Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D....

125
Zeros of Generalized Eulerian Polynomials Carla D. Savage 1 Mirk´ o Visontai 2 1 Department of Computer Science North Carolina State University 2 Google Inc (work done while at UPenn & KTH). Geometric and Enumerative Combinatorics, IMA, 11/10/2014

Transcript of Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D....

Page 1: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Zeros of Generalized Eulerian Polynomials

Carla D. Savage1 Mirko Visontai2

1Department of Computer ScienceNorth Carolina State University

2Google Inc (work done while at UPenn & KTH).

Geometric and Enumerative Combinatorics, IMA,11/10/2014

Page 2: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Outline

IntroPolynomials with (only) real zerosEulerian polynomials

ToolboxCompatible polynomialsInversion sequences

s-Eulerian polynomialsGeneralized inversion sequencesProving real zeros via compatible polynomialsConsequences

Summary

Page 3: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Outline

IntroPolynomials with (only) real zerosEulerian polynomials

ToolboxCompatible polynomialsInversion sequences

s-Eulerian polynomialsGeneralized inversion sequencesProving real zeros via compatible polynomialsConsequences

Summary

Page 4: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Polynomials with (only) real zeros

Combinatorics, algebra, geometry, analysis, . . .

Surveys by: Stanley (’86), Brenti (’94), Branden (2014+).

Page 5: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Combinatorial significance

Consider a generating polynomial

n∑k=0

akxk ,

if it has only real zeros then the coefficients are known to be

strongly log-concave: a2k

(nk)(nk)

> ak−1(nk−1

) ak+1(nk+1

)log-concave: a2

k > ak−1ak+1

unimodal: a0 6 · · · 6 am > · · · > an (if ak > 0)

Other, geometrically inspired notions: γ-nonnegativity.

Page 6: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Outline

IntroPolynomials with (only) real zerosEulerian polynomials

ToolboxCompatible polynomialsInversion sequences

s-Eulerian polynomialsGeneralized inversion sequencesProving real zeros via compatible polynomialsConsequences

Summary

Page 7: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Eulerian polynomialsas generating polynomials

For a permutation π = π1 . . .πn in Sn, let

des(π) = |{i | πi > πi+1}|

denote the number of descents in π.

DefinitionThe Eulerian polynomial is

Sn(x) :=∑π∈Sn

xdes(π) =

n−1∑k=0

⟨nk

⟩xk,

where⟨nk

⟩= |{π ∈ Sn|des(π) = k}|.

Page 8: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Eulerian numbers:⟨nk

⟩Euler’s triangle

k:0 1 2 3 4 5

n: 1 12 1 13 1 4 14 1 11 11 15 1 26 66 26 16 1 57 302 302 57 1

I S1(x) = 1,I S2(x) = 1 + x,I S3(x) = 1 + 4x+ x2,I S4(x) = 1 + 11x+ 11x2 + x3, . . .

Page 9: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Eulerian numbers:⟨nk

⟩Euler’s triangle

k:0 1 2 3 4 5

n: 1 12 1 13 1 4 14 1 11 11 15 1 26 66 26 16 1 57 302 302 57 1

I S1(x) = 1,I S2(x) = 1 + x,I S3(x) = 1 + 4x+ x2,I S4(x) = 1 + 11x+ 11x2 + x3, . . .

Page 10: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

The zeros of Sn(x)

Theorem (Frobenius)Sn(x) has only (negative and simple) real zeros.

CorollaryFor all n > 1, the Eulerian numbers⟨n

0

⟩,⟨n

1

⟩, . . . ,

⟨n

n− 1

⟩form a (strongly) log-concave, and hence unimodal sequence.Most proofs of the theorem rely on the recurrence:

Sn+1(x) = (1 + nx)Sn(x) + x(1 − x)S ′n(x).

Page 11: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

The zeros of Sn(x)

Theorem (Frobenius)Sn(x) has only (negative and simple) real zeros.

CorollaryFor all n > 1, the Eulerian numbers⟨n

0

⟩,⟨n

1

⟩, . . . ,

⟨n

n− 1

⟩form a (strongly) log-concave, and hence unimodal sequence.

Most proofs of the theorem rely on the recurrence:

Sn+1(x) = (1 + nx)Sn(x) + x(1 − x)S ′n(x).

Page 12: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

The zeros of Sn(x)

Theorem (Frobenius)Sn(x) has only (negative and simple) real zeros.

CorollaryFor all n > 1, the Eulerian numbers⟨n

0

⟩,⟨n

1

⟩, . . . ,

⟨n

n− 1

⟩form a (strongly) log-concave, and hence unimodal sequence.Most proofs of the theorem rely on the recurrence:

Sn+1(x) = (1 + nx)Sn(x) + x(1 − x)S ′n(x).

Page 13: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Frobenius’ proof (via interlacing)

Sn+1(x) = (1 + nx)Sn(x) + x(1 − x)S ′n(x)

= (n+ 1)xSn(x) + (1 − x) (xSn(x))′

x(1 + 4x+ x2)

−4 −3 −2 −1 1

−10

−5

5

Page 14: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Frobenius’ proof (via interlacing)

Sn+1(x) = (1 + nx)Sn(x) + x(1 − x)S ′n(x)

= (n+ 1)xSn(x) + (1 − x) (xSn(x))′

x(1 + 4x+ x2)

−4 −3 −2 −1 1

−10

−5

5

Page 15: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Frobenius’ proof (via interlacing)

Sn+1(x) = (1 + nx)Sn(x) + x(1 − x)S ′n(x)

= (n+ 1)xSn(x) + (1 − x) (xSn(x))′

x(1 + 4x+ x2)

−4 −3 −2 −1 1

−10

−5

5

−4 −3 −2 −1 1

−10

−5

5

Page 16: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Frobenius’ proof (via interlacing)

Sn+1(x) = (1 + nx)Sn(x) + x(1 − x)S ′n(x)

= (n+ 1)xSn(x) + (1 − x) (xSn(x))′

x(1 + 4x+ x2)

−4 −3 −2 −1 1

−10

−5

5

Page 17: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Interlacing polynomials

Theorem (Obreschkoff)

I f(x) and g(x) have interlacing zerosI λf+ µg has only real zeros for any λ,µ ∈ R.

Problem with this method:

Does not scale.

Dn+2(x) = (n(1 + 5x) + 4x)Dn+1(x) + 4x(1 − x)D′n+1(x)

+((1 − x)2 −n(1 + 3x)2 − 4n(n− 1)x(1 + 2x))Dn(x)

−(4nx(1 − x)(1 + 3x) + 4x(1 − x)2)D′n(x) − 4x2(1 − x)2D′′

n(x)

+(2n(n− 1)x(3 + 2x+ 3x2) + 4n(n− 1)(n− 2)x2(1 + x))Dn−1(x)

+(2nx(1 − x)2(3 + x) + 8n(n− 1)x2(1 − x)(1 + x))D′n−1(x)

+4nx2(1 − x)2(1 + x)D′′n−1(x).

Page 18: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Interlacing polynomials

Theorem (Obreschkoff)

I f(x) and g(x) have interlacing zerosI λf+ µg has only real zeros for any λ,µ ∈ R.

Problem with this method: Does

not scale.

Dn+2(x) = (n(1 + 5x) + 4x)Dn+1(x) + 4x(1 − x)D′n+1(x)

+((1 − x)2 −n(1 + 3x)2 − 4n(n− 1)x(1 + 2x))Dn(x)

−(4nx(1 − x)(1 + 3x) + 4x(1 − x)2)D′n(x) − 4x2(1 − x)2D′′

n(x)

+(2n(n− 1)x(3 + 2x+ 3x2) + 4n(n− 1)(n− 2)x2(1 + x))Dn−1(x)

+(2nx(1 − x)2(3 + x) + 8n(n− 1)x2(1 − x)(1 + x))D′n−1(x)

+4nx2(1 − x)2(1 + x)D′′n−1(x).

Page 19: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Interlacing polynomials

Theorem (Obreschkoff)

I f(x) and g(x) have interlacing zerosI λf+ µg has only real zeros for any λ,µ ∈ R.

Problem with this method: Does not

scale.

Dn+2(x) = (n(1 + 5x) + 4x)Dn+1(x) + 4x(1 − x)D′n+1(x)

+((1 − x)2 −n(1 + 3x)2 − 4n(n− 1)x(1 + 2x))Dn(x)

−(4nx(1 − x)(1 + 3x) + 4x(1 − x)2)D′n(x) − 4x2(1 − x)2D′′

n(x)

+(2n(n− 1)x(3 + 2x+ 3x2) + 4n(n− 1)(n− 2)x2(1 + x))Dn−1(x)

+(2nx(1 − x)2(3 + x) + 8n(n− 1)x2(1 − x)(1 + x))D′n−1(x)

+4nx2(1 − x)2(1 + x)D′′n−1(x).

Page 20: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Interlacing polynomials

Theorem (Obreschkoff)

I f(x) and g(x) have interlacing zerosI λf+ µg has only real zeros for any λ,µ ∈ R.

Problem with this method: Does not scale.

Dn+2(x) = (n(1 + 5x) + 4x)Dn+1(x) + 4x(1 − x)D′n+1(x)

+((1 − x)2 −n(1 + 3x)2 − 4n(n− 1)x(1 + 2x))Dn(x)

−(4nx(1 − x)(1 + 3x) + 4x(1 − x)2)D′n(x) − 4x2(1 − x)2D′′

n(x)

+(2n(n− 1)x(3 + 2x+ 3x2) + 4n(n− 1)(n− 2)x2(1 + x))Dn−1(x)

+(2nx(1 − x)2(3 + x) + 8n(n− 1)x2(1 − x)(1 + x))D′n−1(x)

+4nx2(1 − x)2(1 + x)D′′n−1(x).

Page 21: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Interlacing polynomials

Theorem (Obreschkoff)

I f(x) and g(x) have interlacing zerosI λf+ µg has only real zeros for any λ,µ ∈ R.

Problem with this method: Does not scale.

Dn+2(x) = (n(1 + 5x) + 4x)Dn+1(x) + 4x(1 − x)D′n+1(x)

+((1 − x)2 −n(1 + 3x)2 − 4n(n− 1)x(1 + 2x))Dn(x)

−(4nx(1 − x)(1 + 3x) + 4x(1 − x)2)D′n(x) − 4x2(1 − x)2D′′

n(x)

+(2n(n− 1)x(3 + 2x+ 3x2) + 4n(n− 1)(n− 2)x2(1 + x))Dn−1(x)

+(2nx(1 − x)2(3 + x) + 8n(n− 1)x2(1 − x)(1 + x))D′n−1(x)

+4nx2(1 − x)2(1 + x)D′′n−1(x).

Page 22: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Outline

IntroPolynomials with (only) real zerosEulerian polynomials

ToolboxCompatible polynomialsInversion sequences

s-Eulerian polynomialsGeneralized inversion sequencesProving real zeros via compatible polynomialsConsequences

Summary

Page 23: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Compatible polynomials

DefinitionThe polynomials f1(x), . . . , fm(x) over R are compatible, if alltheir conic combinations, i.e., the polynomials

m∑i=1

cifi(x) for all c1, . . . , cm > 0

have only real zeros.

Remark (Chudnovsky–Seymour)

I f1(x), . . . , fm(x) are compatible if and only ifI f1(x), . . . , fm(x) have a common interleaver g(x).

Page 24: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Compatible polynomials

DefinitionThe polynomials f1(x), . . . , fm(x) over R are compatible, if alltheir conic combinations, i.e., the polynomials

m∑i=1

cifi(x) for all c1, . . . , cm > 0

have only real zeros.

Remark (Chudnovsky–Seymour)

I f1(x), . . . , fm(x) are compatible if and only ifI f1(x), . . . , fm(x) have a common interleaver g(x).

Page 25: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Compatible polynomials

DefinitionThe polynomials f1(x), . . . , fm(x) are pairwise compatible if

fi(x) and fj(x) are compatible

for all 1 6 i < j 6 m.

Lemma (Chudnovsky–Seymour)The polynomials f1(x), . . . , fm(x) are compatible if and only ifthey are pairwise compatible.

Page 26: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Compatible polynomials

DefinitionThe polynomials f1(x), . . . , fm(x) are pairwise compatible if

fi(x) and fj(x) are compatible

for all 1 6 i < j 6 m.

Lemma (Chudnovsky–Seymour)The polynomials f1(x), . . . , fm(x) are compatible if and only ifthey are pairwise compatible.

Page 27: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Advantage of compatible polynomials

I Can handle nonnegative sum of many polynomials.I Enough to prove pairwise compatibility.

Page 28: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Outline

IntroPolynomials with (only) real zerosEulerian polynomials

ToolboxCompatible polynomialsInversion sequences

s-Eulerian polynomialsGeneralized inversion sequencesProving real zeros via compatible polynomialsConsequences

Summary

Page 29: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Inversion sequencesan alternative way to represent Sn

DefinitionThe inversion sequence of a permutation π = π1 · · ·πn is ann-tuple

e = (e1, . . . , en),

whereej =

∣∣{i ∈ {1, 2, . . . , j− 1} | πi > πj}∣∣

counts the number of inversions “ending” in the jth position.

Example (n = 3)π1π2π3 1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1e1e2e3 0 0 0 0 0 1 0 1 0 0 0 2 0 1 1 0 1 2

Variants known under different names: Lehmer code, inversioncode, inversion table, etc.

Page 30: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Inversion sequencesan alternative way to represent Sn

DefinitionThe inversion sequence of a permutation π = π1 · · ·πn is ann-tuple

e = (e1, . . . , en),

whereej =

∣∣{i ∈ {1, 2, . . . , j− 1} | πi > πj}∣∣

counts the number of inversions “ending” in the jth position.

Example (n = 3)π1π2π3 1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1e1e2e3 0 0 0 0 0 1 0 1 0 0 0 2 0 1 1 0 1 2

Variants known under different names: Lehmer code, inversioncode, inversion table, etc.

Page 31: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Inversion sequencesan alternative way to represent Sn

DefinitionThe inversion sequence of a permutation π = π1 · · ·πn is ann-tuple

e = (e1, . . . , en),

whereej =

∣∣{i ∈ {1, 2, . . . , j− 1} | πi > πj}∣∣

counts the number of inversions “ending” in the jth position.

Example (n = 3)π1π2π3 1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1e1e2e3 0 0 0 0 0 1 0 1 0 0 0 2 0 1 1 0 1 2

Variants known under different names: Lehmer code, inversioncode, inversion table, etc.

Page 32: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Inversion sequencesascent statistic

DefinitionFor an inversion sequence e = (e1, . . . , en) ∈ In, let

ascI(e) = |{i ∈ {1, . . . ,n− 1} : ei < ei+1}| ,

denote the number of ascents in e.

Example (n = 3)

e1e2e3 ascI(e)0 0 0 00 0 1 10 0 2 10 1 0 10 1 1 10 1 2 2

Page 33: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Inversion sequencesascent statistic

DefinitionFor an inversion sequence e = (e1, . . . , en) ∈ In, let

ascI(e) = |{i ∈ {1, . . . ,n− 1} : ei < ei+1}| ,

denote the number of ascents in e.

Example (n = 3)

e1e2e3 ascI(e)0 0 0 00 0 1 10 0 2 10 1 0 10 1 1 10 1 2 2

Page 34: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

ObservationThe ascent statistics over inversion sequences is Eulerian.

Theorem (Savage–Schuster)∑e∈In

xascI(e) =∑π∈Sn

xdes(π) .

Example (n = 3)

e1e2e3 ascI(e) π1π2π3 des(π)0 0 0 0 1 2 3 00 0 1 1 1 3 2 10 0 2 1 2 3 1 10 1 0 1 2 1 3 10 1 1 1 3 1 2 10 1 2 2 3 2 1 2

Page 35: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

ObservationThe ascent statistics over inversion sequences is Eulerian.

Theorem (Savage–Schuster)∑e∈In

xascI(e) =∑π∈Sn

xdes(π) .

Example (n = 3)

e1e2e3 ascI(e) π1π2π3 des(π)0 0 0 0 1 2 3 00 0 1 1 1 3 2 10 0 2 1 2 3 1 10 1 0 1 2 1 3 10 1 1 1 3 1 2 10 1 2 2 3 2 1 2

Page 36: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Advantage of inversion sequences

I Easy recurrence, the change in the ascent statistic

ascI(e) = |{i ∈ {1, . . . ,n− 1} : ei < ei+1}| ,

only depends on the last entry.

I Lend themselves to generalizations.

Page 37: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Advantage of inversion sequences

I Easy recurrence, the change in the ascent statistic

ascI(e) = |{i ∈ {1, . . . ,n− 1} : ei < ei+1}| ,

only depends on the last entry.

I Lend themselves to generalizations.

Page 38: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Outline

IntroPolynomials with (only) real zerosEulerian polynomials

ToolboxCompatible polynomialsInversion sequences

s-Eulerian polynomialsGeneralized inversion sequencesProving real zeros via compatible polynomialsConsequences

Summary

Page 39: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Generalized inversion sequences

Recall some facts about the inversion sequences:

In = {(e1, . . . , en) ∈ Zn | 0 6 ei < i}

= {0}× {0, 1}× · · · × {0, 1, . . . ,n− 1} .

DefinitionFor a given sequence s = (s1, . . . , sn) ∈Nn, let I(s)n denote theset of s-inversion sequences by

I(s)n = {(e1, . . . , en) ∈ Zn | 0 6 ei < si} .

I(s)n = {0, . . . , s1 − 1}× {0, . . . , s2 − 1}× · · · × {0, . . . , sn − 1} .

Page 40: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Generalized inversion sequences

Recall some facts about the inversion sequences:

In = {(e1, . . . , en) ∈ Zn | 0 6 ei < i}

= {0}× {0, 1}× · · · × {0, 1, . . . ,n− 1} .

DefinitionFor a given sequence s = (s1, . . . , sn) ∈Nn, let I(s)n denote theset of s-inversion sequences by

I(s)n = {(e1, . . . , en) ∈ Zn | 0 6 ei < si} .

I(s)n = {0, . . . , s1 − 1}× {0, . . . , s2 − 1}× · · · × {0, . . . , sn − 1} .

Page 41: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Generalized inversion sequences

Recall some facts about the inversion sequences:

In = {(e1, . . . , en) ∈ Zn | 0 6 ei < i}

= {0}× {0, 1}× · · · × {0, 1, . . . ,n− 1} .

DefinitionFor a given sequence s = (s1, . . . , sn) ∈Nn, let I(s)n denote theset of s-inversion sequences by

I(s)n = {(e1, . . . , en) ∈ Zn | 0 6 ei < si} .

I(s)n = {0, . . . , s1 − 1}× {0, . . . , s2 − 1}× · · · × {0, . . . , sn − 1} .

Page 42: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

The ascent statistic on s-inversion sequences

Savage and Schuster extended the definition of the ascentstatistic to s-inversion sequences.

DefinitionFor e = (e1, . . . , en) ∈ I(s)n , let

ascI(e) =∣∣∣∣{i ∈ {0, . . . ,n− 1} :

eisi<ei+1

si+1

}∣∣∣∣ ,

where we use the convention e0 = 0 (and s0 = 1).Fact: The case si = i agrees with usual inversion sequences.

ei < ei+1 ⇐⇒eii<ei+1

i+ 1,

whenever 0 6 ek < k, for all k.

Page 43: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

The ascent statistic on s-inversion sequences

Savage and Schuster extended the definition of the ascentstatistic to s-inversion sequences.

DefinitionFor e = (e1, . . . , en) ∈ I(s)n , let

ascI(e) =∣∣∣∣{i ∈ {0, . . . ,n− 1} :

eisi<ei+1

si+1

}∣∣∣∣ ,

where we use the convention e0 = 0 (and s0 = 1).

Fact: The case si = i agrees with usual inversion sequences.

ei < ei+1 ⇐⇒eii<ei+1

i+ 1,

whenever 0 6 ek < k, for all k.

Page 44: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

The ascent statistic on s-inversion sequences

Savage and Schuster extended the definition of the ascentstatistic to s-inversion sequences.

DefinitionFor e = (e1, . . . , en) ∈ I(s)n , let

ascI(e) =∣∣∣∣{i ∈ {0, . . . ,n− 1} :

eisi<ei+1

si+1

}∣∣∣∣ ,

where we use the convention e0 = 0 (and s0 = 1).Fact: The case si = i agrees with usual inversion sequences.

ei < ei+1 ⇐⇒eii<ei+1

i+ 1,

whenever 0 6 ek < k, for all k.

Page 45: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

ExamplesThe ascent statistic on s-inversion sequences

e = (0, 3, 4) withI ascI(e) = 1.

e ′ = (1, 1, 2) withI ascI(e ′) = 2.

u �������

u

u u

e0

e1 e2 e3

01 = 0

2 <34 >

46

ue ′0

e ′1 e ′2 e ′3

01 <

12 >

14 <

26

��

��u u u

0

1

2

3

4

5

0

1

2

3

4

5

Two examples for the sequence s = (2, 4, 6)

Page 46: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

ExamplesThe ascent statistic on s-inversion sequences

e = (0, 3, 4)

withI ascI(e) = 1.

e ′ = (1, 1, 2)

withI ascI(e ′) = 2.

u �������

u

u u

e0

e1 e2 e3

01 = 0

2 <34 >

46

ue ′0

e ′1 e ′2 e ′3

01 <

12 >

14 <

26

��

��

u u u0

1

2

3

4

5

0

1

2

3

4

5

Two examples for the sequence s = (2, 4, 6)

Page 47: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

ExamplesThe ascent statistic on s-inversion sequences

e = (0, 3, 4)

withI ascI(e) = 1.

e ′ = (1, 1, 2)

withI ascI(e ′) = 2.

u

�������

u

u u

e0 e1 e2 e3

01 = 0

2 <34 >

46

ue ′0 e ′1 e ′2 e ′3

01 <

12 >

14 <

26

��

��

u u u0

1

2

3

4

5

0

1

2

3

4

5

Two examples for the sequence s = (2, 4, 6)

Page 48: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

ExamplesThe ascent statistic on s-inversion sequences

e = (0, 3, 4) withI ascI(e) = 1.

e ′ = (1, 1, 2) withI ascI(e ′) = 2.

u �������

u

u u

e0 e1 e2 e3

01 = 0

2 <34 >

46

ue ′0 e ′1 e ′2 e ′3

01 <

12 >

14 <

26

��

��u u u

0

1

2

3

4

5

0

1

2

3

4

5

Two examples for the sequence s = (2, 4, 6)

Page 49: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

ExamplesThe ascent statistic on s-inversion sequences

e = (0, 3, 4) withI ascI(e) = 1.

e ′ = (1, 1, 2) withI ascI(e ′) = 2.

u �������

u

u u

e0 e1 e2 e3

01 = 0

2 <34 >

46

u

e ′0 e ′1 e ′2 e ′3

01 <

12 >

14 <

26

��

��u u u

0

1

2

3

4

5

0

1

2

3

4

5

Two examples for the sequence s = (2, 4, 6)

Page 50: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

s-Eulerian polynomials

Definition (s-Eulerian polynomials)For an arbitrary sequence s = s1, s2, . . . , let

E(s)n (x) :=

∑e∈I(s)n

xascI(e) .

Recall that

Sn(x) =∑π∈Sn

xdes(π)

=∑

e∈I(s)n

xascI(e) ,

when s = 1, 2, . . . ,n.

Page 51: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

s-Eulerian polynomials

Definition (s-Eulerian polynomials)For an arbitrary sequence s = s1, s2, . . . , let

E(s)n (x) :=

∑e∈I(s)n

xascI(e) .

Recall that

Sn(x) =∑π∈Sn

xdes(π)

=∑

e∈I(s)n

xascI(e) ,

when s = 1, 2, . . . ,n.

Page 52: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

s-Eulerian polynomialsand why do we care

Special cases of s-Eulerian polynomials, E(s)n (x):

I s = (1, 2, . . . ,n): the Eulerian polynomial, Sn(x),I s = (2, 4, . . . , 2n): the type B Eulerian polynomial, Bn(x),I s = (k, 2k, . . . ,nk): the descent polynomial for the wreath

products, Gn,r(x),I s = (k,k, . . . ,k): the ascent polynomial for words over ak-letter alphabet {0, 1, 2, . . . ,k− 1},

I s = (k+ 1, 2k+ 1, . . . , (n− 1)k+ 1): the 1/k-Eulerianpolynomial, xexcπ(1/k)cycπ,

I s = (1, 1, 3, 2, 5, 3, 7, 4, . . . , 2n− 1,n): the descentpolynomial for the multiset {1, 1, 2, 2, . . . ,n,n}.

Page 53: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

s-Eulerian polynomialsand why do we care

Special cases of s-Eulerian polynomials, E(s)n (x):

I s = (1, 2, . . . ,n): the Eulerian polynomial, Sn(x),

I s = (2, 4, . . . , 2n): the type B Eulerian polynomial, Bn(x),I s = (k, 2k, . . . ,nk): the descent polynomial for the wreath

products, Gn,r(x),I s = (k,k, . . . ,k): the ascent polynomial for words over ak-letter alphabet {0, 1, 2, . . . ,k− 1},

I s = (k+ 1, 2k+ 1, . . . , (n− 1)k+ 1): the 1/k-Eulerianpolynomial, xexcπ(1/k)cycπ,

I s = (1, 1, 3, 2, 5, 3, 7, 4, . . . , 2n− 1,n): the descentpolynomial for the multiset {1, 1, 2, 2, . . . ,n,n}.

Page 54: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

s-Eulerian polynomialsand why do we care

Special cases of s-Eulerian polynomials, E(s)n (x):

I s = (1, 2, . . . ,n): the Eulerian polynomial, Sn(x),I s = (2, 4, . . . , 2n): the type B Eulerian polynomial, Bn(x),

I s = (k, 2k, . . . ,nk): the descent polynomial for the wreathproducts, Gn,r(x),

I s = (k,k, . . . ,k): the ascent polynomial for words over ak-letter alphabet {0, 1, 2, . . . ,k− 1},

I s = (k+ 1, 2k+ 1, . . . , (n− 1)k+ 1): the 1/k-Eulerianpolynomial, xexcπ(1/k)cycπ,

I s = (1, 1, 3, 2, 5, 3, 7, 4, . . . , 2n− 1,n): the descentpolynomial for the multiset {1, 1, 2, 2, . . . ,n,n}.

Page 55: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

s-Eulerian polynomialsand why do we care

Special cases of s-Eulerian polynomials, E(s)n (x):

I s = (1, 2, . . . ,n): the Eulerian polynomial, Sn(x),I s = (2, 4, . . . , 2n): the type B Eulerian polynomial, Bn(x),I s = (k, 2k, . . . ,nk): the descent polynomial for the wreath

products, Gn,r(x),

I s = (k,k, . . . ,k): the ascent polynomial for words over ak-letter alphabet {0, 1, 2, . . . ,k− 1},

I s = (k+ 1, 2k+ 1, . . . , (n− 1)k+ 1): the 1/k-Eulerianpolynomial, xexcπ(1/k)cycπ,

I s = (1, 1, 3, 2, 5, 3, 7, 4, . . . , 2n− 1,n): the descentpolynomial for the multiset {1, 1, 2, 2, . . . ,n,n}.

Page 56: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

s-Eulerian polynomialsand why do we care

Special cases of s-Eulerian polynomials, E(s)n (x):

I s = (1, 2, . . . ,n): the Eulerian polynomial, Sn(x),I s = (2, 4, . . . , 2n): the type B Eulerian polynomial, Bn(x),I s = (k, 2k, . . . ,nk): the descent polynomial for the wreath

products, Gn,r(x),I s = (k,k, . . . ,k): the ascent polynomial for words over ak-letter alphabet {0, 1, 2, . . . ,k− 1},

I s = (k+ 1, 2k+ 1, . . . , (n− 1)k+ 1): the 1/k-Eulerianpolynomial, xexcπ(1/k)cycπ,

I s = (1, 1, 3, 2, 5, 3, 7, 4, . . . , 2n− 1,n): the descentpolynomial for the multiset {1, 1, 2, 2, . . . ,n,n}.

Page 57: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

s-Eulerian polynomialsand why do we care

Special cases of s-Eulerian polynomials, E(s)n (x):

I s = (1, 2, . . . ,n): the Eulerian polynomial, Sn(x),I s = (2, 4, . . . , 2n): the type B Eulerian polynomial, Bn(x),I s = (k, 2k, . . . ,nk): the descent polynomial for the wreath

products, Gn,r(x),I s = (k,k, . . . ,k): the ascent polynomial for words over ak-letter alphabet {0, 1, 2, . . . ,k− 1},

I s = (k+ 1, 2k+ 1, . . . , (n− 1)k+ 1): the 1/k-Eulerianpolynomial, xexcπ(1/k)cycπ,

I s = (1, 1, 3, 2, 5, 3, 7, 4, . . . , 2n− 1,n): the descentpolynomial for the multiset {1, 1, 2, 2, . . . ,n,n}.

Page 58: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

s-Eulerian polynomialsand why do we care

Special cases of s-Eulerian polynomials, E(s)n (x):

I s = (1, 2, . . . ,n): the Eulerian polynomial, Sn(x),I s = (2, 4, . . . , 2n): the type B Eulerian polynomial, Bn(x),I s = (k, 2k, . . . ,nk): the descent polynomial for the wreath

products, Gn,r(x),I s = (k,k, . . . ,k): the ascent polynomial for words over ak-letter alphabet {0, 1, 2, . . . ,k− 1},

I s = (k+ 1, 2k+ 1, . . . , (n− 1)k+ 1): the 1/k-Eulerianpolynomial, xexcπ(1/k)cycπ,

I s = (1, 1, 3, 2, 5, 3, 7, 4, . . . , 2n− 1,n): the descentpolynomial for the multiset {1, 1, 2, 2, . . . ,n,n}.

Page 59: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Outline

IntroPolynomials with (only) real zerosEulerian polynomials

ToolboxCompatible polynomialsInversion sequences

s-Eulerian polynomialsGeneralized inversion sequencesProving real zeros via compatible polynomialsConsequences

Summary

Page 60: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

On the zeros of s-Eulerian polynomials

The theorem of Frobenius can be generalized to the following.

Theorem (Savage, V.)For any sequence s of nonnegative integers, the s-Eulerianpolynomials

E(s)n (x) =

∑e∈I(s)n

xascI(e)

have only real zeros.

Page 61: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

On the zeros of s-Eulerian polynomials

The theorem of Frobenius can be generalized to the following.

Theorem (Savage, V.)For any sequence s of nonnegative integers, the s-Eulerianpolynomials

E(s)n (x) =

∑e∈I(s)n

xascI(e)

have only real zeros.

Page 62: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proving more is sometimes easier. . .

Instead of working with E(s)n (x) =

∑e∈I(s)n

xascI(e) we will beworking with the partial sums

P(s)n,k(x) :=

∑(e1,...,en−1,k)∈I(s)n

xascI(e1,...,en−1,k) .

Clearly,

E(s)n (x) =

sn−1∑k=0

P(s)n,k(x).

IDEA: P(s)n,i(x) are compatible =⇒ E(s)n (x) has only real zeros.

Page 63: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proving more is sometimes easier. . .

Instead of working with E(s)n (x) =

∑e∈I(s)n

xascI(e) we will beworking with the partial sums

P(s)n,k(x) :=

∑(e1,...,en−1,k)∈I(s)n

xascI(e1,...,en−1,k) .

Clearly,

E(s)n (x) =

sn−1∑k=0

P(s)n,k(x).

IDEA: P(s)n,i(x) are compatible =⇒ E(s)n (x) has only real zeros.

Page 64: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proving more is sometimes easier. . .

Instead of working with E(s)n (x) =

∑e∈I(s)n

xascI(e) we will beworking with the partial sums

P(s)n,k(x) :=

∑(e1,...,en−1,k)∈I(s)n

xascI(e1,...,en−1,k) .

Clearly,

E(s)n (x) =

sn−1∑k=0

P(s)n,k(x).

IDEA: P(s)n,i(x) are compatible =⇒ E(s)n (x) has only real zeros.

Page 65: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

A simple recurrence

P(s)n+1,i(x) =

`−1∑j=0

xP(s)n,j(x) +

sn−1∑j=`

P(s)n,j(x)

Page 66: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

A simple recurrence

P(s)n+1,i(x) =

∑jsn<

isn+1

xP(s)n,j(x) +

∑jsn

> isn+1

P(s)n,j(x)

Page 67: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Back to the proof of the main resultAgain, prove something stronger

Theorem (Savage, V.)Given a sequence s = {si}i>1, for all 0 6 i 6 j < sn,

(i) P(s)n,i(x) and P(s)n,j(x) are compatible

, and

(ii) xP(s)n,i(x) and P(s)n,j(x) are compatible.

CorollaryP(s)n,0(x),P

(s)n,1(x), . . . ,P(s)n,sn−1(x) are compatible.

CorollaryP(s)n,0(x) + P

(s)n,1(x) + · · ·+ P

(s)n,sn−1(x) has only real zeros.

Page 68: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Back to the proof of the main resultAgain, prove something stronger

Theorem (Savage, V.)Given a sequence s = {si}i>1, for all 0 6 i 6 j < sn,

(i) P(s)n,i(x) and P(s)n,j(x) are compatible, and

(ii) xP(s)n,i(x) and P(s)n,j(x) are compatible.

CorollaryP(s)n,0(x),P

(s)n,1(x), . . . ,P(s)n,sn−1(x) are compatible.

CorollaryP(s)n,0(x) + P

(s)n,1(x) + · · ·+ P

(s)n,sn−1(x) has only real zeros.

Page 69: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Back to the proof of the main resultAgain, prove something stronger

Theorem (Savage, V.)Given a sequence s = {si}i>1, for all 0 6 i 6 j < sn,

(i) P(s)n,i(x) and P(s)n,j(x) are compatible, and

(ii) xP(s)n,i(x) and P(s)n,j(x) are compatible.

CorollaryP(s)n,0(x),P

(s)n,1(x), . . . ,P(s)n,sn−1(x) are compatible.

CorollaryP(s)n,0(x) + P

(s)n,1(x) + · · ·+ P

(s)n,sn−1(x) has only real zeros.

Page 70: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Back to the proof of the main resultAgain, prove something stronger

Theorem (Savage, V.)Given a sequence s = {si}i>1, for all 0 6 i 6 j < sn,

(i) P(s)n,i(x) and P(s)n,j(x) are compatible, and

(ii) xP(s)n,i(x) and P(s)n,j(x) are compatible.

CorollaryP(s)n,0(x),P

(s)n,1(x), . . . ,P(s)n,sn−1(x) are compatible.

CorollaryP(s)n,0(x) + P

(s)n,1(x) + · · ·+ P

(s)n,sn−1(x) has only real zeros.

Page 71: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proof of compatibility

Use induction. Base case: (x, 1) or (x, x) or (x2, x).

XFor i < j, we have ` 6 k.

P(s)n+1,i = x (P

(s)n,0 + · · ·+ P

(s)n,`−1)︸ ︷︷ ︸

`

+ · · ·+ P(s)n,k−1 + · · ·+ P(s)n,sn−1 ,

P(s)n+1,j = x (P

(s)n,0 + · · ·+ P

(s)n,`−1 + · · ·+ P

(s)n,k−1)︸ ︷︷ ︸

k

+ · · ·+ P(s)n,sn−1 .

(i) P(s)n+1,i(x) and P(s)n+1,j(x) are compatible because{xP

(s)n,α

}06α<`

∪{(c+ dx)P

(s)n,β

}`6β<k ∪

{P(s)n,γ

}k6γ<sn

are compatible.

Page 72: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proof of compatibility

Use induction. Base case: (x, 1) or (x, x) or (x2, x). X

For i < j, we have ` 6 k.

P(s)n+1,i = x (P

(s)n,0 + · · ·+ P

(s)n,`−1)︸ ︷︷ ︸

`

+ · · ·+ P(s)n,k−1 + · · ·+ P(s)n,sn−1 ,

P(s)n+1,j = x (P

(s)n,0 + · · ·+ P

(s)n,`−1 + · · ·+ P

(s)n,k−1)︸ ︷︷ ︸

k

+ · · ·+ P(s)n,sn−1 .

(i) P(s)n+1,i(x) and P(s)n+1,j(x) are compatible because{xP

(s)n,α

}06α<`

∪{(c+ dx)P

(s)n,β

}`6β<k ∪

{P(s)n,γ

}k6γ<sn

are compatible.

Page 73: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proof of compatibility

Use induction. Base case: (x, 1) or (x, x) or (x2, x). XFor i < j, we have ` 6 k.

P(s)n+1,i = x (P

(s)n,0 + · · ·+ P

(s)n,`−1)︸ ︷︷ ︸

`

+ · · ·+ P(s)n,k−1 + · · ·+ P(s)n,sn−1 ,

P(s)n+1,j = x (P

(s)n,0 + · · ·+ P

(s)n,`−1 + · · ·+ P

(s)n,k−1)︸ ︷︷ ︸

k

+ · · ·+ P(s)n,sn−1 .

(i) P(s)n+1,i(x) and P(s)n+1,j(x) are compatible because{xP

(s)n,α

}06α<`

∪{(c+ dx)P

(s)n,β

}`6β<k ∪

{P(s)n,γ

}k6γ<sn

are compatible.

Page 74: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proof of compatibility

Use induction. Base case: (x, 1) or (x, x) or (x2, x). XFor i < j, we have ` 6 k.

P(s)n+1,i = x (P

(s)n,0 + · · ·+ P

(s)n,`−1)︸ ︷︷ ︸

`

+ · · ·+ P(s)n,k−1 + · · ·+ P(s)n,sn−1 ,

P(s)n+1,j = x (P

(s)n,0 + · · ·+ P

(s)n,`−1 + · · ·+ P

(s)n,k−1)︸ ︷︷ ︸

k

+ · · ·+ P(s)n,sn−1 .

(i) P(s)n+1,i(x) and P(s)n+1,j(x) are compatible

because{xP

(s)n,α

}06α<`

∪{(c+ dx)P

(s)n,β

}`6β<k ∪

{P(s)n,γ

}k6γ<sn

are compatible.

Page 75: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proof of compatibility

Use induction. Base case: (x, 1) or (x, x) or (x2, x). XFor i < j, we have ` 6 k.

P(s)n+1,i = x (P

(s)n,0 + · · ·+ P

(s)n,`−1)︸ ︷︷ ︸

`

+ · · ·+ P(s)n,k−1 + · · ·+ P(s)n,sn−1 ,

P(s)n+1,j = x (P

(s)n,0 + · · ·+ P

(s)n,`−1 + · · ·+ P

(s)n,k−1)︸ ︷︷ ︸

k

+ · · ·+ P(s)n,sn−1 .

(i) cP(s)n+1,i(x) + dP(s)n+1,j(x) has only real zeros

because{xP

(s)n,α

}06α<`

∪{(c+ dx)P

(s)n,β

}`6β<k ∪

{P(s)n,γ

}k6γ<sn

are compatible.

Page 76: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proof of compatibility

Use induction. Base case: (x, 1) or (x, x) or (x2, x). XFor i < j, we have ` 6 k.

P(s)n+1,i = x (P

(s)n,0 + · · ·+ P

(s)n,`−1)︸ ︷︷ ︸

`

+ · · ·+ P(s)n,k−1 + · · ·+ P(s)n,sn−1 ,

P(s)n+1,j = x (P

(s)n,0 + · · ·+ P

(s)n,`−1 + · · ·+ P

(s)n,k−1)︸ ︷︷ ︸

k

+ · · ·+ P(s)n,sn−1 .

(i) cP(s)n+1,i(x) + dP(s)n+1,j(x) has only real zeros because{

xP(s)n,α

}06α<`

∪{(c+ dx)P

(s)n,β

}`6β<k ∪

{P(s)n,γ

}k6γ<sn

are compatible.

Page 77: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proof of compatibility

Use induction. Base case: (x, 1) or (x, x) or (x2, x). XFor i < j, we have ` 6 k.

P(s)n+1,i = x (P

(s)n,0 + · · ·+ P

(s)n,`−1)︸ ︷︷ ︸

`

+ · · ·+ P(s)n,k−1 + · · ·+ P(s)n,sn−1 ,

P(s)n+1,j = x (P

(s)n,0 + · · ·+ P

(s)n,`−1 + · · ·+ P

(s)n,k−1)︸ ︷︷ ︸

k

+ · · ·+ P(s)n,sn−1 .

(i) cP(s)n+1,i(x) + dP(s)n+1,j(x) has only real zeros because{

xP(s)n,α

}06α<`

∪{(c+ dx)P

(s)n,β

}`6β<k ∪

{P(s)n,γ

}k6γ<sn

are pairwise compatible.

Page 78: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proof of compatibility (cont’d)

Now{xP

(s)n,α

}06α<`

∪{(c+ dx)P

(s)n,β

}`6β<k

∪{P(s)n,γ

}k6γ<sn

are parwise compatible because:

I Two polynomials from the same set are compatible by IH(i).I xP

(s)n,α and P(s)n,γ is compatible by IH(ii).

I xP(s)n,α and (c+ dx)P

(s)n,β are compatible because

I xP(s)n,α, xP(s)n,β,P(s)n,β are pairwise compatible.

I (c+ dx)P(s)n,β and P(s)n,γ are compatible because

I P(s)n,β, xP(s)n,β,P(s)n,γ are pairwise compatible.

Page 79: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proof of compatibility (cont’d)

Now{xP

(s)n,α

}06α<`

∪{(c+ dx)P

(s)n,β

}`6β<k

∪{P(s)n,γ

}k6γ<sn

are parwise compatible because:I Two polynomials from the same set are compatible by IH(i).

I xP(s)n,α and P(s)n,γ is compatible by IH(ii).

I xP(s)n,α and (c+ dx)P

(s)n,β are compatible because

I xP(s)n,α, xP(s)n,β,P(s)n,β are pairwise compatible.

I (c+ dx)P(s)n,β and P(s)n,γ are compatible because

I P(s)n,β, xP(s)n,β,P(s)n,γ are pairwise compatible.

Page 80: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proof of compatibility (cont’d)

Now{xP

(s)n,α

}06α<`

∪{(c+ dx)P

(s)n,β

}`6β<k

∪{P(s)n,γ

}k6γ<sn

are parwise compatible because:I Two polynomials from the same set are compatible by IH(i).I xP

(s)n,α and P(s)n,γ is compatible by IH(ii).

I xP(s)n,α and (c+ dx)P

(s)n,β are compatible because

I xP(s)n,α, xP(s)n,β,P(s)n,β are pairwise compatible.

I (c+ dx)P(s)n,β and P(s)n,γ are compatible because

I P(s)n,β, xP(s)n,β,P(s)n,γ are pairwise compatible.

Page 81: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proof of compatibility (cont’d)

Now{xP

(s)n,α

}06α<`

∪{(c+ dx)P

(s)n,β

}`6β<k

∪{P(s)n,γ

}k6γ<sn

are parwise compatible because:I Two polynomials from the same set are compatible by IH(i).I xP

(s)n,α and P(s)n,γ is compatible by IH(ii).

I xP(s)n,α and (c+ dx)P

(s)n,β are compatible because

I xP(s)n,α, xP(s)n,β,P(s)n,β are pairwise compatible.

I (c+ dx)P(s)n,β and P(s)n,γ are compatible because

I P(s)n,β, xP(s)n,β,P(s)n,γ are pairwise compatible.

Page 82: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proof of compatibility (cont’d)

Now{xP

(s)n,α

}06α<`

∪{(c+ dx)P

(s)n,β

}`6β<k

∪{P(s)n,γ

}k6γ<sn

are parwise compatible because:I Two polynomials from the same set are compatible by IH(i).I xP

(s)n,α and P(s)n,γ is compatible by IH(ii).

I xP(s)n,α and (c+ dx)P

(s)n,β are compatible because

I xP(s)n,α, xP(s)n,β,P(s)n,β are pairwise compatible.

I (c+ dx)P(s)n,β and P(s)n,γ are compatible because

I P(s)n,β, xP(s)n,β,P(s)n,γ are pairwise compatible.

Page 83: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proof of compatibility (cont’d)

(i) Thus, P(s)n+1,i(x) and P(s)n+1,j(x) are compatible because{xP

(s)n,α

}06α<`

∪{(c+ dx)P

(s)n,β

}`6β<k

∪{P(s)n,γ

}k6γ<sn

are pairwise compatible.

X

(ii) xP(s)n+1,i(x) and P(s)n+1,j(x) are also compatible and can beshown in a similar way. XQ.E.D.

Page 84: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proof of compatibility (cont’d)

(i) Thus, P(s)n+1,i(x) and P(s)n+1,j(x) are compatible because{xP

(s)n,α

}06α<`

∪{(c+ dx)P

(s)n,β

}`6β<k

∪{P(s)n,γ

}k6γ<sn

are pairwise compatible. X

(ii) xP(s)n+1,i(x) and P(s)n+1,j(x) are also compatible and can beshown in a similar way. XQ.E.D.

Page 85: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proof of compatibility (cont’d)

(i) Thus, P(s)n+1,i(x) and P(s)n+1,j(x) are compatible because{xP

(s)n,α

}06α<`

∪{(c+ dx)P

(s)n,β

}`6β<k

∪{P(s)n,γ

}k6γ<sn

are pairwise compatible. X

(ii) xP(s)n+1,i(x) and P(s)n+1,j(x) are also compatible and can beshown in a similar way.

XQ.E.D.

Page 86: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proof of compatibility (cont’d)

(i) Thus, P(s)n+1,i(x) and P(s)n+1,j(x) are compatible because{xP

(s)n,α

}06α<`

∪{(c+ dx)P

(s)n,β

}`6β<k

∪{P(s)n,γ

}k6γ<sn

are pairwise compatible. X

(ii) xP(s)n+1,i(x) and P(s)n+1,j(x) are also compatible and can beshown in a similar way. X

Q.E.D.

Page 87: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Proof of compatibility (cont’d)

(i) Thus, P(s)n+1,i(x) and P(s)n+1,j(x) are compatible because{xP

(s)n,α

}06α<`

∪{(c+ dx)P

(s)n,β

}`6β<k

∪{P(s)n,γ

}k6γ<sn

are pairwise compatible. X

(ii) xP(s)n+1,i(x) and P(s)n+1,j(x) are also compatible and can beshown in a similar way. XQ.E.D.

Page 88: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Outline

IntroPolynomials with (only) real zerosEulerian polynomials

ToolboxCompatible polynomialsInversion sequences

s-Eulerian polynomialsGeneralized inversion sequencesProving real zeros via compatible polynomialsConsequences

Summary

Page 89: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

The Eulerian polynomials have only real zerosOne proof for all

The fact that E(s)n (x) has only real zeros implies several results:

I s = (1, 2, . . . ,n): type A, Sn(x), (Frobenius),I s = (2, 4, . . . , 2n): type B, Bn(x), (Brenti),I s = (k, 2k, . . . ,nk): the descent polynomial for the wreath

products, Gn,r(x) (Steingrımsson),I s = (k,k, . . . ,k): the ascent polynomial for words over ak-letter alphabet {0, 1, 2, . . . ,k− 1} (Diaconis–Fulman),

I s = (k+ 1, 2k+ 1, . . . , (n− 1)k+ 1): the 1/k-Eulerianpolynomial, xexcπ(1/k)cycπ (Brenti, Branden, Ma–Wang),

I s = (1, 1, 3, 2, 5, 3, 7, 4, . . . , 2n− 1,n): the descentpolynomial for the multiset {1, 1, 2, 2, . . . ,n,n} (Simion)

have only real zeros.

Page 90: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

The Eulerian polynomials have only real zerosOne proof for all

The fact that E(s)n (x) has only real zeros implies several results:

I s = (1, 2, . . . ,n): type A, Sn(x), (Frobenius),

I s = (2, 4, . . . , 2n): type B, Bn(x), (Brenti),I s = (k, 2k, . . . ,nk): the descent polynomial for the wreath

products, Gn,r(x) (Steingrımsson),I s = (k,k, . . . ,k): the ascent polynomial for words over ak-letter alphabet {0, 1, 2, . . . ,k− 1} (Diaconis–Fulman),

I s = (k+ 1, 2k+ 1, . . . , (n− 1)k+ 1): the 1/k-Eulerianpolynomial, xexcπ(1/k)cycπ (Brenti, Branden, Ma–Wang),

I s = (1, 1, 3, 2, 5, 3, 7, 4, . . . , 2n− 1,n): the descentpolynomial for the multiset {1, 1, 2, 2, . . . ,n,n} (Simion)

have only real zeros.

Page 91: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

The Eulerian polynomials have only real zerosOne proof for all

The fact that E(s)n (x) has only real zeros implies several results:

I s = (1, 2, . . . ,n): type A, Sn(x), (Frobenius),I s = (2, 4, . . . , 2n): type B, Bn(x), (Brenti),

I s = (k, 2k, . . . ,nk): the descent polynomial for the wreathproducts, Gn,r(x) (Steingrımsson),

I s = (k,k, . . . ,k): the ascent polynomial for words over ak-letter alphabet {0, 1, 2, . . . ,k− 1} (Diaconis–Fulman),

I s = (k+ 1, 2k+ 1, . . . , (n− 1)k+ 1): the 1/k-Eulerianpolynomial, xexcπ(1/k)cycπ (Brenti, Branden, Ma–Wang),

I s = (1, 1, 3, 2, 5, 3, 7, 4, . . . , 2n− 1,n): the descentpolynomial for the multiset {1, 1, 2, 2, . . . ,n,n} (Simion)

have only real zeros.

Page 92: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

The Eulerian polynomials have only real zerosOne proof for all

The fact that E(s)n (x) has only real zeros implies several results:

I s = (1, 2, . . . ,n): type A, Sn(x), (Frobenius),I s = (2, 4, . . . , 2n): type B, Bn(x), (Brenti),I s = (k, 2k, . . . ,nk): the descent polynomial for the wreath

products, Gn,r(x) (Steingrımsson),

I s = (k,k, . . . ,k): the ascent polynomial for words over ak-letter alphabet {0, 1, 2, . . . ,k− 1} (Diaconis–Fulman),

I s = (k+ 1, 2k+ 1, . . . , (n− 1)k+ 1): the 1/k-Eulerianpolynomial, xexcπ(1/k)cycπ (Brenti, Branden, Ma–Wang),

I s = (1, 1, 3, 2, 5, 3, 7, 4, . . . , 2n− 1,n): the descentpolynomial for the multiset {1, 1, 2, 2, . . . ,n,n} (Simion)

have only real zeros.

Page 93: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

The Eulerian polynomials have only real zerosOne proof for all

The fact that E(s)n (x) has only real zeros implies several results:

I s = (1, 2, . . . ,n): type A, Sn(x), (Frobenius),I s = (2, 4, . . . , 2n): type B, Bn(x), (Brenti),I s = (k, 2k, . . . ,nk): the descent polynomial for the wreath

products, Gn,r(x) (Steingrımsson),I s = (k,k, . . . ,k): the ascent polynomial for words over ak-letter alphabet {0, 1, 2, . . . ,k− 1} (Diaconis–Fulman),

I s = (k+ 1, 2k+ 1, . . . , (n− 1)k+ 1): the 1/k-Eulerianpolynomial, xexcπ(1/k)cycπ (Brenti, Branden, Ma–Wang),

I s = (1, 1, 3, 2, 5, 3, 7, 4, . . . , 2n− 1,n): the descentpolynomial for the multiset {1, 1, 2, 2, . . . ,n,n} (Simion)

have only real zeros.

Page 94: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

The Eulerian polynomials have only real zerosOne proof for all

The fact that E(s)n (x) has only real zeros implies several results:

I s = (1, 2, . . . ,n): type A, Sn(x), (Frobenius),I s = (2, 4, . . . , 2n): type B, Bn(x), (Brenti),I s = (k, 2k, . . . ,nk): the descent polynomial for the wreath

products, Gn,r(x) (Steingrımsson),I s = (k,k, . . . ,k): the ascent polynomial for words over ak-letter alphabet {0, 1, 2, . . . ,k− 1} (Diaconis–Fulman),

I s = (k+ 1, 2k+ 1, . . . , (n− 1)k+ 1): the 1/k-Eulerianpolynomial, xexcπ(1/k)cycπ (Brenti, Branden, Ma–Wang),

I s = (1, 1, 3, 2, 5, 3, 7, 4, . . . , 2n− 1,n): the descentpolynomial for the multiset {1, 1, 2, 2, . . . ,n,n} (Simion)

have only real zeros.

Page 95: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

The Eulerian polynomials have only real zerosOne proof for all

The fact that E(s)n (x) has only real zeros implies several results:

I s = (1, 2, . . . ,n): type A, Sn(x), (Frobenius),I s = (2, 4, . . . , 2n): type B, Bn(x), (Brenti),I s = (k, 2k, . . . ,nk): the descent polynomial for the wreath

products, Gn,r(x) (Steingrımsson),I s = (k,k, . . . ,k): the ascent polynomial for words over ak-letter alphabet {0, 1, 2, . . . ,k− 1} (Diaconis–Fulman),

I s = (k+ 1, 2k+ 1, . . . , (n− 1)k+ 1): the 1/k-Eulerianpolynomial, xexcπ(1/k)cycπ (Brenti, Branden, Ma–Wang),

I s = (1, 1, 3, 2, 5, 3, 7, 4, . . . , 2n− 1,n): the descentpolynomial for the multiset {1, 1, 2, 2, . . . ,n,n} (Simion)

have only real zeros.

Page 96: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

The Eulerian polynomials have only real zerosOne proof for all

The fact that E(s)n (x) has only real zeros implies several results:

I s = (1, 2, . . . ,n): type A, Sn(x), (Frobenius),I s = (2, 4, . . . , 2n): type B, Bn(x), (Brenti),I s = (k, 2k, . . . ,nk): the descent polynomial for the wreath

products, Gn,r(x) (Steingrımsson),I s = (k,k, . . . ,k): the ascent polynomial for words over ak-letter alphabet {0, 1, 2, . . . ,k− 1} (Diaconis–Fulman),

I s = (k+ 1, 2k+ 1, . . . , (n− 1)k+ 1): the 1/k-Eulerianpolynomial, xexcπ(1/k)cycπ (Brenti, Branden, Ma–Wang),

I s = (1, 1, 3, 2, 5, 3, 7, 4, . . . , 2n− 1,n): the descentpolynomial for the multiset {1, 1, 2, 2, . . . ,n,n} (Simion)

have only real zeros.

Page 97: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Combinatorics of Coxeter groups

The descents can be defined in a more general setting.

Definition (Bjorner–Brenti)Let S be a set of Coxeter generators, m be a Coxeter matrix,and

W = 〈S : (ss ′)m(s,s ′) = id, for s, s ′ ∈ S,m(s, s ′) <∞〉be the corresponding Coxeter group. Given a pair (W,S) andσ ∈W, let `W(σ) be the length of σ in W with respect to S.

Page 98: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Eulerian polynomials for Coxeter groups

DefinitionFor W a finite Coxeter group, with generator set S = {s1, . . . , sn}the descent set of σ ∈W is

DW(σ) = {si ∈ S : `W(σsi) < `W(σsi)} .

W(x) =∑σ∈W

x|DW(σ)|.

Conjecture (Brenti)Eulerian polynomials W(x) for all Coxeter groups W have onlyreal zeros.

Page 99: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Eulerian polynomials for Coxeter groups

DefinitionFor W a finite Coxeter group, with generator set S = {s1, . . . , sn}the descent set of σ ∈W is

DW(σ) = {si ∈ S : `W(σsi) < `W(σsi)} .

W(x) =∑σ∈W

x|DW(σ)|.

Conjecture (Brenti)Eulerian polynomials W(x) for all Coxeter groups W have onlyreal zeros.

Page 100: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Eulerian polynomials for Coxeter groups

Theorem (Brenti)The Eulerian polynomial for type Bn and for all the exceptionalCoxeter groups has only real zeros.

Observation: Eulerian polynomials are “multiplicative”. Enoughto consider irreducible groups. Type Dn is the last remainingpiece of the puzzle. (Verified up to n = 100.)

Page 101: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Eulerian polynomials for Coxeter groups

Theorem (Brenti)The Eulerian polynomial for type Bn and for all the exceptionalCoxeter groups has only real zeros.Observation: Eulerian polynomials are “multiplicative”. Enoughto consider irreducible groups. Type Dn is the last remainingpiece of the puzzle. (Verified up to n = 100.)

Page 102: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Eulerian polynomials for type Dn

Conjecture (Brenti)Eulerian polynomials for type Dn have only real zeros.

1. Why did type Dn resist so far?2. Motivating question raised by Krattenthaler at SLC (Strobl):

Why don’t you apply your method to type Dn?

Page 103: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Eulerian polynomials for type Dn

Conjecture (Brenti)Eulerian polynomials for type Dn have only real zeros.

1. Why did type Dn resist so far?

2. Motivating question raised by Krattenthaler at SLC (Strobl):Why don’t you apply your method to type Dn?

Page 104: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Eulerian polynomials for type Dn

Conjecture (Brenti)Eulerian polynomials for type Dn have only real zeros.

1. Why did type Dn resist so far?2. Motivating question raised by Krattenthaler at SLC (Strobl):

Why don’t you apply your method to type Dn?

Page 105: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Answer to the first questionWhy did type Dn resist so far?

Combinatorial definition is not as “pretty.” Think of elements ofBn (resp. Dn) as signed (resp. even-signed)permutations. The definition of descents:

desB(σ) = |{i | σi > σi+1} ∪ {0 | σ1 > 0}|desD(σ) = |{i | σi > σi+1} ∪ {0 | σ1 + σ2 > 0}|

No “nice” recurrence. The only recurrence (due to Chow) israther complicated.

Dn+2(x) = (n(1 + 5x) + 4x)Dn+1(x) + 4x(1 − x)D′n+1(x)

+((1 − x)2 −n(1 + 3x)2 − 4n(n− 1)x(1 + 2x))Dn(x)

−(4nx(1 − x)(1 + 3x) + 4x(1 − x)2)D′n(x) − 4x2(1 − x)2D′′

n(x)

+(2n(n− 1)x(3 + 2x+ 3x2) + 4n(n− 1)(n− 2)x2(1 + x))Dn−1(x)

+(2nx(1 − x)2(3 + x) + 8n(n− 1)x2(1 − x)(1 + x))D′n−1(x)

+4nx2(1 − x)2(1 + x)D′′n−1(x).

Page 106: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Answer to the first questionWhy did type Dn resist so far?

Combinatorial definition is not as “pretty.” Think of elements ofBn (resp. Dn) as signed (resp. even-signed)permutations. The definition of descents:

desB(σ) = |{i | σi > σi+1} ∪ {0 | σ1 > 0}|desD(σ) = |{i | σi > σi+1} ∪ {0 | σ1 + σ2 > 0}|

No “nice” recurrence. The only recurrence (due to Chow) israther complicated.

Dn+2(x) = (n(1 + 5x) + 4x)Dn+1(x) + 4x(1 − x)D′n+1(x)

+((1 − x)2 −n(1 + 3x)2 − 4n(n− 1)x(1 + 2x))Dn(x)

−(4nx(1 − x)(1 + 3x) + 4x(1 − x)2)D′n(x) − 4x2(1 − x)2D′′

n(x)

+(2n(n− 1)x(3 + 2x+ 3x2) + 4n(n− 1)(n− 2)x2(1 + x))Dn−1(x)

+(2nx(1 − x)2(3 + x) + 8n(n− 1)x2(1 − x)(1 + x))D′n−1(x)

+4nx2(1 − x)2(1 + x)D′′n−1(x).

Page 107: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Answer to the second questionWhy don’t you apply your method to type Dn?

Short answer: Does not work.

Remedy: Try harder and use some tricks!

Trick 1 Look at 2Dn(x) instead of Dn(x).Trick 2 Find an ascent statistic for 2Dn(x).Trick 3 Believe in your method!

Page 108: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Answer to the second questionWhy don’t you apply your method to type Dn?

Long answer: Does not work out of the box.

Remedy: Try harder and use some tricks!

Trick 1 Look at 2Dn(x) instead of Dn(x).Trick 2 Find an ascent statistic for 2Dn(x).Trick 3 Believe in your method!

Page 109: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Answer to the second questionWhy don’t you apply your method to type Dn?

Long answer: Does not work out of the box.Remedy: Try harder and use some tricks!

Trick 1 Look at 2Dn(x) instead of Dn(x).Trick 2 Find an ascent statistic for 2Dn(x).Trick 3 Believe in your method!

Page 110: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Answer to the second questionWhy don’t you apply your method to type Dn?

Long answer: Does not work out of the box.Remedy: Try harder and use some tricks!

Trick 1 Look at 2Dn(x) instead of Dn(x).

Trick 2 Find an ascent statistic for 2Dn(x).Trick 3 Believe in your method!

Page 111: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Answer to the second questionWhy don’t you apply your method to type Dn?

Long answer: Does not work out of the box.Remedy: Try harder and use some tricks!

Trick 1 Look at 2Dn(x) instead of Dn(x).Trick 2 Find an ascent statistic for 2Dn(x).

Trick 3 Believe in your method!

Page 112: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Answer to the second questionWhy don’t you apply your method to type Dn?

Long answer: Does not work out of the box.Remedy: Try harder and use some tricks!

Trick 1 Look at 2Dn(x) instead of Dn(x).Trick 2 Find an ascent statistic for 2Dn(x).Trick 3 Believe in your method!

Page 113: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Trick 1Getting rid of parity

Recall,

desD(σ) = |{i | σi > σi+1} ∪ {0 | σ1 + σ2 > 0}| .

PropositionFor n > 2, ∑

σ∈Bn

xdesD σ = 2∑σ∈Dn

xdesD σ.

215634⇐⇒ 215634

Page 114: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Trick 1Getting rid of parity

Recall,

desD(σ) = |{i | σi > σi+1} ∪ {0 | σ1 + σ2 > 0}| .

PropositionFor n > 2, ∑

σ∈Bn

xdesD σ = 2∑σ∈Dn

xdesD σ.

215634⇐⇒ 215634

Page 115: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Trick 2A type Dn ascent statistic

2Dn(x) =∑

e∈I2,4,6,...n

xAscD(e).

AscA(e) ={i | eii <

ei+1i+1

}AscB(e) =

{i | eii <

ei+1i+1

}∪ {0 | e1 > 0}

AscD(e) ={i | eii <

ei+1i+1

}∪{

0 | e1 +e22 > 3

2

}DesA(σ) = {i | σi > σi+1}

DesB(σ) = {i | σi > σi+1} ∪ {0 | σ1 > 0}DesD(σ) = {i | σi > σi+1} ∪ {0 | σ1 + σ2 > 0}

Page 116: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Trick 2A type Dn ascent statistic

2Dn(x) =∑

e∈I2,4,6,...n

xAscD(e).

AscA(e) ={i | eii <

ei+1i+1

}AscB(e) =

{i | eii <

ei+1i+1

}∪ {0 | e1 > 0}

AscD(e) ={i | eii <

ei+1i+1

}∪{

0 | e1 +e22 > 3

2

}DesA(σ) = {i | σi > σi+1}

DesB(σ) = {i | σi > σi+1} ∪ {0 | σ1 > 0}DesD(σ) = {i | σi > σi+1} ∪ {0 | σ1 + σ2 > 0}

Page 117: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Putting all togetherA recursive proof for type Dn

Dn(x) =

2n−1∑i=0

Dn,i(x).

Only one problem: base case does not hold.

D2,0(x) = 1, D2,1(x) = D2,2(x) = x, D2,3(x) = x2.

Also, D3,0(x), . . . ,D3,5(x) are not compatible.

Page 118: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Putting all togetherA recursive proof for type Dn

Dn(x) =

2n−1∑i=0

Dn,i(x).

Only one problem: base case does not hold.

D2,0(x) = 1, D2,1(x) = D2,2(x) = x, D2,3(x) = x2.

Also, D3,0(x), . . . ,D3,5(x) are not compatible.

Page 119: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Putting all togetherA recursive proof for type Dn

Dn(x) =

2n−1∑i=0

Dn,i(x).

Only one problem: base case does not hold.

D2,0(x) = 1, D2,1(x) = D2,2(x) = x, D2,3(x) = x2.

Also, D3,0(x), . . . ,D3,5(x) are not compatible.

Page 120: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Trick 3Leap of faith

D4,0(x), . . . ,D4,7(x) are compatible. X

By induction,Dn,0(x), . . . ,Dn,2n−1(x)

are compatible for all n > 4.

CorollaryDn(x) =

∑2n−1i=0 Dn,i(x) has only real zeros.

Page 121: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Trick 3Leap of faith

D4,0(x), . . . ,D4,7(x) are compatible. X

By induction,Dn,0(x), . . . ,Dn,2n−1(x)

are compatible for all n > 4.

CorollaryDn(x) =

∑2n−1i=0 Dn,i(x) has only real zeros.

Page 122: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Summary

I Unified proof of existing results, but also can be used tosolve new problems (Brenti’s type D conjecture).

I The method of compatible polynomials is a simple yetpowerful method to prove real zeros.

I A reformulation, or even generalization (s-inversionsequences) often makes the problem easier.

Page 123: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Summary

I Unified proof of existing results, but also can be used tosolve new problems (Brenti’s type D conjecture).

I The method of compatible polynomials is a simple yetpowerful method to prove real zeros.

I A reformulation, or even generalization (s-inversionsequences) often makes the problem easier.

Page 124: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Summary

I Unified proof of existing results, but also can be used tosolve new problems (Brenti’s type D conjecture).

I The method of compatible polynomials is a simple yetpowerful method to prove real zeros.

I A reformulation, or even generalization (s-inversionsequences) often makes the problem easier.

Page 125: Zeros of Generalized Eulerian Polynomials · Zeros of Generalized Eulerian Polynomials Carla D. Savage1 Mirko Visontai´ 2 1Department of Computer Science North Carolina State University

Summary

I Unified proof of existing results, but also can be used tosolve new problems (Brenti’s type D conjecture).

I The method of compatible polynomials is a simple yetpowerful method to prove real zeros.

I A reformulation, or even generalization (s-inversionsequences) often makes the problem easier.