› woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2...

61
Krylov methods for eigenvalue problems: applications Karl Meerbergen October 4-6th, 2017

Transcript of › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2...

Page 1: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Krylov methods for eigenvalue problems:applications

Karl Meerbergen

October 4-6th, 2017

Page 2: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Two lectures

1 Krylov methods for eigenvalue problems: theory and algorithmsI Concepts of spectral approximationI Convergence/approximation theoryI Algorithms

2 Krylov methods for eigenvalue problems: applicationsI Nonlinear eigenvalue problemsI Computing eigenvalues with largest real part (stability analysis of

dynamical systems)

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 2 / 49

Page 3: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Outline of lecture 2

1 Nonlinear eigenvalue problemExamples of nonlinear eigenvalue problemsRational approximationNonlinear eigenvalue problemLinearization

2 Computation of right-most eigenvaluesStability analysisLyapunov Inverse IterationRelated problems

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 3 / 49

Page 4: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Schrodinger equationSingle particle equation(−d2u

dx2 + U(x)

)ξ(x) = λξ(x)

on infinite domainCompute bound state (discretepart of the spectrum)Discrete problem:

(−D + diag(U) + Σ(λ))X = λX

with

Σ = diag(ΣL(λ),0, . . . ,0,ΣR(λ))

ΣL,R = − 1∆x2 exp

(i∆x

√λ− uL,R

)K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 4 / 49

Page 5: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Schrodinger equation2D equation−D + diag(U)−

nz∑j=1

e0.2i√λ−αj LjUT

j − λI

x = 0

E2 is rank√

n matrix, D is diagonal.

Problem of dimension n = 16,281.Nonlinear part has rank r = 162

[Vandenberghe, Fischetti, Van Beeumen, M., Michiels & Effenberger 2013]K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 5 / 49

Page 6: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

NEP: thermo-acoustics

Important industrial problem:Understanding (acoustic)instabilities in gas combustionturbines

Helmholtz equation for a reactive flow:

∇ · c20∇p + ω2p = η(x, ω)eiωτ∇p · n

After discretization:

Kp− ω2Mp = C(ω)p

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 6 / 49

Page 7: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Nonlinear damping

Clamped sandwhich beam168 degrees of freedom (finite elements)Nonlinear eigenvalue problem:(

Ke +G0 + G∞(iωτ)α

1 + (iωτ)αKv − ω2M

)x = 0

with α = 0.675 and τ = 8.230.Parameters obtained from measurements.

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 7 / 49

Page 8: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Nonlinear eigenvalue problem

A(λ)x = 0 , λ ∈ C, x ∈ Cn, x 6= 0

Solution methods for finding eigenvalues in a region Σ ⊂ C:Residual inverse iteration and Newton’s method[Neumaier 1998], [Kressner 2009, [Effenberger 2013], . . .= Local approximationContour integration method — ‘Rational filtering’[Kravanja & Van Barel, 2000, 2016] [Sakurai & co.], [Polizzi & co], . . .[Austin & Trefethen, 2015], . . .* Local and global rational approximation and linearization

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 8 / 49

Page 9: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Nonlinear eigenvalue problem

A(λ)x = 0 , λ ∈ C, x ∈ Cn, x 6= 0

Solution methods for finding eigenvalues in a region Σ ⊂ C:* Local and global rational approximation and linearizationAssume problems of this form:

A(λ) =m∑

j=1Aj fj(λ)

1 Rational Approximation

fj(λ) ≈ α0 + . . . αpλp

β0 + . . . βpλp

2 Linearization3 Apply (rational) Krylov to the linearization

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 9 / 49

Page 10: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Idea of linearization

Protoytype: polynomial in monomial basis:

α0 + α1λ+ α2λ2 + · · ·+ αdλ

d = 0

Linearization:α0 + α1λ α2λ · · · αdλ

d

−λ 1. . . . . .

−λ 1

1λ...

λd−1

= 0

(Companion linearization: linear in λ)Other basis:[Amiraslani, Corless & Lancaster, 2008]

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 10 / 49

Page 11: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Approximation 1: spectral discretization/infinite Arnoldi

Delay equation:dxdt = β0x + β1x(t − τ)

with τ the delayCharacteristic equation:

β0 + e−λτβ1 − λ = 0

Rational approximation of

β0 + e−λτβ1

Spectral discretization Hermite interpolates at λ = 0.

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 11 / 49

Page 12: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Approximation 1: spectral discretization

[Michiels, Niculescu 2007], [Breda, Maset, Vermiglio 2005]

The delay equation can be written as a linear infinite dimensionaloperator in x(θ) with θ ∈ [−τ,0].Discretization of the interval [−τ,0]

Represent the solution on [−τ,0] by polynomial interpolationWith a proper basis this leads to a linearization of the form:ρ0 ρ1 ρ2 · · · ρN

11

. . .1

x − λ

4τ · · · 4

τ2 0 −1

12 0 . . .

. . . . . . − 1N−1

1N 0

x = 0

Convergence: O(N−N)

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 12 / 49

Page 13: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Scalar delay equation

Comparison Taylor/infinite Arnoldi

−6 −4 −2 0 2−150

−100

−50

0

50

100

150

Real

Imag

EigenvaluesReciprocal Ritz values

−6 −4 −2 0 2 4−150

−100

−50

0

50

100

150

Real

Imag

EigenvaluesReciprocal Ritz values

Taylor infinite Arnoldi[Jarlebring, M. & Michiels, 2010, 2012]

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 13 / 49

Page 14: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Approximation 2: potential theory

Build a rational approximation, expressed in rational Newtonpolynomial basisChoice of interpolation points and polesPotential theory: Leja (Bagby) points for finding roots in Σ ∈ C:

I Choose poles in the singularity set of f(λ) (away from Σ)I Interpolation points are chosen so that the approximation error

satisfies a signed equilibrium measure. (See talk by Francoise.)[Bagby 1969], [Walsh, 1932, 1966, 1969].The poles are dependent on the functionInterpolation points are independent of the function!Scaling of the rational Newton polynomialsCode: NLEIGS

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 14 / 49

Page 15: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Potential theory: choosing interpolation pointsNonlinear function: f(λ) = 0.2

√λ− 0.6 sin(2λ) = 0 on Σ = [0.01,4]

0.5 1 1.5 2 2.5 3 3.5 4

0.5

Leja–Bagby points

λA(λ)

interpolation points are Leja Bagby points in [10−2,4]the poles lie in the branch cut of

√λ (away from the interval)

0 20 40 60 80 100

10-15

10-10

10-5

100

number of interpolation nodes

interpolation error

poly. Newtonpoly. Chebyshevrational Newton

[Guttel, Van Beeumen, M., & Michiels,2013]

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 15 / 49

Page 16: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Approximation 3: Representation in state space form

Rational polynomial representation:

α + λβ +p(λ)

q(λ)= α + λβ − aT (C − λD)−1b

Linearization:[α + λ aT

b C − λD

](1

−(C − λD)−1b

)= 0

[Su & Bai, 2011][Su & Bai, 2011] use a Pade approximation: approximation aroundλ = 0: suitable with shift-and-invert Arnoldi.Rational approximation by AAA-method[Lietaert, M., Perez, Vandereycken, 2017]

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 16 / 49

Page 17: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

pproximation 3: Representation in state space formIdea of AAA:

Nakatsukasa, Sete and Trefethen 2016Rational approximation in barycentric form:

r(λ) =m∑

j=1

fjωjλ− zj︸ ︷︷ ︸

=:nm(λ)

/ m∑j=1

ωjλ− zj︸ ︷︷ ︸

=:dm(λ)

,

interpolates f in z1, . . . , zm.Iterative procedure that select points following a greedy approach.Points are selected from a user defined set ZM ⊂ Σ with M � 1The rational function can be written in the form

r(λ) = aT (C − λD)−1b

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 17 / 49

Page 18: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Nonlinear eigenvalue problem

A(λ)x = 0 for λ ∈ Γ

Here, we assume the following form:

A(λ) =m∑

j=1Aj fj(λ)

Three steps:1 polynomial approximation

A(λ) ≈d∑

j=0Ajpj(λ) on Γ

with pj (rational) polynomial of degree d.Use infinite Arnoldi, Pade, AAA, NLEIGS, . . .

2 linearization3 solutionK. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 18 / 49

Page 19: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

LinearizationPolynomial formulation:

A(s) =d−1∑j=0

(Aj − sBj)φj(s) ∈ Cn×n

with φj scalar functions and Aj ,Bj constant matrices.

CORK Linearization:

L(s) = A− sB

=

[A0 − sB0 A1 − sB1 · · · Ad−1 − sBd−1

(M − sN)⊗ In

]

with M − sN linear dual basis:

(M − sN)Φ = 0 Φ =

φ0...φd

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 19 / 49

Page 20: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

LinearizationPolynomial formulation:

A(s) =d−1∑j=0

(Aj − sBj)φj(s) ∈ Cn×n

with φj scalar functions and Aj ,Bj constant matrices.CORK Linearization:

L(s) = A− sB

=

[A0 − sB0 A1 − sB1 · · · Ad−1 − sBd−1

(M − sN)⊗ In

]

with M − sN linear dual basis:

(M − sN)Φ = 0 Φ =

φ0...φd

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 19 / 49

Page 21: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Compact rational Krylov decomposition[Su, Zhang, Bai 2008], [Zhang, Su 2013] & [Kressner, Roman 2013], [Van Beeumen, M. & Michiels, 2014], [Gonzales Pizarro &

Dopico, 2017]

The iteration vectors:

V =

v11 v12 · · · v1,j+1v21 v22 · · · v2,j+1

...... . . . ...

vd1 vd2 · · · vd,j+1

=

Q

Q. . .

Q

·

u1,1 u1,2 · · · u1,j+1u2,1 u2,2 · · · u2,j+1

......

ud,1 · · · · · · ud,d

Define Q such that

span(Q) = span{[

v11 · · · v1,j+1 · · · vd1 · · · vd,j+1]}

withr := rank(Q) ≤ d + j.

Storage cost: n · d·j =⇒ n · (d+j)

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 20 / 49

Page 22: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Compact rational Krylov decomposition[Su, Zhang, Bai 2008], [Zhang, Su 2013] & [Kressner, Roman 2013], [Van Beeumen, M. & Michiels, 2014], [Gonzales Pizarro &

Dopico, 2017]

The iteration vectors:

V =

v11 v12 · · · v1,j+1v21 v22 · · · v2,j+1

...... . . . ...

vd1 vd2 · · · vd,j+1

=

Q

Q. . .

Q

·

u1,1 u1,2 · · · u1,j+1u2,1 u2,2 · · · u2,j+1

......

ud,1 · · · · · · ud,d

Define Q such that

span(Q) = span{[

v11 · · · v1,j+1 · · · vd1 · · · vd,j+1]}

= span{[

v11 · · · vd1 v12 · · · v1,j+1]}

withr := rank(Q) ≤ d + j.

Storage cost: n · d·j =⇒ n · (d+j)

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 20 / 49

Page 23: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Compact rational Krylov decomposition[Su, Zhang, Bai 2008], [Zhang, Su 2013] & [Kressner, Roman 2013], [Van Beeumen, M. & Michiels, 2014], [Gonzales Pizarro &

Dopico, 2017]

The iteration vectors:

V =

v11 v12 · · · v1,j+1v21 v22 · · · v2,j+1

...... . . . ...

vd1 vd2 · · · vd,j+1

=

Q

Q. . .

Q

·

u1,1 u1,2 · · · u1,j+1u2,1 u2,2 · · · u2,j+1

......

ud,1 · · · · · · ud,d

Define Q such that

span(Q) = span{[

v11 · · · v1,j+1 · · · vd1 · · · vd,j+1]}

= span{[

v11 · · · vd1 v12 · · · v1,j+1]}

withr := rank(Q) ≤ d + j.

Storage cost: n · d·j =⇒ n · (d+j)K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 20 / 49

Page 24: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Compact rational Krylov decomposition[Su, Zhang, Bai 2008], [Zhang, Su 2013] & [Kressner, Roman 2013], [Van Beeumen, M. & Michiels, 2014], [Gonzales Pizarro &

Dopico, 2017]

The iteration vectors:

V =

v11 v12 · · · v1,j+1v21 v22 · · · v2,j+1

...... . . . ...

vd1 vd2 · · · vd,j+1

=

Q

Q. . .

Q

·

u1,1 u1,2 · · · u1,j+1u2,1 u2,2 · · · u2,j+1

......

ud,1 · · · · · · ud,d

Define Q such that

span(Q) = span{[

v11 · · · v1,j+1 · · · vd1 · · · vd,j+1]}

= span{[

v11 · · · vd1 v12 · · · v1,j+1]}

withr := rank(Q) ≤ d + j.

Storage cost: n · d·j =⇒ n · (d+j)K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 20 / 49

Page 25: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Numerical experiments

0 20 40 60 80 100 1200

20

40

60

80

iteration

dim

ensio

n

j

0 20 40 60 80 100 1200

20

40

60

80

100

120

iteration

mem

ory

(M

B)

RKS

CORK

O(k · nd) =⇒ O((d + k) · n)

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 21 / 49

Page 26: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Example: NLEVP’s Gun problem

A(λ)x =

(K − λM + i

√λ− α2

1W1 + i√λ− α2

2W2

)x = 0,

where A(λ) ∈ C9956×9956.Goal: compute all eigenvalues in a halve circle in the λ-plane.

100 150 200 250 300 3500

20

40

60

80

100

120

Re√λ

Im√λ

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 22 / 49

Page 27: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Approximation with Leja-Bagby points (NLEIGS)

Choose interpolation nodes σj and poles ξj for j = 1, . . . ,N with Nsuch that fi are well approximated by rational polynomials ofdegree N (as for contour integral methods).

0 50 100 150 200 250 300 3500

50

100

Re√λ

Im√λ

target set Σ

nodes σ

poles ξ

shifts

eigenvalues λ

R3

0 20 40 60 80 100

10-15

10-10

10-5

100

iteration

E(λ,x)

S

Rational Krylov using the five poles poles in the interior.

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 23 / 49

Page 28: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Approximation by AAA

0 1 2 3 4 5·104

0

2

4

·104

Re

Im

Leja-Bagby polesAAA poles

0 10 20 30 4010−20

10−10

100

d

erro

rrat

iona

lfun

ctio

n AAALeja-Bagby

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 24 / 49

Page 29: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Summary

General approach:1 Approximate A(λ) by a (rational) polynomial2 Write down a linearization3 Use a Krylov method for solving the linearization exploiting its

structure.Some knowledge about the nonlinear functions is required.

I For eigenvalues in a region: use AAA, NLEIGS, or contourintegration

I For eigenvalues near a point or a line: use infinite Arnoldi or Padeapproximation

Rather involved to programme yourselfSoftware in the works

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 25 / 49

Page 30: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Detection of Hopf bifurcations

Nonlinear dynamical system with a parameter γ ∈ R

M dudt = f(u, γ) ,u(0) = u0

M: mass matrixf : operator in (Rn,R) 7→ Rn is largeStability analysis of the steady state solutionFind γ so that steady state corresponds to a Hopf bifurcation

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 26 / 49

Page 31: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Detection of Hopf bifurcations

Popular method: linearized stability analysis

(A + γB)x = λMx

where A + γB is the Jacobian of f evaluated at the steady statecorresponding with γHopf bifurcation: two purely imaginary eigenvalues and the othereigenvalues lie in the left half plane

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 27 / 49

Page 32: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Detection of Hopf bifurcations

Monitor the right-most eigenvalue as a function of γ

Continuation of eigenvalues [Bindel, Demmel, Friedman 2008]Risk of missing eigenvaluesFinding rightmost eigenvalues is hard: most eigenvalue solverscompute eigenvalues near a point

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 28 / 49

Page 33: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Detection of Hopf bifurcations

Monitor the right-most eigenvalue as a function of γ

Continuation of eigenvalues [Bindel, Demmel, Friedman 2008]

Risk of missing eigenvaluesFinding rightmost eigenvalues is hard: most eigenvalue solverscompute eigenvalues near a point

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 28 / 49

Page 34: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Detection of Hopf bifurcations

Monitor the right-most eigenvalue as a function of γ

Continuation of eigenvalues [Bindel, Demmel, Friedman 2008]Risk of missing eigenvalues

Finding rightmost eigenvalues is hard: most eigenvalue solverscompute eigenvalues near a point

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 28 / 49

Page 35: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Detection of Hopf bifurcations

Monitor the right-most eigenvalue as a function of γ

Continuation of eigenvalues [Bindel, Demmel, Friedman 2008]Risk of missing eigenvaluesFinding rightmost eigenvalues is hard: most eigenvalue solverscompute eigenvalues near a point

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 28 / 49

Page 36: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Detection of transition from stable to unstablebranches

Assume that for γ = 0, (A + γB)x = λMx has only stableeigenvalues.We are looking for the first γ that produces an unstable steadystate.

Detection of unstable branches by transition of real eigenvaluesthrough the origin is an easy problem to solve:Find γ, x so that (A + γB)x = 0Not so easy for a Hopf point, since λ is an additional unknown:(A + γB)x = λMx

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 29 / 49

Page 37: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Detection of transition from stable to unstablebranches

Assume that for γ = 0, (A + γB)x = λMx has only stableeigenvalues.We are looking for the first γ that produces an unstable steadystate.

Detection of unstable branches by transition of real eigenvaluesthrough the origin is an easy problem to solve:Find γ, x so that (A + γB)x = 0Not so easy for a Hopf point, since λ is an additional unknown:(A + γB)x = λMx

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 29 / 49

Page 38: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Two-parameter eigenvalue problem

Given x and λ so that (A + γB)x = λMx with λ purely imaginary.Then

(A + γB)x = −λMx

and by bringing them together

(A + γB)x − λMx = 0(A + γB)x + λMx = 0

This a is two-parameter eigenvalue problem

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 30 / 49

Page 39: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Solving the two-parameter eigenvalue problem

Solution of the two-parameter eigenvalue problem byJacobi-Davidson style methods (= Newton’s method)[Hochstenbach, Kosir, Plestenjak 2005]

A1z1 = λB1z1 + µC1z1

A2z2 = λB2z2 + µC2z2

This method starts from guesses of γ and λI For γ, we can use γ = 0, since we are looking for the smallest γ.I A good starting guess of λ is not so easy to find;

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 31 / 49

Page 40: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Kronecker Eigenvalue Problem (KEVP)Theorem

(A + γB)x = λMx(A + γB)x = −λMx

⇓((A + γB)⊗M + M ⊗ (A + γB)) x ⊗ x = 0

Small scale problems [Guckerheimer et al. 1993, 1997][Govaerts, 2000]Bialternate product:

12((A + γB)⊗ I + I ⊗ (A + γB))

has a pair of zero eigenvalues when A + γB has a pair of purelyimaginary eigenvalues. (case M = I)

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 32 / 49

Page 41: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Solving the Kronecker eigenvalue problem

Kronecker problem:

((A + γB)⊗M + M ⊗ (A + γB))(x ⊗ y) = 0 n2 × n2

(No need for λ!)QR-method→ O(n6): only small problemsArnoldi→ O(n3) per iteration and n2-vectors

I Solve Kronecker system using Bartels-Stewart.For large scale problems: storage of n2-vectors is not feasible

I Use special variant of inverse iterationI Solve Kronecker system using (rational) Krylov methods.I Can impose structure on the eigenvector (manifold method)

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 33 / 49

Page 42: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Inverse iteration for KEVP

Solution of (A + γB)⊗Mz + M ⊗ (A + γB)z = 0Inverse iteration:

1 Solve yk+1 from (A⊗M + M ⊗ A)yk+1 = (B ⊗M + M ⊗ B)zk2 Normalize zk+1 = yk+1/‖yk+1‖2

Represent zk ∈ Rn2 by Zk ∈ Rn×n with zk = vec(Zk).Solve the Lyapunov equation:

1 Solve Yk+1 from AYk+1MT + MYk+1AT = BZkMT + MZkBT

2 Normalize Zk+1 = Yk+1/‖Yk+1‖F

Advantage of this approach:I Inverse iteration converges to an eigenvector: x ⊗ x + x ⊗ xI Which is represented by a rank two matrix: xxT + xxT

I Low rank solution of Lypaunov equation can be stored.

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 34 / 49

Page 43: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Inverse iteration for KEVP

Solution of (A + γB)⊗Mz + M ⊗ (A + γB)z = 0Inverse iteration:

1 Solve yk+1 from (A⊗M + M ⊗ A)yk+1 = (B ⊗M + M ⊗ B)zk2 Normalize zk+1 = yk+1/‖yk+1‖2

Represent zk ∈ Rn2 by Zk ∈ Rn×n with zk = vec(Zk).Solve the Lyapunov equation:

1 Solve Yk+1 from AYk+1MT + MYk+1AT = BZkMT + MZkBT

2 Normalize Zk+1 = Yk+1/‖Yk+1‖F

Advantage of this approach:I Inverse iteration converges to an eigenvector: x ⊗ x + x ⊗ xI Which is represented by a rank two matrix: xxT + xxT

I Low rank solution of Lypaunov equation can be stored.

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 34 / 49

Page 44: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Inverse iteration for KEVP

Solution of (A + γB)⊗Mz + M ⊗ (A + γB)z = 0Inverse iteration:

1 Solve yk+1 from (A⊗M + M ⊗ A)yk+1 = (B ⊗M + M ⊗ B)zk2 Normalize zk+1 = yk+1/‖yk+1‖2

Represent zk ∈ Rn2 by Zk ∈ Rn×n with zk = vec(Zk).Solve the Lyapunov equation:

1 Solve Yk+1 from AYk+1MT + MYk+1AT = BZkMT + MZkBT

2 Normalize Zk+1 = Yk+1/‖Yk+1‖F

Advantage of this approach:I Inverse iteration converges to an eigenvector: x ⊗ x + x ⊗ xI Which is represented by a rank two matrix: xxT + xxT

I Low rank solution of Lypaunov equation can be stored.

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 34 / 49

Page 45: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Lyapunov solvers

Solve Y fromAYMT + MYAT = C

Small scale matrices:I Bartels and Stewart method, 1972

Large scale matrices:I Working with full matrices is impractical for large problemsI Approximate Lyapunov solution by a low rank matrix

Y = VkDkVTk

with V ∈ Rn×k , k � n and VT V = I.I Krylov methods (extended Krylov methods) [Many papers]I Rational Krylov type, ADI/Smith type methods [Many papers]

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 35 / 49

Page 46: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Rank of iterates

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 36 / 49

Page 47: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Inverse iteration for KEVP

Difficulties:Lyapunov solvers assume a low rank right-hand side for efficientcomputation.

Force the iterate to have rank two at every iteration:1 Solve Yk+1 from AYk+1MT + MYk+1AT = BZkMT + MZkBT

2 Force Yk+1 to rank two3 Normalize Zk+1 = Yk+1/‖Yk+1‖F

How do we force rank two?I Rank two truncation of Yk+1 is not a good ideaI Projection trick

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 37 / 49

Page 48: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Inverse iteration for KEVP

Difficulties:Lyapunov solvers assume a low rank right-hand side for efficientcomputation.Force the iterate to have rank two at every iteration:

1 Solve Yk+1 from AYk+1MT + MYk+1AT = BZkMT + MZkBT

2 Force Yk+1 to rank two3 Normalize Zk+1 = Yk+1/‖Yk+1‖F

How do we force rank two?I Rank two truncation of Yk+1 is not a good ideaI Projection trick

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 37 / 49

Page 49: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Inverse iteration for KEVP

Difficulties:Lyapunov solvers assume a low rank right-hand side for efficientcomputation.Force the iterate to have rank two at every iteration:

1 Solve Yk+1 from AYk+1MT + MYk+1AT = BZkMT + MZkBT

2 Force Yk+1 to rank two3 Normalize Zk+1 = Yk+1/‖Yk+1‖F

How do we force rank two?I Rank two truncation of Yk+1 is not a good ideaI Projection trick

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 37 / 49

Page 50: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Projection trick

Let eigenvector iterate be Z = VDVT with V ∈ Rn×k .Define the ‘Galerkin projected’ KEVP:(

(A + γB)⊗ M + M ⊗ (A + γB))z = 0

with A = VT AV , B = VT BV , and M = VT MV , and z ∈ Rk2

This is a small scale problem that can be solved by the QRmethod or Arnoldi.Galerkin solution: (V ⊗ V)z.Two advantages:

I (V ⊗ V)z has rank at most twoI (V ⊗ V)z is usually a better approximation than Z .

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 38 / 49

Page 51: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Navier-Stokes

Navier-Stokes equation

ut = ν∇2u − u · ∇u −∇p0 = ∇ · u

Finite element discretization (IFISS) leads to the Jacobian

A + νB

The eigenvalue problem is[K0 + νK1 C

CT 0

](up

)= λ

[M 00 0

](up

)where ν is the parameter

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 39 / 49

Page 52: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Driven cavity

IFISS, Q2 −Q1 mixed finite elements, 128× 128⇒ n = 37,507Streamlines of steady solution and spectrum:

Computation of critical Reynolds number around 8000.This is a difficult problem

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 40 / 49

Page 53: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Driven cavity

Starting point Re0 = 7800R: residual KEVP, R: residual Lyapunov equationLyapunov equation solved so that ‖R‖F ≤ 10−1‖R‖F4 iterations:

γ λ ‖R‖ ‖R‖F m k−219 2.65 · 10−12 4.94 · 101 4.79e · 100 510 1208173 2.81562i 2.57 · 10−2 2.44 · 10−3 536 1908083 2.80915i 3.58 · 10−4 3.38 · 10−5 552 2108077 2.80960i 2.07 · 10−5 2.01 · 10−6 532 210

Fast convergence!

[Elman, M., Spence & Wu, 2012]

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 41 / 49

Page 54: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Obstacle in flowIFISS, Q2 −Q1 mixed finite elements, 128× 512⇒ n = 146,912Streamlines of steady solution and spectrum:

Computation of critical Reynolds number around 372.This is an easy problem

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 42 / 49

Page 55: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Obstacle in flow

Starting point Re0 = 320R: residual KEVP, R: residual Lyapunov equationLyapunov equation solved so that ‖R‖F ≤ 10−1‖R‖F6 iterations:

γ λ ‖R‖ ‖R‖F m k−331 −6.21 · 10−13 4.38 · 100 4.22e · 10−1 202 30366 2.21977i 3.67 · 10−2 3.34 · 10−3 84 40368 2.26650i 3.77 · 10−3 2.59 · 10−4 80 30374 2.26727i 5.17 · 10−4 3.17 · 10−5 80 30373 2.26650i 5.51 · 10−5 5.22 · 10−6 76 40373 2.26657i 5.34 · 10−6 4.04 · 10−7 76 40

Fast convergence!

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 43 / 49

Page 56: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Related problems

Nearest multiple eigenvalueSimilar ideas were used by [Gu, Mengi, Overton, Xia, Zhu, 2006]to estimate the distance to controllabilityAnd by [Michiels & Niculescu 2007], [Jarlebring 2008][Jarlebring & Hochstenbach, 2009] formulate two-parametereigenvalue problems for critical delays[M., Schroder & Voss 2013] present a structure preservingJacobi-Davidson method for determining critical delaysEigenvalues nearest imaginary axis

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 44 / 49

Page 57: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Finding eigenvalues nearest the imaginary axisNow assume special case:

Ax = (γ + λ)Bx , γ ∈ R, λ ∈ iRComputing eigenvalues nearest the imaginary axisThe method is greatly simplified since M = B

I When Arnoldi is used as Lyapunov solver, Lyapunov inverseiteration corresponds to implicitly restarted Arnoldi [M. & Vandebril2012]

I When rational Krylov is used with optimal pole selection, themethod corresponds to rational Krylov with implicit restart [M. 2016](Close to IRKA for model reduction)

Ritz valuesPoles ([Beckerman 2012])

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 45 / 49

Page 58: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Numerical example: driven cavity

Critical Reynolds number is Re = 7929Solve the problem for Re = 7800.

k p restarts number ofeigenvalues

100 40 2 1280 40 3 1260 40 4 1260 20 5 1240 20 9 1220 10 19 7

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 46 / 49

Page 59: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Conclusions

Solving parameterized eigenvalue problems is an old problembut new ideas are coming up:

I Jacobi-Davidson methodI Lyapunov (Sylvester) inverse iteration

Tests with true problems (Navier-Stokes) are done: nice results.

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 47 / 49

Page 60: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Bibliography I

H. Elman, K. Meerbergen, A. Spence, and M. Wu.Lyapunov inverse iteration for identifying Hopf bifurcations in models ofincompressible flow.SIAM J. Sci. Comput., 34(3):A1584–A1606, 2012.

S. Guttel, R. Van Beeumen, K. Meerbergen, and W. Michiels.NLEIGS: A class of fully rational Krylov methods for nonlinear eigenvalueproblems.SIAM J. Sci. Comput., 36(6):A2842–A2864, 2014.

M. E. Hochstenbach, T. Kosir, and B. Plestenjak.A Jacobi–Davidson type method for the two-parameter eigenvalue problem.SIAM J. Matrix Anal. Appl., 26(2):477–497, 2005.

E. Jarlebring, K. Meerbergen, and W. Michiels.An Arnoldi like method for the delay eigenvalue problem.SIAM J. Sci. Comput., 32(6):3278–3300, 2010.

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 48 / 49

Page 61: › woudschoten-conferences › 2017... · Krylov methods for eigenvalue problems: applications2 Krylov methods for eigenvalue problems: applications I Nonlinear eigenvalue problems

Bibliography IIP. Lietaert, K. Meerbergen, J. Perez, and B. Vandereycken.Automatic rational approximation and linearization of nonlinear eigenvalueproblems.Technical report, 2017.In preparation.

P. Lietaert, K. Meerbergen, and F. Tisseur.Compact two-sided krylov metods for nonlinear eigenvalue problems.Technical Report TW681, KULeuven, Departement of Computer Science, 2017.

K. Meerbergen and A. Spence.Shift-and-invert iteration for purely imaginary eigenvalues with application to thedetection of Hopf bifurcations in large scale problems.SIAM J. Matrix Anal. and Applic., 31(4):1463–1482, 2010.

R. Van Beeumen, K. Meerbergen, and W. Michiels.Compact rational Krylov methods for nonlinear eigenvalue problems.SIAM J. Matrix Anal. and Applic., 36(2):820–838, 2015.

K. Meerbergen (KU Leuven) WSC Woudschoten October 4-6th, 2017 49 / 49