The Plastic Domain Decomposition for Soil Foundation Structure...

34
Hypothesis Computational Platform ESS Case Study Summary The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations Boris Jeremi´ c and Guanzhou Jie Department of Civil and Environmental Engineering University of California, Davis, U.S.A. Jeremi´ c Computational Geomechanics Group The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Transcript of The Plastic Domain Decomposition for Soil Foundation Structure...

Page 1: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

The Plastic Domain Decomposition forSoil Foundation Structure Interaction

Computations

Boris Jeremic and Guanzhou Jie

Department of Civil and Environmental EngineeringUniversity of California, Davis, U.S.A.

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 2: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Outline

HypothesisESS System Evolution

Computational PlatformSoftware ComponentHardware Component

ESS Case StudyHigh Fidelity, 3D ModelsBehavior for Short Period MotionsBehavior in Long Period Motions

Summary

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 3: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

ESS System Evolution

ESS HypothesisI NEHRP-94 seismic code states that: ”These [seismic]

forces therefore can be evaluated conservatively withoutthe adjustments recommended in Sec. 2.5 [i.e. for SSinteraction effects]”.

I Flexibility (elastic) of foundations and soils modifiesdynamic properties of the SS system (Gazetas andMylonakis)

I Reduction in stiffness (elasto–plasticity) of the SS systemmodifies those dynamic properties even more so

I Earthquake intensity increase, SS system period iselongated

I Earthquake period and SS period might (will) coincide

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 4: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

ESS System Evolution

ESS System Energy Balance

I Energy balance: input (seismic) and dissipated (inelasticity,radiation, coupling) will control the fate of ESS system

I If energy dissipation > input ⇒ probably small damage

I If energy dissipation < input ⇒ probably large damage

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 5: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

ESS System Evolution

Modeling ESS SystemI Structural response is a function of a tightly coupled triad

of dynamic characteristic ofI EarthquakeI SoilI Structure

I Use detailed numerical models to analyze prototypemodels

I Detailed numerical models require advancement inI Modeling techniquesI Computational (software) methodologyI Computer hardware (accessible parallel computers)

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 6: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Software Component

Parallel Elastic–Plastic Finite Element Computations

I Current Parallel FEM areI Well developed for elastic FEMI Undeveloped for elastic–plastic FEMI Well developed for homogeneous distributed memory

parallel (DMP) computers,I Undeveloped for multiple performance (multi–generation)

DMPsI Need: dynamic computational load balancing for

I multiple element types,I multiple material modelsI multiple compute node performancesI multiple network performances

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 7: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Software Component

Plastic Domain Decomposition (PDD) Method

I Multi-objective optimization problem (minimize both theinter-processor communications, the data redistributioncosts and create balanced partitions)

I computational load balancing adds overheadToverhead := Tcomm + Tregen

I Tcomm data communication load depending on networkconditions.

I Tregen model regeneration for new partitioning, application(model) dependent

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 8: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Software Component

PDD Optimization ModelI Computional load among CPUs

Tj :=∑nel

i=1 ElemCompLoad [i], j = 1, ..., nCPU

I Goal: minimize maximum compute time (slowest CPU)Tmax := max(Tj) j = 1, ..., nCPU

I Total compute time (not wall clock time) Tsum := sum(Tj)

I Best execution time (perfect load balancing) Tbest :=Tsum/nCPU, ⇒ Tj ≡ Tbest for each j = 1, ..., nCPU

I Best performance gain Tgain := Tmax − Tbest

I Computational load balancing is beneficial iffTgain ≥ Toverhead = Tcomm + Tregen

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 9: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Software Component

PDD Implementation

I ParMETIS dynamic graph partitioning libraries (Karypis etal.)

I PETSc solvers (Balay et al.)

I UCD upgraded OpenSees analysis model (Jie andJeremic, McKenna)

I UCD CompGeoMech libraries (elements, material models,algorithms,...)

I Scalable to a large number of CPUs (2–1024 or more)

I Performance tuning and production runs on my clusterGeoWulf (UCD), LongHorn (TACC) and DataStar (SDSC)

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 10: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Software Component

Simple PDD ExampleI FEM model for soil

foundation Interaction(4,938 Elements,17,604 DOFs)

I Elastic–plastic soilI Mild evolution of

elastic–plastic zoneI Minimizing data

redistributionI Allowing higher

tolerance for edge-cutI Imbalance tolerance 5 %

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 11: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Software Component

2 CPU PDD Partitioning–Repartitioning Example

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 12: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Software Component

4 CPU PDD Partitioning–Repartitioning Example

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 13: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Software Component

8 CPU PDD Partitioning–Repartitioning Example

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 14: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Software Component

Speedup Overview

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 1280

8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

Number of CPUs

Par

alle

l Sp

eed

up Theoretic

al Speedup

398,721 DOFs (125,225 Elements)

118,275 DOFs (36,037 Elements)

68,451 DOFs (20,476 Elements)

32,091 DOFs (9,297 Elements)

17,604 DOFs (4,938 Elements)

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 15: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Software Component

Speedup Overview

1 1632 64 128 256 5121

16

32

64

128

256

Number of CPUs

Par

alle

l Sp

eed

up

Theo

retic

al S

peed

up398,721 DOFs (125,225 Elements)

118,275 DOFs (36,037 Elements)

68,451 DOFs (20,476 Elements)

32,091 DOFs (9,297 Elements)

17,604 DOFs (4,938 Elements)

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 16: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Hardware Component

Parallel Supercomputer GeoWulf

I Distributed memory parallel computer

I Multiple generation compute nodes and networks

I Very cost effective!

I Same architecture as large parallel supercomputers(SDSC, TACC, EarthSimulator...)

I Local design, construction, available at all times!

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 17: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Hardware Component

GeoWulf: Parallel Supercomputer Architecture

node

01−

02

node

03−

04no

de05

−06

node

07−

08

node

09−

10

node

11−

12

node

13−

14

node

15−

16

node

17−

18

node

21−

22

node

19−

20

node

23−

24

com

pute

rse

rvic

e

com

pute

rco

ntro

ller

com

pute

rco

ntro

ller console

outside worldInternet

MPI DedicatedGigabit Switch

RAIDServer Gigabit Switch

PFS, admin...

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 18: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Hardware Component

GeoWulf: Demistifying Parallel Supercomputing

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 19: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Hardware Component

GeoWulf: Local Development

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 20: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

High Fidelity, 3D Models

Detailed 3D FEM Model (one of)

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 21: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

High Fidelity, 3D Models

Model ComponentsI Soils: elastic–plastic solids (yield land potential surface

Drucker-Prager, kinematic hardening Armstrong-Frederick)(UCD: Jie and Jeremic)

I Structure non–linear beam–column elements (fiberelement) (UCB: Fenves, UW: Eberhardt)

I Piles: non–linear beam–column elements (fiber element)(UCD: Jie and Jeremic)

I Two types of soil: stiff soil (UT, UCD), soft soil (Bay Mud)

I Use of the Domain Reduction Method (DRM) (Bielak et al.)for seismic input into FEM model

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 22: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

High Fidelity, 3D Models

Modeling Issues

I Construction process

I Deconvolution of given surface ground motions

I No artificial damping (only mat. dissipation, radiation)

I Element size issues (filtering of frequencies)

elem. # elem. size fcutoff min. Gep/Gmax γ

12K 1.00 m 10 Hz 1.0 <0.5 %15K 0.90 m >3 Hz 0.08 <1.0 %

150K 0.30 m 10 Hz 0.08 <1.0 %500K 0.15 m 10 Hz 0.02 <5.0 %

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 23: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

High Fidelity, 3D Models

Northridge and Kocaeli Input Motions

0 10 20 30 40 50 60

−2

0

2

Time (s)

Acc

eler

atio

n (m

/s2 ) Acceleration Time Series − Input Motion (NORTHRIDGE EARTHQUAKE, 1994)

0 10 20 30 40 50 60−0.2

0

0.2

Time (s)

Dis

plac

emen

t (m

) Displacement Time Series − Input Motion (NORTHRIDGE EARTHQUAKE, 1994)

0 5 10 15 20 25 30 35

−2

0

2

Time (s)

Acc

eler

atio

n (m

/s2 ) Acceleration Time Series − Input Motion (TURKEY KOCAELI EARTHQUAKE, 1999)

0 5 10 15 20 25 30 35−0.4

−0.2

0

0.2

Time (s)

Dis

plac

emen

t (m

) Displacement Time Series − Input Motion (TURKEY KOCAELI EARTHQUAKE, 1999)

1 2 3 4 5 6 7 8 9 100

1

2

Period (s)Fou

rier

Am

plitu

de (

m/s

2 )

Acceleration Frequency Content − Input Motion (NORTHRIDGE EARTHQUAKE, 1994)

1 2 3 4 5 6 7 8 9 100

0.2

0.4

Period (s)Fou

rier

Am

plitu

de (

m)

Displacement Frequency Content − Input Motion (NORTHRIDGE EARTHQUAKE, 1994)

2 4 6 8 10 12 14 16 18 200

2

4

Period (s)Fou

rier

Am

plitu

de (

m/s

2 )

Acceleration Frequency Content − Input Motion (TURKEY KOCAELI EARTHQUAKE, 1999)

2 4 6 8 10 12 14 16 18 200

2

4

Period (s)Fou

rier

Am

plitu

de (

m)

Displacement Frequency Content − Input Motion (TURKEY KOCAELI EARTHQUAKE, 1999)

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 24: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

High Fidelity, 3D Models

Simulation Results

0 10 20 30 40 50 60

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

Dis

plac

emen

t (m

)

SSS CCC SSC CCS SCS CSC SCC CSS Freefield Input Motion

0 10 20 30 40 50 60

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

Dis

plac

emen

t (m

)

SSS CCC SSC CCS SCS CSC SCC CSS

0 10 20 30 40 50 60

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

Dis

plac

emen

t (m

)

SSS CCC SSC CCS SCS CSC SCC CSS Freefield Input Motion

0 10 20 30 40 50 60

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

Dis

plac

emen

t (m

)

SSS CCC SSC CCS SCS CSC SCC CSS

0 10 20 30 40 50 60

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

Dis

plac

emen

t (m

)

SSS CCC SSC CCS SCS CSC SCC CSS Freefield Input Motion

0 10 20 30 40 50 60

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

Dis

plac

emen

t (m

)

SSS CCC SSC CCS SCS CSC SCC CSS

0 10 20 30 40 50 60−3

−2

−1

0

1

2

3

Time (s)

Acc

eler

atio

n (m

/s2 )

SSS CCC SSC CCS SCS CSC SCC CSS

0 10 20 30 40 50 60−3

−2

−1

0

1

2

3

Time (s)

Acc

eler

atio

n (m

/s2 )

SSS CCC SSC CCS SCS CSC SCC CSS

0 10 20 30 40 50 60−3

−2

−1

0

1

2

3

Time (s)

Acc

eler

atio

n (m

/s2 )

SSS CCC SSC CCS SCS CSC SCC CSS

0 10 20 30 40 50 60−3

−2

−1

0

1

2

3

Time (s)

Acc

eler

atio

n (m

/s2 )

SSS CCC SSC CCS SCS CSC SCC CSS

0 10 20 30 40 50 60−3

−2

−1

0

1

2

3

Time (s)

Acc

eler

atio

n (m

/s2 )

SSS CCC SSC CCS SCS CSC SCC CSS

0 10 20 30 40 50 60−3

−2

−1

0

1

2

3

Time (s)

Acc

eler

atio

n (m

/s2 )

SSS CCC SSC CCS SCS CSC SCC CSS

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.2

0.4

0.6

0.8

1

Period (s)

Fou

rier

Am

plitu

de (

m)

SSS CCC SSC CCS SCS CSC SCC CSS Freefield Input Motion

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

Period (s)

Fou

rier

Am

plitu

de (

m/s

2 )

SSS CCC SSC CCS SCS CSC SCC CSS Freefield Input Motion

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Period (s)

Fou

rier

Am

plitu

de (

m)

SSS CCC SSC CCS SCS CSC SCC CSS Freefield Input Motion

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.2

0.4

0.6

0.8

1

1.2

1.4

Period (s)

Fou

rier

Am

plitu

de (

m/s

2 )

SSS CCC SSC CCS SCS CSC SCC CSS Freefield Input Motion

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Period (s)

Fou

rier

Am

plitu

de (

m)

SSS CCC SSC CCS SCS CSC SCC CSS Freefield Input Motion

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Period (s)

Fou

rier

Am

plitu

de (

m/s

2 )

SSS CCC SSC CCS SCS CSC SCC CSS Freefield Input Motion

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

1

2

3

4

5

Period (s)

Fou

rier

Am

plitu

de (

m/s

2 )

SSS CCC SSC CCS SCS CSC SCC CSS Freefield Input Motion

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

2

4

6

8

10

Period (s)

Fou

rier

Am

plitu

de (

m/s

2 )

SSS CCC SSC CCS SCS CSC SCC CSS Freefield Input Motion

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

1

2

3

4

5

6

Period (s)

Fou

rier

Am

plitu

de (

m/s

2 )

SSS CCC SSC CCS SCS CSC SCC CSS Freefield Input Motion

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

1

2

3

4

5

6

7

8

Period (s)

Fou

rier

Am

plitu

de (

m/s

2 )

SSS CCC SSC CCS SCS CSC SCC CSS Freefield Input Motion

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

Period (s)

Fou

rier

Am

plitu

de (

m/s

2 )

SSS CCC SSC CCS SCS CSC SCC CSS Freefield Input Motion

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

2

4

6

8

10

Period (s)

Fou

rier

Am

plitu

de (

m/s

2 )

SSS CCC SSC CCS SCS CSC SCC CSS Freefield Input Motion

0 10 20 30 40 50 60−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Time (s)

Mom

ent (

kN*m

)

SSS CCC SSC CCS SCS CSC SCC CSS

0 10 20 30 40 50 60−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Time (s)

Mom

ent (

kN*m

)

SSS CCC SSC CCS SCS CSC SCC CSS

0 10 20 30 40 50 60−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Time (s)

Mom

ent (

kN*m

)

SSS CCC SSC CCS SCS CSC SCC CSS

0 10 20 30 40 50 60−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Time (s)

Mom

ent (

kN*m

)

SSS CCC SSC CCS SCS CSC SCC CSS

0 10 20 30 40 50 60−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Time (s)

Mom

ent (

kN*m

)

SSS CCC SSC CCS SCS CSC SCC CSS

0 10 20 30 40 50 60−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Time (s)

Mom

ent (

kN*m

)

SSS CCC SSC CCS SCS CSC SCC CSS

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 25: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Behavior for Short Period Motions

Northridge Input Motions

0 10 20 30 40 50 60

−2

0

2

Time (s)

Acc

eler

atio

n (m

/s2 ) Acceleration Time Series − Input Motion (NORTHRIDGE EARTHQUAKE, 1994)

0 10 20 30 40 50 60−0.2

0

0.2

Time (s)

Dis

plac

emen

t (m

) Displacement Time Series − Input Motion (NORTHRIDGE EARTHQUAKE, 1994)

1 2 3 4 5 6 7 8 9 100

1

2

Period (s)Fou

rier

Am

plitu

de (

m/s

2 )

Acceleration Frequency Content − Input Motion (NORTHRIDGE EARTHQUAKE, 1994)

1 2 3 4 5 6 7 8 9 100

0.2

0.4

Period (s)Fou

rier

Am

plitu

de (

m)

Displacement Frequency Content − Input Motion (NORTHRIDGE EARTHQUAKE, 1994)

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 26: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Behavior for Short Period Motions

Short Period E.: Left Bent, Structure and Soil, Disp.

0 10 20 30 40 50 60

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

Dis

plac

emen

t (m

)

SSS CCC SSC CCS SCS CSC SCC CSS

0 10 20 30 40 50 60

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

Dis

plac

emen

t (m

)

SSS CCC SSC CCS SCS CSC SCC CSS Freefield Input Motion

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 27: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Behavior for Short Period Motions

Short Period E.: Left Bent, Structure and Soil, Acc.Sp.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

2

4

6

8

10

Period (s)

Fou

rier

Am

plitu

de (

m/s

2 )

SSS CCC SSC CCS SCS CSC SCC CSS

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

1

2

3

4

5

Period (s)

Fou

rier

Am

plitu

de (

m/s

2 )

SSS CCC SSC CCS SCS CSC SCC CSS Freefield Input Motion

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 28: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Behavior for Short Period Motions

Short Period E.: Left Bent, Structure and Soil, M.

0 10 20 30 40 50 60−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Time (s)

Mom

ent (

kN*m

)

SSS CCC SSC CCS SCS CSC SCC CSS

0 10 20 30 40 50 60−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Time (s)

Mom

ent (

kN*m

)

SSS CCC SSC CCS SCS CSC SCC CSS

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 29: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Behavior for Short Period Motions

Short Period E.: Left Bent, Bending Moments

0 5 10 15 20 25−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Time (s)

Mom

ent (

kN*m

)

SSS CCC

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 30: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Behavior for Short Period Motions

Short Period E.: Left Bent, Free Field vs Real Disp.

0 5 10 15 20 25

−0.1

−0.05

0

0.05

0.1

0.15

Time (s)

Dis

plac

emen

t (m

)

SSS CCC Freefield Input Motion

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 31: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Behavior in Long Period Motions

Kocaeli Input Motions

0 5 10 15 20 25 30 35

−2

0

2

Time (s)

Acc

eler

atio

n (m

/s2 ) Acceleration Time Series − Input Motion (TURKEY KOCAELI EARTHQUAKE, 1999)

0 5 10 15 20 25 30 35−0.4

−0.2

0

0.2

Time (s)

Dis

plac

emen

t (m

) Displacement Time Series − Input Motion (TURKEY KOCAELI EARTHQUAKE, 1999)

2 4 6 8 10 12 14 16 18 200

2

4

Period (s)Fou

rier

Am

plitu

de (

m/s

2 )

Acceleration Frequency Content − Input Motion (TURKEY KOCAELI EARTHQUAKE, 1999)

2 4 6 8 10 12 14 16 18 200

2

4

Period (s)Fou

rier

Am

plitu

de (

m)

Displacement Frequency Content − Input Motion (TURKEY KOCAELI EARTHQUAKE, 1999)

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 32: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Behavior in Long Period Motions

Long Period E.: Left Bent, Bending Moments.

0 5 10 15 20 25 30 35−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Time (s)

Mom

ent (

kN*m

)

SSS CCC

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 33: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Behavior in Long Period Motions

Long Period E.: Left Bent, Structure and Soil, Disp.

0 5 10 15 20 25 30 35−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (s)

Dis

plac

emen

t (m

)

SSS CCC

0 5 10 15 20 25 30 35−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (s)

Dis

plac

emen

t (m

)

SSS CCC Freefield Input Motion

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations

Page 34: The Plastic Domain Decomposition for Soil Foundation Structure …sokocalo.engr.ucdavis.edu/~jeremic/ · 2007-06-25 · I Elastic–plastic soil I Mild evolution of elastic–plastic

Hypothesis Computational Platform ESS Case Study Summary

Summary

I High fidelity numerical models of ESS systems

I High performance computational tools (software andhardware) developed and available

I Matching Triad: Earthquake, Soil and Structure (ESS)interaction determines possible benefits or detriments

I Program sources and tools available in public domain(GPL) at Author’s web site

Jeremic Computational Geomechanics Group

The Plastic Domain Decomposition for Soil Foundation Structure Interaction Computations