Download - Stochastic Elastic-Plastic Finite Element Methodsokocalo.engr.ucdavis.edu/~jeremic/ Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of SolidsSummary Stochastic Elastic-Plastic

Transcript

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Stochastic Elastic-PlasticFinite Element Method

Boris Jeremic

In collaboration withKallol Sett, You-Chen Chao and Levent Kavvas

CEE Dept., University of California, Davisand

ESD, Lawrence Berkeley National Laboratory

Intel Corporation Webinar Series,October 2010

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

OutlineMotivation

Stochastic Systems: Historical PerspectivesUncertainties in Material

Probabilistic Elasto–PlasticityPEP FormulationsProbabilistic Elastic–Plastic Response

Stochastic Elastic–Plastic Finite Element MethodSEPFEM FormulationsSEPFEM Verification Example

Uncertain Response of SolidsProbabilistic Shear ResponseSeismic Wave Propagation Through Uncertain Soils

Summary

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Stochastic Systems: Historical Perspectives

OutlineMotivation

Stochastic Systems: Historical PerspectivesUncertainties in Material

Probabilistic Elasto–PlasticityPEP FormulationsProbabilistic Elastic–Plastic Response

Stochastic Elastic–Plastic Finite Element MethodSEPFEM FormulationsSEPFEM Verification Example

Uncertain Response of SolidsProbabilistic Shear ResponseSeismic Wave Propagation Through Uncertain Soils

Summary

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Stochastic Systems: Historical Perspectives

History

I Probabilistic fish counting

I Williams’ DEM simulations, differential displacementvortexes

I SFEM round table

I Kavvas’ probabilistic hydrology

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Stochastic Systems: Historical Perspectives

Types of UncertaintiesI Epistemic uncertainty - due to lack of knowledge

I Can be reduced by collecting more dataI Mathematical tools are not well developedI trade-off with aleatory uncertainty

I Aleatory uncertainty - inherent variation of physical systemI Can not be reducedI Has highly developed mathematical tools

Hei

sen

ber

gp

rin

cip

le

un

cert

ain

tyA

leat

ory

un

cert

ain

tyE

pis

tem

ic

Det

erm

inis

tic

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Stochastic Systems: Historical Perspectives

Ergodicity

I Exchange ensemble averages for time averages

I Is elasto-plastic-damage response ergodic?I Can material elastic-plastic-damage statistical properties

be obtained by temporal averaging?I Will elastic-plastic-damage statistical properties "renew" at

each occurrence?I Are material elastic-plastic-damage statistical properties

statistically independent?

I Important assumptions must be made and justified

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Stochastic Systems: Historical Perspectives

Historical OverviewI Brownian motion, Langevin equation→ PDF governed by

simple diffusion Eq. (Einstein 1905)

I With external forces→ Fokker-Planck-Kolmogorov (FPK)for the PDF (Kolmogorov 1941)

I Approach for random forcing→ relationship between theautocorrelation function and spectral density function(Wiener 1930)

I Approach for random coefficient→ Functional integrationapproach (Hopf 1952), Averaged equation approach(Bharrucha-Reid 1968), Numerical approaches, MonteCarlo method

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Uncertainties in Material

OutlineMotivation

Stochastic Systems: Historical PerspectivesUncertainties in Material

Probabilistic Elasto–PlasticityPEP FormulationsProbabilistic Elastic–Plastic Response

Stochastic Elastic–Plastic Finite Element MethodSEPFEM FormulationsSEPFEM Verification Example

Uncertain Response of SolidsProbabilistic Shear ResponseSeismic Wave Propagation Through Uncertain Soils

Summary

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Uncertainties in Material

Material Behavior Inherently Uncertainties

I Spatialvariability

I Point-wiseuncertainty,testingerror,transformationerror

(Mayne et al. (2000)

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Uncertainties in Material

Soil Uncertainties and Quantification

I Natural variability of material (for soil, Fenton 1999)I Function of material formation process

I Testing error (for soil, Stokoe et al. 2004)I Imperfection of instrumentsI Error in methods to register quantities

I Transformation error (for soil, Phoon and Kulhawy 1999)I Correlation by empirical data fitting (for soil, CPT data→

friction angle etc.)

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Uncertainties in Material

Probabilistic material (Soil Site) Characterization

I Ideal: complete probabilistic site characterizationI Large (physically large but not statistically) amount of data

I Site specific mean and coefficient of variation (COV)I Covariance structure from similar sites (e.g. Fenton 1999)

I Moderate amount of data→ Bayesian updating (e.g.Phoon and Kulhawy 1999, Baecher and Christian 2003)

I Minimal data: general guidelines for typical sites and testmethods (Phoon and Kulhawy (1999))

I COVs and covariance structures of inherent variabilityI COVs of testing errors and transformation uncertainties.

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Uncertainties in Material

Recent State-of-the-ArtI Governing equation

I Dynamic problems→ Mu + Cu + Ku = φI Static problems→ Ku = φ

I Existing solution methodsI Random r.h.s (external force random)

I FPK equation approachI Use of fragility curves with deterministic FEM (DFEM)

I Random l.h.s (material properties random)I Monte Carlo approach with DFEM→ CPU expensiveI Perturbation method→ a linearized expansion! Error

increases as a function of COVI Spectral method→ developed for elastic materials so far

I New developments for elasto-plastic-damage applications

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

PEP Formulations

OutlineMotivation

Stochastic Systems: Historical PerspectivesUncertainties in Material

Probabilistic Elasto–PlasticityPEP FormulationsProbabilistic Elastic–Plastic Response

Stochastic Elastic–Plastic Finite Element MethodSEPFEM FormulationsSEPFEM Verification Example

Uncertain Response of SolidsProbabilistic Shear ResponseSeismic Wave Propagation Through Uncertain Soils

Summary

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

PEP Formulations

Uncertainty Propagation through Constitutive Eq.

I Incremental el–pl constitutive equationdσij

dt= Dijkl

dεkl

dt

Dijkl =

Del

ijkl for elastic

Delijkl −

DelijmnmmnnpqDel

pqkl

nrsDelrstumtu − ξ∗r∗

for elastic-plastic

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

PEP Formulations

Previous WorkI Linear algebraic or differential equations→ Analytical

solution:I Variable Transf. Method (Montgomery and Runger 2003)I Cumulant Expansion Method (Gardiner 2004)

I Nonlinear differential equations(elasto-plastic/viscoelastic-viscoplastic):

I Monte Carlo Simulation (Schueller 1997, De Lima et al2001, Mellah et al. 2000, Griffiths et al. 2005...)→ accurate, very costly

I Perturbation Method (Anders and Hori 2000, Kleiber andHien 1992, Matthies et al. 1997)→ first and second order Taylor series expansion aboutmean - limited to problems with small C.O.V. and inherits"closure problem"

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

PEP Formulations

Problem Statement

I Incremental 3D elastic-plastic-damage stress–strain:

dσij

dt=

{Del

ijkl −Del

ijmnmmnnpqDelpqkl

nrsDelrstumtu − ξ∗r∗

}dεkl

dt

I Focus on 1D→ a nonlinear ODE with random coefficient(material) and random forcing (ε)

dσ(x , t)dt

= β(σ(x , t),Del(x),q(x), r(x); x , t)dε(x , t)

dt= η(σ,Del ,q, r , ε; x , t)

with initial condition σ(0) = σ0

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

PEP Formulations

Solution to Probabilistic Elastic-Plastic Problem

I Use of stochastic continuity (Liouiville) equation (Kubo1963)

I With cumulant expansion method (Kavvas and Karakas1996)

I To obtain ensemble average form of Liouville EquationI Which, with van Kampen’s Lemma (van Kampen 1976):

ensemble average of phase density is the probabilitydensity

I Yields Eulerian-Lagrangian form of theFokker-Planck-Kolmogorov equation

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

PEP Formulations

Eulerian–Lagrangian FPK Equation

∂P(σij(xt , t), t)∂t

=∂

∂σmn

»fiηmn(σmn(xt , t),Dmnrs(xt), εrs(xt , t))

fl+

Z t

0dτCov0

»∂ηmn(σmn(xt , t),Dmnrs(xt), εrs(xt , t))

∂σab;

ηab(σab(xt−τ , t − τ),Dabcd(xt−τ ), εcd(xt−τ , t − τ)–ff

P(σij(xt , t), t)–

+∂2

∂σmn∂σab

»Z t

0dτCov0

»ηmn(σmn(xt , t),Dmnrs(xt), εrs(xt , t));

ηab(σab(xt−τ , t − τ),Dabcd(xt−τ ), εcd(xt−τ , t − τ))–ff

P(σij(xt , t), t)–

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

PEP Formulations

Eulerian–Lagrangian FPK EquationI Advection-diffusion equation

∂P(σij , t)∂t

= − ∂

∂σmn

[N(1)P(σij , t)−

∂σab

{N(2)P(σij , t)

}]I Complete probabilistic description of responseI Solution PDF is second-order exact to covariance of time

(exact mean and variance)I Deterministic equation in probability density spaceI Linear PDE in probability density space→ simplifies the

numerical solution processI Applicable to any elastic-plastic-damage material model

(only coefficients N(1) and N(2) differ)

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

PEP Formulations

3D FPK Equation

∂P(σij(xt , t), t)∂t

=∂

∂σmn

»fiηmn(σmn(xt , t),Dmnrs(xt), εrs(xt , t))

fl+

Z t

0dτCov0

»∂ηmn(σmn(xt , t),Dmnrs(xt), εrs(xt , t))

∂σab;

ηab(σab(xt−τ , t − τ),Dabcd(xt−τ ), εcd(xt−τ , t − τ)–ff

P(σij(xt , t), t)–

+∂2

∂σmn∂σab

»Z t

0dτCov0

»ηmn(σmn(xt , t),Dmnrs(xt), εrs(xt , t));

ηab(σab(xt−τ , t − τ),Dabcd(xt−τ ), εcd(xt−τ , t − τ))–ff

P(σij(xt , t), t)–

I 6 equations, 3D probabilistic stress-strain responseI 3 equations, 3D in principal stress-strain spaceI 2 equations, 2D in principal stress-strain space

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Elastic–Plastic Response

OutlineMotivation

Stochastic Systems: Historical PerspectivesUncertainties in Material

Probabilistic Elasto–PlasticityPEP FormulationsProbabilistic Elastic–Plastic Response

Stochastic Elastic–Plastic Finite Element MethodSEPFEM FormulationsSEPFEM Verification Example

Uncertain Response of SolidsProbabilistic Shear ResponseSeismic Wave Propagation Through Uncertain Soils

Summary

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Elastic–Plastic Response

Elastic Response with Random GI General form of elastic constitutive rate equation

dσ12

dt= 2G

dε12

dt= η(G, ε12; t)

I Advection and diffusion coefficients of FPK equation

N(1) = 2dε12

dt< G >

N(2) = 4t(

dε12

dt

)2

Var [G]

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Elastic–Plastic Response

Elastic Response with Random G

0.002

0.004

0.006

0

0.001

0.002

0.003

0.0040

2500

5000

7500

10000

0.00789

Strain (%)

0.0027

0.0426

Stress (MPa)Time (Sec)

Prob Density

0.002

0.004

0.006

< G > = 2.5 MPa; Std. Deviation[G] = 0.5 MPaJeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Elastic–Plastic Response

Verification – Variable Transformation Method

0.002 0.004 0.006 0.008

0.0005

0.001

0.0015

0.002

0.0025

Strain (%)0 0.0426

Std. Deviation Lines

Std. Deviation Lines

(Variable Transformation)

(Fokker−Planck)

(Fokker−Planck)

(Variable Transformation)Mean Line

Mean Line

Time (Sec)

Stre

ss (M

Pa)

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Elastic–Plastic Response

Drucker-Prager Linear Hardening with Random G

dσ12

dt= Gep dε12

dt= η(σ12,G,K , α, α′, ε12; t)

Advection and diffusion coefficients of FPK equation

N(1) =dε12

dt

⟨2G − G2

G + 9Kα2 +1√3

I1α′

N(2) = t(

dε12

dt

)2

Var

2G − G2

G + 9Kα2 +1√3

I1α′

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Elastic–Plastic Response

Verification of D–P E–P Response - Monte Carlo

0.004 0.008 0.012 0.01489

0.001

0.002

0.003

Time (Sec)0

Strain (%) 0.08040

Stre

ss (M

Pa)

(Actual)

(Actual)

Std. Deviation Lines

Mean Line

Mean Line

Std. Deviation Lines(Fokker−Planck)

(Fokker−Planck)

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Elastic–Plastic Response

Modified Cam Clay Constitutive Modeldσ12

dt= Gep dε12

dt= η(σ12,G,M,e0,p0, λ, κ, ε12; t)

η =

2G −

(36

G2

M4

)σ2

12

(1 + e0)p(2p − p0)2

κ+

(18

GM4

)σ2

12 +1 + e0

λ− κpp0(2p − p0)

Advection and diffusion coefficients of FPK equation

N(i)(1) =

⟨η(i)(t)

⟩+

∫ t

0dτcov

[∂η(i)(t)∂t

; η(i)(t − τ)

]

N(i)(2) =

∫ t

0dτcov

[η(i)(t); η(i)(t − τ)

]Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Elastic–Plastic Response

Low OCR Cam Clay with Random G, M and p0

I Non-symmetry inprobabilitydistribution

I Differencebetweenmean, mode anddeterministic

I Divergence atcritical statebecause M isuncertain

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.01

0.02

0.03

0.04

Time (s)

Strain (%)0 1.62

Std. Deviation Lines

Mean LineDeterministic Line

Mode Line

Stre

ss (M

Pa)

50

30

10

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Elastic–Plastic Response

Comparison of Low OCR Cam Clay at ε = 1.62 %

0.01 0.02 0.03 0.04

100

200

300

400

500

Det

. Val

ue =

0.0

2906

MPa

Shear Stress (MPa)

PDF

of S

hear

Str

ess

Random G, M, p0Random G, M

Random G, p0

Random G

I None coincides with deterministicI Some very uncertain, some very certainI Either on safe or unsafe side

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Elastic–Plastic Response

High OCR Cam Clay with Random G and M

I Large non-symmetryin probabilitydistribution

I Significantdifferences inmean, mode,and deterministic

I Divergence atcritical state,M is uncertain 0 0.05 0.1 0.15 0.2 0.25 0.3 0.37

0

0.005

0.01

0.015

0.02

0.025

0.03

Strain (%)

Mean Line

Std. Deviation Lines

Time (s)

0 2.0

Stre

ss (M

Pa)

3050

100

Deterministic LineMode Line

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Elastic–Plastic Response

Probabilistic Yielding

I Weighted elastic and elastic-plastic Solution∂P(σ, t)/∂t = −∂

(Nw

(1)P(σ, t)− ∂(

Nw(2)P(σ, t)

)/∂σ

)/∂σ

I Weighted advection and diffusion coefficients are thenNw

(1,2)(σ) = (1− P[Σy ≤ σ])Nel(1) + P[Σy ≤ σ]Nel−pl

(1)

I Cumulative Probability Density function (CDF) of the yieldfunction

0.00005 0.0001 0.00015Σy HMPaL

0.2

0.4

0.6

0.8

1F@SyD = P@Sy£ΣyD

(a)(b)

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Elastic–Plastic Response

Transformation of a Bi–Linear (von Mises) Response

0 0.0108 0.0216 0.0324 0.0432 0.0540

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003St

ress

(M

Pa)

Strain (%)

Mode

DeterministicSolutionStd. Deviations

Mean

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

SEPFEM Formulations

OutlineMotivation

Stochastic Systems: Historical PerspectivesUncertainties in Material

Probabilistic Elasto–PlasticityPEP FormulationsProbabilistic Elastic–Plastic Response

Stochastic Elastic–Plastic Finite Element MethodSEPFEM FormulationsSEPFEM Verification Example

Uncertain Response of SolidsProbabilistic Shear ResponseSeismic Wave Propagation Through Uncertain Soils

Summary

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

SEPFEM Formulations

Governing Equations & Discretization Scheme

I Governing equations of mechanics:

Aσ = φ(t); Bu = ε; σ = Dε

I Discretization (spatial and stochastic) schemesI Input random field material properties (D)→

Karhunen–Loève (KL) expansion, optimal expansion, errorminimizing property

I Unknown solution random field (u)→ Polynomial Chaos(PC) expansion

I Deterministic spatial differential operators (A & B)→Regular shape function method with Galerkin scheme

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

SEPFEM Formulations

Truncated Karhunen–Loève (KL) expansion

I Representation of input random fields in eigen-modes ofcovariance kernel

qT (x , θ) = qT (x) +∑M

n=1√λnξn(θ)fn(x)∫

D C(x1, x2)f (x2)dx2 = λf (x1)

ξi(θ) =1√λi

∫D

[qT (x , θ)− qT (x)] fi(x)dx

I Error minimizing propertyI Optimal expansion→ minimization of number of stochastic

dimensions

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

SEPFEM Formulations

Polynomial Chaos (PC) ExpansionI Covariance kernel is not known a priori

u(x , θ) =L∑

j=1

ejχj(θ)bj(x)

I Can be expressed as functional of known random variablesand unknown deterministic function

u(x , θ) = ζ[ξi(θ), x ]

I Need a basis of known random variables→ PC expansion

χj(θ) =P∑

i=0

γ(j)i ψi [{ξr}]

u(x , θ) =L∑

j=1

P∑i=0

γ(j)i ψi [{ξr}]ejbj(x) =

P∑i=0

ψi [{ξr}]di(x)

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

SEPFEM Formulations

Spectral Stochastic Elastic–Plastic FEM

I Minimizing norm of error of finite representation usingGalerkin technique (Ghanem and Spanos 2003):

N∑n=1

Kmndni +N∑

n=1

P∑j=0

dnj

M∑k=1

CijkK ′mnk = 〈Fmψi [{ξr}]〉

Kmn =

∫D

BnDBmdV K ′mnk =

∫D

Bn√λkhkBmdV

Cijk =⟨ξk (θ)ψi [{ξr}]ψj [{ξr}]

⟩Fm =

∫DφNmdV

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

SEPFEM Formulations

Inside SEPFEM

I Explicit stochastic elastic-plastic-damage finite elementcomputations

I FPK probabilistic constitutive integration at Gaussintegration points

I Increase in (stochastic) dimensions (KL and PC) of theproblem (parallelism)

I Development of the probabilistic elastic-plastic-damagestiffness tensor

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

SEPFEM Verification Example

OutlineMotivation

Stochastic Systems: Historical PerspectivesUncertainties in Material

Probabilistic Elasto–PlasticityPEP FormulationsProbabilistic Elastic–Plastic Response

Stochastic Elastic–Plastic Finite Element MethodSEPFEM FormulationsSEPFEM Verification Example

Uncertain Response of SolidsProbabilistic Shear ResponseSeismic Wave Propagation Through Uncertain Soils

Summary

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

SEPFEM Verification Example

1–D Static Pushover Test Example

I Linear elastic model:< G >= 2.5 kPa,Var [G] = 0.15 kPa2,correlation length for G = 0.3 m.

I Elastic–plastic material model,von Mises, linear hardening,< G >= 2.5 kPa,Var [G] = 0.15 kPa2,correlation length for G = 0.3 m,Cu = 5 kPa,C′u = 2 kPa.

����������������������

L

F

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

SEPFEM Verification Example

Linear Elastic FEM Verification

1 2 3 4 5

0.02

0.04

0.06

0.08

0.1

Loa

d (N

)

Displacement at Top Node (mm)

Mean (SFEM)

Standard Deviations (MC)

Mean (MC)

Standard Deviations (SFEM)

Mean and standard deviations of displacement at the top node,linear elastic material model,KL-dimension=2, order of PC=2.

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

SEPFEM Verification Example

SEPFEM verification

1 2 3 4 5 6 7

0.02

0.04

0.06

0.08

0.1L

oad

(N)

Displacement at Top Node (mm)

Standard Deviations (SFEM)

Standard Deviations (MC)

Mean (SFEM)

Mean (MC)

Mean and standard deviations of displacement at the top node,von Mises elastic-plastic linear hardening material model,KL-dimension=2, order of PC=2.

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Shear Response

OutlineMotivation

Stochastic Systems: Historical PerspectivesUncertainties in Material

Probabilistic Elasto–PlasticityPEP FormulationsProbabilistic Elastic–Plastic Response

Stochastic Elastic–Plastic Finite Element MethodSEPFEM FormulationsSEPFEM Verification Example

Uncertain Response of SolidsProbabilistic Shear ResponseSeismic Wave Propagation Through Uncertain Soils

Summary

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Shear Response

Probabilistic Material Response

0 0.135 0.27 0.405 0.54 0.675 0.81 0.945

0.1

0.0

0.2

0.3

0.4

Mean

Mode

She

ar S

tres

s (M

Pa)

Shear Strain (%)

400

200

150

100

25

300

Mean ± Standard Deviation

500

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Shear Response

Elasticity and Strength, Mean and Std.Dev.

8040

12

10

8

6

4

2

00

Dep

th (

m)

Shear Modulus (MPa)Mean of

0 40 80

12

10

8

6

4

2

0

Dep

th (

m)

Standard Deviation of Shear Modulus (MPa)

0.20.0 0.4

0.412

10

8

6

4

2

0

Dep

th (

m)

Shear Strength (MPa)Mean of

0.0 0.2 0.4

12

10

8

6

4

2

0

Dep

th (

m)

Standard Deviation ofShear Strength (MPa)

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Shear Response

Displacement Results at the Top

0.000 0.005 0.010 0.015 0.0200.00

0.10

0.20

0.30

Displacement (m)

Loa

d (k

N)

Mean

Mean ± Standard Deviation

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Shear Response

Statistics of the Tangent Stiffness:Mean and λ for the 1st and 2nd KL-spaces

0.00 0.05 0.10 0.15 0.20 0.25 0.300

10

20

30

40

50

60

Load (kN)

Mea

n of

Tan

gent

Mod

ulus

(M

Pa)

0.00 0.05 0.10 0.15 0.20 0.25 0.300

200

400

600

800

λ

at 1st KL−space

Load (kN)

at 2nd KL−space

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Shear Response

Mean Stiffness Evolution, Cor.Len. 0.1m, 1.0m

0 10 20 30 40 50 6012

10

8

6

4

2

0

Dep

th (

m)

Mean of Tangent Modulus (MPa)

Load = 0 kN0.10.3 0.2 0.15

0 10 20 30 40 50 6012

10

8

6

4

2

0

Dep

th (

m)

Load =0 kN0.10.150.20.3

Mean of Tangent Modulus (MPa)

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Shear Response

Mean Prob. Stiffness (√λ1 f1) Evolution,

Cor.Len. 0.1m, 1.0m

0 10 20 30 4012

10

8

6

4

2

0

Dep

th (

m)

√λ

Load = 0 kN0.10.150.2

0.3

f at 1st KL−space

0 10 20 30 4012

10

8

6

4

2

0

Dep

th (

m)

f at 1st KL−space√λ

Load = 0 kN0.10.150.20.3

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Shear Response

Mean Prob. Stiffness (√λ2 f2) Evolution,

Cor.Len. 0.1m, 1.0m

−20 0 20 4012

10

8

6

4

2

0

Dep

th (

m)

−40f at 2nd KL−space√λ

0 kNLoad =

0.10.3 0.2

−40 −20 0 20 4012

10

8

6

4

2

0

Dep

th (

m)

√λ f at 2nd KL−space

Load = 0 kN 0.1 0.30.2

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Shear Response

Std.Dev Stiffness Evolution,Cor.Len. 0.1m, 1.0m

0 10 20 30 40 50 6012

10

8

6

4

2

0

Dep

th (

m)

Standard Deviation of Tangent Modulus (MPa)

Load = 0 kN0.10.20.3

0 10 20 30 40 50 6012

10

8

6

4

2

0

Dep

th (

m)

Standard Deviation of Tangent Modulus (MPa)

Load = 0 kN0.10.150.20.3

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Probabilistic Shear Response

Probability for Softening (?), Cor.Len. 1.0m

0 10 20 30 40 50 6012

10

8

6

4

2

0

Dep

th (

m)

Load =0 kN0.10.150.20.3

Mean of Tangent Modulus (MPa)0 10 20 30 40 50 60

12

10

8

6

4

2

0

Dep

th (

m)

Standard Deviation of Tangent Modulus (MPa)

Load = 0 kN0.10.150.20.3

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Seismic Wave Propagation Through Uncertain Soils

OutlineMotivation

Stochastic Systems: Historical PerspectivesUncertainties in Material

Probabilistic Elasto–PlasticityPEP FormulationsProbabilistic Elastic–Plastic Response

Stochastic Elastic–Plastic Finite Element MethodSEPFEM FormulationsSEPFEM Verification Example

Uncertain Response of SolidsProbabilistic Shear ResponseSeismic Wave Propagation Through Uncertain Soils

Summary

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Seismic Wave Propagation Through Uncertain Soils

Uncertain Dynamics

I Stochastic elastic–plastic simulations of soils andstructures

I Probabilistic inverse problems

I Geotechnical site characterization design

I Optimal material design

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Seismic Wave Propagation Through Uncertain Soils

Decision About Site (Material) Characterization

I Do an inadequate site characterization (rely onexperience): conservative guess for soil data,COV = 225%, large correlation length (length of a model).

I Do a good site characterization: COV = 103%, correlationlength calculated (= 0.61m)

I Do an excellent (much improved) site characterization ifprobabilities of exceedance are unacceptable!

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Seismic Wave Propagation Through Uncertain Soils

Random Field Parameters from Site DataI Maximum likelihood estimates

Typical CPT qT

Finite Scale

Fractal

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Seismic Wave Propagation Through Uncertain Soils

"Uniform" CPT Site Data (Courtesy of USGS)

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Seismic Wave Propagation Through Uncertain Soils

Statistics of Stochastic Soil Profile(s)

I Soil as 12.5m deep 1–D soil column (von Mises material)I Properties (including testing uncertainty) obtained through

random field modeling of CPT qT〈qT 〉 = 4.99 MPa; Var [qT ] = 25.67 MPa2;Cor. Length [qT ] = 0.61 m; Testing Error = 2.78 MPa2

I qT was transformed to obtain G: G/(1− ν) = 2.9qT

I Assumed transformation uncertainty = 5%〈G〉 = 11.57MPa; Var [G] = 142.32MPa2

Cor. Length [G] = 0.61m

I Input motions: modified 1938 Imperial Valley

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Seismic Wave Propagation Through Uncertain Soils

Evolution of Mean ± SD for Guess Case

5

1015

20 25

−400

−200

200

400

600mean ± standard deviation

mean

Dis

plac

emen

t (m

m)

Time (sec)

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Seismic Wave Propagation Through Uncertain Soils

Evolution of Mean ± SD for Real Data Case

5 1015

20 25

−200

−100

100

200

300

400

Time (sec)

Dis

plac

emen

t (m

m) mean ± standard deviation

mean

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Seismic Wave Propagation Through Uncertain Soils

Full PDFs for Real Data Case

−400

0

200400

0

0.02

0.04

0.06

5

10

15

20

Tim

e (s

ec)

PDF

Displacement (mm)

−200

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Seismic Wave Propagation Through Uncertain Soils

Example: PDF at 6 s

−1000 −500 500 1000

0.0005

0.001

0.0015

0.002

0.0025

Displacement (mm)

PDF

Real Soil Data

Conservative Guess

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Seismic Wave Propagation Through Uncertain Soils

Example: CDF at 6 s

−1000 −500 500 1000

0.2

0.4

0.6

0.8

1

CD

F

Displacement (mm)

Real Soil DataConservative Guess

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Seismic Wave Propagation Through Uncertain Soils

Probability of Unacceptable Deformation (50cm)P

robab

ilit

y o

f E

xce

edan

ceof

50 c

m (

%)

Time (s)

Conservative Guess

Real Site

Characterized SiteExcellently

80

60

40

20

05 10 15 20 250

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Seismic Wave Propagation Through Uncertain Soils

Risk Informed Decision Process

10 20 30 40 50

20

40

60

80

Prob

abili

ty o

f E

xcee

danc

e (%

)

Displacement (cm)

ConservativeGuessReal Site

Excellently Characterized Site

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Summary

I Second-order (mean and variance) exact, method forsimulations of solids with probabilisticelastic-plastic-damage material and stochastic loading

I Input:I elastic-plastic-damage point-wise uncertainty (PDFs of

material paramaters, LHS),I spatial uncertainty (KL eigen modes, LHS) andI uncertain loading (RHS)

I Output: accurate PDFs and CDFs of displacements,velocities, accelerations, stress, strain...

I Probably numerous applications

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method

Motivation Probabilistic Elasto–Plasticity SEPFEM Uncertain Response of Solids Summary

Jeremic Computational Geomechanics Group

Stochastic Elastic-Plastic Finite Element Method