

(0)1 a

(0)2

a(0)1 a

(1)2

a(1)1 a

(0)2

a(1)1 a

(1)2

!=

x1

x2

x3

x4

• For exact representation:

x1x4 = x2x3

• e1, e2, e3, e4 can be represented,• However, e1 + e4 = (1, 0, 0, 1)T cannot be represented.

• MPS are not closed under addition!

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 12

Technische Universitat Munchen

Matrix Product StatesExample

• Consider the case N = 2 and D = 1:

ψ =

1∑i1,i2=0

(a

(i1)1 a

(i2)2

)︸ ︷︷ ︸

=xi=xi1i2

(ei1 ⊗ ei2)︸ ︷︷ ︸=ei=ei1i2

=

a

(0)1 a

(0)2

a(0)1 a

(1)2

a(1)1 a

(0)2

a(1)1 a

(1)2

!=

x1

x2

x3

x4

• For exact representation:

x1x4 = x2x3

• e1, e2, e3, e4 can be represented,• However, e1 + e4 = (1, 0, 0, 1)T cannot be represented.

• MPS are not closed under addition!

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 12

Technische Universitat Munchen

Computations with MPS• Sum of two MPS vectors

x =∑

i1,...,iN

tr(A(i1)1 A

(i2)2 . . . A

(iN )N )ei1...iN

y =∑

i1,...,iN

tr(B(i1)1 B

(i2)2 . . . B

(iN )N )ei1...iN

x+ y =∑i1,...,iN

tr[(A

(i1)1 0

0 B(i1)1

)(A

(i2)2 0

0 B(i2)2

)︸ ︷︷ ︸

D′×D′

. . .

(A

(iN )N 0

0 B(iN )N

)]ei1...iN

• Summing MPS vectors leads to an augmentation of the matrixsizes D → D′.

• Use compression techniques to keep the size of the MPSmatrices constant.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 13

Technische Universitat Munchen

Computations with MPS• Sum of two MPS vectors

x =∑

i1,...,iN

tr(A(i1)1 A

(i2)2 . . . A

(iN )N )ei1...iN

y =∑

i1,...,iN

tr(B(i1)1 B

(i2)2 . . . B

(iN )N )ei1...iN

x+ y =∑i1,...,iN

tr[(A

(i1)1 0

0 B(i1)1

)(A

(i2)2 0

0 B(i2)2

)︸ ︷︷ ︸

D′×D′

. . .

(A

(iN )N 0

0 B(iN )N

)]ei1...iN

• Summing MPS vectors leads to an augmentation of the matrixsizes D → D′.

• Use compression techniques to keep the size of the MPSmatrices constant.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 13

Technische Universitat Munchen

Computations with MPS• Sum of two MPS vectors

x =∑

i1,...,iN

tr(A(i1)1 A

(i2)2 . . . A

(iN )N )ei1...iN

y =∑

i1,...,iN

tr(B(i1)1 B

(i2)2 . . . B

(iN )N )ei1...iN

x+ y =∑i1,...,iN

tr[(A

(i1)1 0

0 B(i1)1

)(A

(i2)2 0

0 B(i2)2

)︸ ︷︷ ︸

D′×D′

. . .

(A

(iN )N 0

0 B(iN )N

)]ei1...iN

• Summing MPS vectors leads to an augmentation of the matrixsizes D → D′.

• Use compression techniques to keep the size of the MPSmatrices constant.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 13

Technische Universitat Munchen

Computations with MPS• Inner products

xHy =∑

i1,...,iN

xi1,...,iN︷ ︸︸ ︷(tr(A

(i1)1 · · · A(iN )

N

))·

yi1,...,iN︷ ︸︸ ︷(tr(B

(i1)1 · · ·B(iN )

N

))=∑ij

∑kj

a(i1)1;k1,k2

· · · a(iN )N ;kN ,k1

∑mj

b(i1)1;m1,m2

· · · b(iN )N ;mN ,m1

Find an efficient ordering of the summations!• Matrix × vector

Hx =

(M∑k=1

αkQ(k)1 ⊗ · · · ⊗Q(k)

N

) ∑i1,...,iN

tr(A(i1)1 . . . A

(iN )N )ei1...iN

=

M∑k=1

y(k)MPS

=⇒ 4. XK. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 14

Technische Universitat Munchen

Uniqueness of MPS• The MPS formalism is not unique:∑

i1,...,iN

tr(A

(i1)1 ·A(i2)

2 · · ·A(iN )N

)ei1,...,iN

=∑

i1,...,iN

tr(

(A(i1)1 M−1

2 )(M2A(i2)2 M−1

3 ) · · · (MNA(iN )N )

)ei1,...,iN

• Replace the matrices A(0)j , A

(1)j by parts of unitary matrices using

the SVD: (A

(0)j

A(1)j

)=

(U

(0)j

U(1)j

)ΣjVj .

• Multiply the ΣjVj parts on the right neighbour.• Replace all A matrices by U matrices, up to one.• This remaining factor is considered to be optimized.• Leads to better convergence properties and numerical stability.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 15

Technische Universitat Munchen

Uniqueness of MPS• The MPS formalism is not unique:∑

i1,...,iN

tr(A

(i1)1 ·A(i2)

2 · · ·A(iN )N

)ei1,...,iN

=∑

i1,...,iN

tr(

(A(i1)1 M−1

2 )(M2A(i2)2 M−1

3 ) · · · (MNA(iN )N )

)ei1,...,iN

• Replace the matrices A(0)j , A

(1)j by parts of unitary matrices using

the SVD: (A

(0)j

A(1)j

)=

(U

(0)j

U(1)j

)ΣjVj .

• Multiply the ΣjVj parts on the right neighbour.• Replace all A matrices by U matrices, up to one.• This remaining factor is considered to be optimized.• Leads to better convergence properties and numerical stability.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 15

Technische Universitat Munchen

Uniqueness of MPS• The MPS formalism is not unique:∑

i1,...,iN

tr(A

(i1)1 ·A(i2)

2 · · ·A(iN )N

)ei1,...,iN

=∑

i1,...,iN

tr(

(A(i1)1 M−1

2 )(M2A(i2)2 M−1

3 ) · · · (MNA(iN )N )

)ei1,...,iN

• Replace the matrices A(0)j , A

(1)j by parts of unitary matrices using

the SVD: (A

(0)j

A(1)j

)=

(U

(0)j

U(1)j

)ΣjVj .

• Multiply the ΣjVj parts on the right neighbour.

• Replace all A matrices by U matrices, up to one.• This remaining factor is considered to be optimized.• Leads to better convergence properties and numerical stability.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 15

Technische Universitat Munchen

Uniqueness of MPS• The MPS formalism is not unique:∑

i1,...,iN

tr(A

(i1)1 ·A(i2)

2 · · ·A(iN )N

)ei1,...,iN

=∑

i1,...,iN

tr(

(A(i1)1 M−1

2 )(M2A(i2)2 M−1

3 ) · · · (MNA(iN )N )

)ei1,...,iN

• Replace the matrices A(0)j , A

(1)j by parts of unitary matrices using

the SVD: (A

(0)j

A(1)j

)=

(U

(0)j

U(1)j

)ΣjVj .

• Multiply the ΣjVj parts on the right neighbour.• Replace all A matrices by U matrices, up to one.• This remaining factor is considered to be optimized.

• Leads to better convergence properties and numerical stability.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 15

Technische Universitat Munchen

Uniqueness of MPS• The MPS formalism is not unique:∑

i1,...,iN

tr(A

(i1)1 ·A(i2)

2 · · ·A(iN )N

)ei1,...,iN

=∑

i1,...,iN

tr(

(A(i1)1 M−1

2 )(M2A(i2)2 M−1

3 ) · · · (MNA(iN )N )

)ei1,...,iN

• Replace the matrices A(0)j , A

(1)j by parts of unitary matrices using

the SVD: (A

(0)j

A(1)j

)=

(U

(0)j

U(1)j

)ΣjVj .

• Multiply the ΣjVj parts on the right neighbour.• Replace all A matrices by U matrices, up to one.• This remaining factor is considered to be optimized.• Leads to better convergence properties and numerical stability.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 15

Technische Universitat Munchen

Computation of the Ground StateHow to calculate the smallest eigenvalue of the Hamiltonian H?

1. Variational ansatz:

minxMPS

xHMPSHxMPS

xHMPSxMPS

• Find optimal matrix pairs A(ij)j for all sites j

• Use Alternating Least Squares: Keep all matrix pairs up toone fixed and optimize the remaining one

2. New idea: Use subspace iteration

minx∈Um

xHHx

xHx

• Find optimal solution in the subspace Um

• Um is defined by MPS vectors

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 16

Technische Universitat Munchen

Computation of the Ground StateHow to calculate the smallest eigenvalue of the Hamiltonian H?

1. Variational ansatz:

minxMPS

xHMPSHxMPS

xHMPSxMPS

• Find optimal matrix pairs A(ij)j for all sites j

• Use Alternating Least Squares: Keep all matrix pairs up toone fixed and optimize the remaining one

2. New idea: Use subspace iteration

minx∈Um

xHHx

xHx

• Find optimal solution in the subspace Um

• Um is defined by MPS vectors

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 16

Technische Universitat Munchen

Minimization Algorithm in terms of MPS• Start with initial guesses for the A(ij)

j matrices.

• Replace A(ij)j by U (ij)

j up to A(i1)1 .

• Consider all U matrices as fixed and optimize X1 = A1:

minX1

(∑ij

tr(X

(i1)1 U

(i2)2 · · ·U(iN )

N

)ei

)H

H

(∑ij

tr(X

(i1)1 U

(i2)2 · · ·U(iN )

N

)ei

)(∑

ij

tr(X

(i1)1 U

(i2)2 · · ·U(iN )

N

)ei

)H(∑ij

tr(X

(i1)1 U

(i2)2 · · ·U(iN )

N

)ei

)

= minX1

X1HR1X1

X1HX1

with effective Hamiltonian R1

• =⇒ dense eigenvalue problem for the (2D2 × 2D2) matrix R1.• Orthogonalize the solution and continue with the right neighbor.

Modifications of this algorithm lead to the DMRG method.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 17

Technische Universitat Munchen

Subspace iteration for the smallest eigenvalue• Idea: Minimize the Rayleigh quotient xHHx

xHx over a subspace (!)Um := span{q1, . . . , qm}.

• Let Vm = (q1, . . . , qm) ∈ C2N×m

• The minimization over Um yields

minx∈Um\{0}

xHHx

xHx

x=Vmy= min

y∈Cm\{0}

(Vmy)HH(Vmy)

(Vmy)HVmy

= miny∈Cm\{0}

yH(V HmHVm

)y

yH (V HmVm) y

= miny∈Cm\{0}

yHAy

yHBy,

a generalized eigenvalue problem Ay = λminBy of size m×m.• x = Vmy or restart with q1 = Vmy

• How to choose an appropriate subspace Um?

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 18

Technische Universitat Munchen

Subspace iteration for the smallest eigenvalue• Idea: Minimize the Rayleigh quotient xHHx

xHx over a subspace (!)Um := span{q1, . . . , qm}.

• Let Vm = (q1, . . . , qm) ∈ C2N×m

• The minimization over Um yields

minx∈Um\{0}

xHHx

xHx

x=Vmy= min

y∈Cm\{0}

(Vmy)HH(Vmy)

(Vmy)HVmy

= miny∈Cm\{0}

yH(V HmHVm

)y

yH (V HmVm) y

= miny∈Cm\{0}

yHAy

yHBy,

a generalized eigenvalue problem Ay = λminBy of size m×m.

• x = Vmy or restart with q1 = Vmy

• How to choose an appropriate subspace Um?

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 18

Technische Universitat Munchen

Subspace iteration for the smallest eigenvalue• Idea: Minimize the Rayleigh quotient xHHx

xHx over a subspace (!)Um := span{q1, . . . , qm}.

• Let Vm = (q1, . . . , qm) ∈ C2N×m

• The minimization over Um yields

minx∈Um\{0}

xHHx

xHx

x=Vmy= min

y∈Cm\{0}

(Vmy)HH(Vmy)

(Vmy)HVmy

= miny∈Cm\{0}

yH(V HmHVm

)y

yH (V HmVm) y

= miny∈Cm\{0}

yHAy

yHBy,

a generalized eigenvalue problem Ay = λminBy of size m×m.• x = Vmy or restart with q1 = Vmy

• How to choose an appropriate subspace Um?

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 18

Technische Universitat Munchen

Subspace iteration for the smallest eigenvalue• Idea: Minimize the Rayleigh quotient xHHx

xHx over a subspace (!)Um := span{q1, . . . , qm}.

• Let Vm = (q1, . . . , qm) ∈ C2N×m

• The minimization over Um yields

minx∈Um\{0}

xHHx

xHx

x=Vmy= min

y∈Cm\{0}

(Vmy)HH(Vmy)

(Vmy)HVmy

= miny∈Cm\{0}

yH(V HmHVm

)y

yH (V HmVm) y

= miny∈Cm\{0}

yHAy

yHBy,

a generalized eigenvalue problem Ay = λminBy of size m×m.• x = Vmy or restart with q1 = Vmy

• How to choose an appropriate subspace Um?

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 18

Technische Universitat Munchen

Subspace iteration for the smallest eigenvalue• Choose the Krylov space Km(H, b) as subspace:

Um = Km(H, b) := span{b,Hb, . . . ,Hm−1b}

• This ansatz yields

A = V HmHVm =

bHHb bHH2b . . . bHHmbbHH2b bHH3b . . . bHHm+1b

......

. . ....

bHHmb bHHm+1b . . . bHH2m−1b

B = V HmVm =

bHb bHHb . . . bHHm−1bbHHb bHH3b . . . bHHmb

......

. . ....

bHHm−1b bHHmb . . . bHH2m−2b

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 19

Technische Universitat Munchen

Subspace iteration for the smallest eigenvalue• Choose the Krylov space Km(H, b) as subspace:

Um = Km(H, b) := span{b,Hb, . . . ,Hm−1b}

• This ansatz yields

A = V HmHVm =

bHHb bHH2b . . . bHHmbbHH2b bHH3b . . . bHHm+1b

......

. . ....

bHHmb bHHm+1b . . . bHH2m−1b

B = V HmVm =

bHb bHHb . . . bHHm−1bbHHb bHH3b . . . bHHmb

......

. . ....

bHHm−1b bHHmb . . . bHH2m−2b

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 19

Technische Universitat Munchen

Subspace iteration in terms of MPS• b = bMPS andKm(H, bMPS) = span{bMPS , HbMPS , . . . ,H

m−1bMPS}:

• In principle the same proceeding, BUT

• Computation of the matrix vector products:

HjbMPS =

(M∑k=1

αkQ(k)1 ⊗ · · · ⊗Q(k)

N

)j

bMPS

=

M∑k1=1

· · ·M∑

kj=1

b(k1,...,kj)MPS

Number of summands grows dramatically!• Application of the back-transformation:

Vmymin =m∑j=1

ymin,jHj−1bMPS

does not lie in the MPS space.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 20

Technische Universitat Munchen

Subspace iteration in terms of MPS• b = bMPS andKm(H, bMPS) = span{bMPS , HbMPS , . . . ,H

m−1bMPS}:• In principle the same proceeding, BUT

• Computation of the matrix vector products:

HjbMPS =

(M∑k=1

αkQ(k)1 ⊗ · · · ⊗Q(k)

N

)j

bMPS

=M∑

k1=1

· · ·M∑

kj=1

b(k1,...,kj)MPS

Number of summands grows dramatically!• Application of the back-transformation:

Vmymin =m∑j=1

ymin,jHj−1bMPS

does not lie in the MPS space.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 20

Technische Universitat Munchen

Subspace iteration in terms of MPS• b = bMPS andKm(H, bMPS) = span{bMPS , HbMPS , . . . ,H

m−1bMPS}:• In principle the same proceeding, BUT

• Computation of the matrix vector products:

HjbMPS =

(M∑k=1

αkQ(k)1 ⊗ · · · ⊗Q(k)

N

)j

bMPS

=

M∑k1=1

· · ·M∑

kj=1

b(k1,...,kj)MPS

Number of summands grows dramatically!

• Application of the back-transformation:

Vmymin =m∑j=1

ymin,jHj−1bMPS

does not lie in the MPS space.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 20

Technische Universitat Munchen

Subspace iteration in terms of MPS• b = bMPS andKm(H, bMPS) = span{bMPS , HbMPS , . . . ,H

m−1bMPS}:• In principle the same proceeding, BUT

• Computation of the matrix vector products:

HjbMPS =

(M∑k=1

αkQ(k)1 ⊗ · · · ⊗Q(k)

N

)j

bMPS

=

M∑k1=1

· · ·M∑

kj=1

b(k1,...,kj)MPS

Number of summands grows dramatically!• Application of the back-transformation:

Vmymin =

m∑j=1

ymin,jHj−1bMPS

does not lie in the MPS space.K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 20

Technische Universitat Munchen

Subspace iteration in terms of MPS• Solution: Application of a projection P onto the MPS space:

P :

M∑k=1

y(k)MPS 7→ argminxMPS

∥∥∥∥∥M∑k=1

y(k)MPS − xMPS

∥∥∥∥∥

• Solve the optimization problem

minA

∥∥∥∥∥∥∑

i1,...,iN

tr

(M∑k=1

(B(i1;k)1 · · ·B(iN ;k)

N )−A(i1)1 · · ·A(iN )

N

)ei1...iN

∥∥∥∥∥∥• Two possible projection methods:

• SVD-based truncation• ALS-based optimization

• Use ALS to find optimal matrix pair A(0)r , A

(1)r

• Forcing the derivative to be zero leads to a linear system.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 21

Technische Universitat Munchen

Subspace iteration in terms of MPS• Solution: Application of a projection P onto the MPS space:

P :

M∑k=1

y(k)MPS 7→ argminxMPS

∥∥∥∥∥M∑k=1

y(k)MPS − xMPS

∥∥∥∥∥• Solve the optimization problem

minA

∥∥∥∥∥∥∑

i1,...,iN

tr

(M∑k=1

(B(i1;k)1 · · ·B(iN ;k)

N )−A(i1)1 · · ·A(iN )

N

)ei1...iN

∥∥∥∥∥∥

• Two possible projection methods:• SVD-based truncation• ALS-based optimization

• Use ALS to find optimal matrix pair A(0)r , A

(1)r

• Forcing the derivative to be zero leads to a linear system.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 21

Technische Universitat Munchen

Subspace iteration in terms of MPS• Solution: Application of a projection P onto the MPS space:

P :

M∑k=1

y(k)MPS 7→ argminxMPS

∥∥∥∥∥M∑k=1

y(k)MPS − xMPS

∥∥∥∥∥• Solve the optimization problem

minA

∥∥∥∥∥∥∑

i1,...,iN

tr

(M∑k=1

(B(i1;k)1 · · ·B(iN ;k)

N )−A(i1)1 · · ·A(iN )

N

)ei1...iN

∥∥∥∥∥∥• Two possible projection methods:

• SVD-based truncation• ALS-based optimization

• Use ALS to find optimal matrix pair A(0)r , A

(1)r

• Forcing the derivative to be zero leads to a linear system.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 21

Technische Universitat Munchen

Subspace iteration in terms of MPS• Solution: Application of a projection P onto the MPS space:

P :

M∑k=1

y(k)MPS 7→ argminxMPS

∥∥∥∥∥M∑k=1

y(k)MPS − xMPS

∥∥∥∥∥• Solve the optimization problem

minA

∥∥∥∥∥∥∑

i1,...,iN

tr

(M∑k=1

(B(i1;k)1 · · ·B(iN ;k)

N )−A(i1)1 · · ·A(iN )

N

)ei1...iN

∥∥∥∥∥∥• Two possible projection methods:

• SVD-based truncation• ALS-based optimization

• Use ALS to find optimal matrix pair A(0)r , A

(1)r

• Forcing the derivative to be zero leads to a linear system.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 21

Technische Universitat Munchen

Numerical resultsIsing-type Hamiltonian, N = 10, dim = 2

1 5 10 15 20 25 30 35 40 45 5010

−6

10−4

10−2

100

102

Number of iterations

App

roxi

mat

ion

erro

r

Full vectorMPS, D=1MPS, D=2MPS, D=3MPS, D=4

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 22

Technische Universitat Munchen

Numerical resultsIsing-type Hamiltonian, N = 10, dim = 3

1 5 10 15 20 25 30 35 40 45 5010

−6

10−4

10−2

100

102

Number of iterations

App

roxi

mat

ion

erro

r

Full vectorMPS, D=1MPS, D=2MPS, D=3MPS, D=4

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 23

Technische Universitat Munchen

Numerical resultsIsing-type Hamiltonian, N = 10, dim = 4

5 10 15 20 25 30 35 40 45 50110

−6

10−4

10−2

100

102

Number of iterations

App

roxi

mat

ion

erro

r

Full vectorMPS, D=1MPS, D=2MPS, D=3MPS, D=4

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 24

Technische Universitat Munchen

Numerical resultsIsing-type Hamiltonian, N = 25, dim = 5

1 5 10 1510

−4

10−3

10−2

10−1

100

101

102

Number of iterations

App

roxi

mat

ion

erro

r

MPS, D=2MPS, D=3MPS, D=4MPS, D=5

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 25

Technische Universitat Munchen

Conclusions• Matrix Product States

• data-sparse representation format• represent ground states faithfully• DMRG in terms of MPS

• Subspace methods in terms of MPS• more flexibility (choice of subspace dimension)• approximation not only of the lowest eigenvalue• projection required to keep the number of summands limited• projection can even improve the approximation• convergence to DMRG solution• convergence properties of subspace iteration and

approximation properties of MPS

Thank you for your attention.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 26

Technische Universitat Munchen

Conclusions• Matrix Product States

• data-sparse representation format• represent ground states faithfully• DMRG in terms of MPS

• Subspace methods in terms of MPS• more flexibility (choice of subspace dimension)• approximation not only of the lowest eigenvalue• projection required to keep the number of summands limited• projection can even improve the approximation• convergence to DMRG solution• convergence properties of subspace iteration and

approximation properties of MPS

Thank you for your attention.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 26

Technische Universitat Munchen

Conclusions• Matrix Product States

• data-sparse representation format• represent ground states faithfully• DMRG in terms of MPS

• Subspace methods in terms of MPS• more flexibility (choice of subspace dimension)• approximation not only of the lowest eigenvalue• projection required to keep the number of summands limited• projection can even improve the approximation• convergence to DMRG solution• convergence properties of subspace iteration and

approximation properties of MPS

Thank you for your attention.

K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 26

Technische Universitat Munchen

Conclusions• Matrix Product States

• data-sparse representation format• represent ground states faithfully• DMRG in terms of MPS

• Subspace methods in terms of MPS• more flexibility (choice of subspace dimension)• approximation not only of the lowest eigenvalue• projection required to keep the number of summands limited• projection can even improve the approximation• convergence to DMRG solution• convergence properties of subspace iteration and

approximation properties of MPS

Thank you for your attention.K. Waldherr: Approximation Techniques for Special Eigenvalue Problems

HDA 2011, Bonn, June 2011 26