Y.Kaneko,*Z.Yoshida***********Grad.&Sch.&Fron-er&Sci...

1
Hamiltonian structure and current singulari1es in twodimensional RMHD Y.Kaneko, Z.Yoshida Grad. Sch. Fron-er Sci., Univ. Tokyo An essen1al difference of the plasma theory from the neutral fluid mechanics is in that plasma models may include a varity of "singular perturba1ons" determining scale hierarchies. Our aim is to explore how a singular perturba1on (electron iner1a) determines an intrinsic (small) scale that is absent in the scaleinvariant MHD system. Here we study the role of Casimir invariants that characterize the “Non canonical” property of the determing symplec1c geometry; we define some different “subclasses” of canonicalized selfcontained mechanics of the reduced MHD. We focus on a scenario of singularity forma1on[1] where the magne1c stream func1on contains a hyperbolic saddle. B. Noncanonical hamiltonian structure The reduced MHD equa1ons are known as the slab models of ideal MHD. Here we have introduced the stream func1on the vor1city , and the toroidal current . is poroidal flux. Then the two dimensional reduced MHD are given by where dot denotes 1me deriva1ve and brackets are 1. Introduc1on A. Reduced magnetohydrodynamics The plasma fluid models have some conserva1on laws arising from either symmetries in the Hamiltonian or a "topological defect" (kernel) of the Poisson bracket. The laIer constants of mo1on is called Casimir invariants. A Hamiltonian system that has Casimir invariants is said "non canonical." P.J. Morrison and R.D. Hazel1ne constructed a Poisson bracket for the twodimensional reduced MHD[2](See Table 1). Morrison has introduced the following new variables. Then the equa1ons can be cast into the canonical form. However such canonical formula1on involves four fields rather than the ini1al two. We found several different kinds of transforma1on. The following transforma1on maintains two fields, Which allows us wri1ng down the canonical hamiltonian form(See Table 2). The equa1ons of mo1on are as follows; Where is the convec1ve deriva1ve, . According to the noncanonical hamiltonian formula1on there exists conserved Casimir invariants. Our formula1on fixes one of these conserved quan11es, In this sense, our formula1on is to cons1tute a subclass of the reduced MHD. TABLE 1. Noncanonical hamiltonian structure of the reduced MHD 2. Canonical hamiltonian structure Canonical Form NonCanonical Form 3. Numerical experiments TABLE 2. Canonical hamiltonian structure of the reduced MHD For the special case of α=2, we solved canonical(or noncanonical) form of equa1ons of mo1on numerically on a periodic box with a 2/3dealiased standard pseudospectral method. As 1me advancing rou1ne, we used a fourthorder AdamsBashforth method. We considered the ini1al data with In Figure 1, we present the numerical solu1on at 1mes t=0, 0.6 with a resolu1on of 512 2 Fourier modes. In Figure 2, we present log plots of max toroidal current versus 1me. We also present log plots of max P field versus 1me. 4. Numerical Results The toroidal current becomes extremely large where magne1c field lines closer to each other[3]. The graph turns out to be a clear straight line beyond t0.3. It predicts the toroidal current grows like a exponen1al func1on of 1me. On the other hand, the change of P field is quite different from the change of toroidal current. P field is rapidly growing un1l t0.15. Furthermore, it seems to grow faster than the exponen1al func1on at later 1mes. As a result, we can predict the growth of P field is faster than the growth of the toroidal current. Magne1c flux func1on Toroidal current P field FIGURE 1. Contours of the magne1c flux func1on, current density and P field FIGURE 2. log plot of maximum current and maximum P field versus 1me 5. References [1] 吉田善章,大崎秀一,沼田龍介, 日本物理学会2004年1月 27aXH13 [2] Morrison, P. J. and Hazel1ne, R. D. 1984 Phys. Fluids 27, 886. [3] D. Cordoba and C. Marliani, Evolu1on of current sheets and regularity of ideal incompressible magne1c fluids in 2D, Commun. Pure Appl. Math. 53, 512 (2000). . , . , . .

Transcript of Y.Kaneko,*Z.Yoshida***********Grad.&Sch.&Fron-er&Sci...

Page 1: Y.Kaneko,*Z.Yoshida***********Grad.&Sch.&Fron-er&Sci ...Hamiltonian)structure)and)currentsingulari1es)in)two3dimensional)RMHD) Y.Kaneko,*Z.Yoshida*****Grad.&Sch.&Fron-er&Sci.,&Univ.&Tokyo&

Hamiltonian  structure  and  current  singulari1es  in  two-­‐dimensional  RMHD   Y.Kaneko,  Z.Yoshida                      Grad.  Sch.  Fron-er  Sci.,  Univ.  Tokyo  

An  essen1al  difference  of  the  plasma  theory  from  the  neutral  fluid  mechanics  is  in  that  plasma  models  may  include  a  varity  of  "singular  perturba1ons"  determining  scale  hierarchies.  Our  aim  is  to  explore  how  a  singular  perturba1on  (electron  iner1a)  determines  an  intrinsic  (small)  scale  that  is  absent  in  the  scale-­‐invariant  MHD  system.  Here  we  study  the  role  of  Casimir  invariants  that  characterize  the  “Non-­‐canonical”   property   of   the   determing   symplec1c   geometry;   we   define   some   different   “sub-­‐classes”   of   canonicalized   self-­‐contained  mechanics   of   the   reduced  MHD.  We   focus   on   a   scenario   of   singularity   forma1on[1]  where   the  magne1c   stream   func1on   contains   a  hyperbolic  saddle.

B.  Non-­‐canonical  hamiltonian  structure

The  reduced  MHD  equa1ons  are  known  as  the  slab  models  of  ideal  MHD.  Here  we  have  introduced  the  stream  func1on              the  vor1city                                            ,  and   the   toroidal   current                       .           is   poroidal   flux.   Then   the   two  dimensional  reduced  MHD  are  given  by                                                                                                                                                                                                                                                                                                          where  dot  denotes  1me  deriva1ve  and  brackets  are  

1.  Introduc1on  A.  Reduced  magnetohydrodynamics

The  plasma  fluid  models  have  some  conserva1on  laws  arising  from  either  symmetries   in   the  Hamiltonian   or   a   "topological   defect"   (kernel)   of   the  Poisson   bracket.   The   laIer   constants   of   mo1on   is   called   Casimir  invariants.  A  Hamiltonian  system  that  has  Casimir  invariants  is  said  "non-­‐canonical."   P.J.   Morrison   and   R.D.   Hazel1ne   constructed   a   Poisson  bracket  for  the  two-­‐dimensional  reduced  MHD[2](See  Table  1).  

Morrison  has  introduced  the  following  new  variables.        Then   the   equa1ons   can   be   cast   into   the   canonical   form.   However   such  canonical  formula1on  involves  four  fields  rather  than  the  ini1al  two.  We  found   several   different   kinds   of   transforma1on.   The   following  transforma1on  maintains  two  fields,        Which  allows  us  wri1ng  down  the  canonical  hamiltonian  form(See  Table  2).  The  equa1ons  of  mo1on  are  as  follows;              Where              is  the  convec1ve  deriva1ve,                                                    .  According  to  the  non-­‐canonical   hamiltonian   formula1on   there   exists   conserved   Casimir  invariants.  Our  formula1on  fixes  one  of  these    conserved  quan11es,        In   this   sense,  our   formula1on   is   to   cons1tute  a   subclass  of   the   reduced  MHD.    

TABLE  1.  Non-­‐canonical  hamiltonian  structure  of  the  reduced  MHD

2.  Canonical  hamiltonian  structure  

Canonical  Form Non-­‐Canonical  Form

3.  Numerical  experiments

TABLE  2.  Canonical  hamiltonian  structure  of  the  reduced  MHD

For  the  special  case  of  α=2,  we  solved  canonical(or  non-­‐canonical)  form  of  equa1ons  of  mo1on  numerically  on  a  periodic  box  with  a  2/3-­‐dealiased  standard  pseudo-­‐spectral  method.  As  1me  advancing  rou1ne,  we  used  a  fourth-­‐order   Adams-­‐Bashforth   method.   We   considered   the   ini1al   data  with      In   Figure   1,  we   present   the   numerical   solu1on   at   1mes   t=0,   0.6  with   a  resolu1on  of  5122  Fourier  modes.  In  Figure  2,  we  present  log  plots  of  max  toroidal   current   versus   1me.   We   also   present   log   plots   of   max   P   field  versus  1me.    

4.  Numerical  Results The  toroidal  current  becomes  extremely  large  where  magne1c  field  lines  closer   to   each   other[3].   The   graph   turns   out   to   be   a   clear   straight   line  beyond   t~0.3.   It   predicts   the   toroidal   current   grows   like   a   exponen1al  func1on   of   1me.   On   the   other   hand,   the   change   of   P   field   is   quite  different   from   the   change  of   toroidal   current.   P   field   is   rapidly   growing  un1l  t~0.15.  Furthermore,  it  seems  to  grow  faster  than  the  exponen1al  func1on  at  later  1mes.  As  a  result,  we  can  predict  the  growth  of  P  field  is  faster  than  the  growth  of  the  toroidal  current.  

Magne1c  flux  func1on Toroidal  current  

P  field  

FIGURE  1.  Contours  of  the  magne1c  flux  func1on,    current  density  and  P  field

FIGURE  2.  log  plot  of  maximum  current  and  maximum  P  field  versus  1me  

5.  References [1]  吉田善章,大崎秀一,沼田龍介,  日本物理学会2004年1月  27aXH-­‐13  [2]  Morrison,  P.  J.  and  Hazel1ne,  R.  D.  1984  Phys.  Fluids  27,  886.  [3]  D.  Cordoba  and  C.  Marliani,  Evolu1on  of  current  sheets  and  regularity                              of  ideal  incompressible  magne1c  fluids  in  2D,  Commun.  Pure  Appl.              Math.  53,  512  (2000).  

.

, .

,

.

.