Document

1
www-g.eng.cam.ac.uk/cosmos COSMOS is a Basic Technology Research Grant funded by the EPSRC, EP/D04894X Tuning the wavelength of emission in organic semiconducting lasers by the orientation of a liquid crystalline conjugated polymer M.H. Song, B. Wenger, R.H. Friend Optoelectronics group, Cavendish Laboratory , University of Cambridge. 1. We can get the difference between aligned and unaligned F8 film due to different n eff . (different wavelength) 2. We can get lower threshold value by aligning F8 molecules. - Maximizing absorption (effective number of excitons) - Maximizing the amount of the emitted radiation waveguided (transition dipole moment) 3. We can tune the wavelength of lasing by changing the angle between the grating line and the orientation of the polymer molecules in the aligned F8 film. (different refractive index(n eff )). Conclusions Comparison between isotropic and anisotropic F8 layers in DFB structures ragg wavelength, Λ: Grating period m: The Bragg order n eff : The effective refractive index of waveguide structure • First order grating (m=1) : band edge emission • Second order grating (m=2) : Surface emission Substrate Polyimide F8 =2n eff •Λ/m Tunable lasers 440 450 460 470 480 490 500 0 20000 40000 60000 454.5 471.4 466.5 460.2 0 o In ten sity (a.u .) W avelen g th (n m ) 15 o 30 o 40 o 0 10 20 30 40 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 456 460 464 468 472 n eff A n g le b etw e e n g ra tin g lin e a n d o rie n ta tio n o f F 8 ( o ) W avelen g th (n m ) 0 20 40 60 80 100 445 450 455 460 465 470 475 480 0 10000 20000 30000 40000 50000 60000 In ten sity (a.u .) T h resh o ld ( J/cm 2 ) W a v e le n th (n m ) Grating line n (Above) (a) Schematic of tunable DFB F8 laser sample cell. (b) Lasing spectra measured for the anisotropic F8 laser sample cell with different angles between grating line and the orientation of F8. (c) Lasing wavelengths and effective refractive index of the anisotropic F8 laser sample cell as a function of angles between grating line and the orientation of F8. (d) Threshold energy as a function of laser wavelength for the anisotropic F8 laser sample cell with different angles between grating line and the orientation of F8. (a) (c) (b) (d) TE 0 TE 1 50 100 150 200 250 440 450 460 470 480 490 500 50 100 150 200 250 1.5 9 1.6 2 1.6 5 1.6 8 1.7 1 1.7 4 1.7 7 1.8 0 an iso tro p ic F 8 iso tro p ic F 8 W avelen g th (nm ) T h ic kn e s s (n m) n e ff 430 440 450 460 470 480 0 10000 20000 30000 40000 50000 60000 70000 461 458 82nm 78nm 448.80 445.53 In te n s ity (a .u .) W a v e le n g th (n m ) 147nm 173nm 430 440 450 460 470 480 490 0 20000 40000 60000 85nm 78nm 62nm 57nm 46nm 449.23 454.23 458 461 4 68 .7 2 In te n s ity (a .u .) W avelen g th (n m ) 400 450 500 550 0 2000 4000 6000 8000 10000 0 o 4 o 8 o 13 o 495.3 446 In te n s ity (a .u .) W a v e le n g th (n m ) (Above) Lasing spectra measured (a) for the anisotropic F8 laser sample cell and (b) for the isotropic F8 laser sample cell with various film thickness of F8 layer. (c) A few photoluminescence spectra of -polarized waveguide, and insect show the effective index vs wavelength for, waveguide modes in a 193nm-thick aligned F8 film. (d) Lasing wavelengths and effective refractive index of the anisotropic F8 laser sample cell (black-filled triangles) and the isotropic F8 laser sample cell (red-open circles) as a function of F8 film thickness. (a) (c) (b) (d) Cavendish Laboratory (Above) (a) Schematic of the four different excitation configurations. (b) TE-polarized emission spectra from the anisotropic F8 laser cell (the polarization beam is parallel to the F8 chain alignment) with 62nm thickness for pump energies above and below threshold. (c) Threshold behavior in the anisotropic F8 laser cell. The polarization beam parallel (perpendicular) to the F8 chain alignment corresponds to case 1 (case 2). (d) Threshold behavior in an isotropic F8 laser cell. The polarization beam parallel (perpendicular) to the F8 chain alignment corresponds to case 3 (case 4). How do DFB lasers work?

description

Grating line. q. F8. Polyimide. Substrate. TE 0. TE 1. n. ( b). ( a). ( d). ( c). Tunable lasers. - PowerPoint PPT Presentation

Transcript of Document

Page 1: Document

www-g.eng.cam.ac.uk/cosmos

COSMOS is a Basic Technology Research Grant funded by the EPSRC, EP/D04894X

Tuning the wavelength of emission in organic semiconducting lasers by the orientation of a liquid crystalline conjugated polymer

M.H. Song, B. Wenger, R.H. Friend

Optoelectronics group, Cavendish Laboratory , University of Cambridge.

1. We can get the difference between aligned and unaligned F8 film due to different neff. (different wavelength)

2. We can get lower threshold value by aligning F8 molecules.

- Maximizing absorption (effective number of excitons)

- Maximizing the amount of the emitted radiation waveguided

(transition dipole moment)

3. We can tune the wavelength of lasing by changing the angle between

the grating line and the orientation of the polymer molecules in the

aligned F8 film. (different refractive index(neff)).

Conclusions

Comparison between isotropic and anisotropic F8 layers in DFB structures

ragg wavelength, Λ: Grating periodm: The Bragg orderneff : The effective refractive index of waveguide structure• First order grating (m=1) : band edge emission• Second order grating (m=2) : Surface emission

Substrate

Polyimide

F8

=2neff•Λ/m

Tunable lasers

440 450 460 470 480 490 5000

20000

40000

60000 454.5 471.4466.5460.2 0o

Inte

nsi

ty (

a.u

.)

Wavelength (nm)

15o

30o

40o

0 10 20 30 401.63

1.64

1.65

1.66

1.67

1.68

1.69

1.70

456

460

464

468

472

nef

f

Angle between grating line and orientation of F8 (o)

Wav

elen

gth

(n

m)

0

20

40

60

80

100

445 450 455 460 465 470 475 4800

10000

20000

30000

40000

50000

60000

Inte

nsi

ty (

a.u

.)

Th

resh

old

(J

/cm

2 )

Wavelenth (nm)

Grating line

n

(Above) (a) Schematic of tunable DFB F8 laser sample cell. (b) Lasing spectra measured for the anisotropic F8 laser sample cell with different angles between grating line and the orientation of F8. (c) Lasing wavelengths and effective refractive index of the anisotropic F8 laser sample cell as a function of angles between grating line and the orientation of F8. (d) Threshold energy as a function of laser wavelength for the anisotropic F8 laser sample cell with different angles between grating line and the orientation of F8.

(a)

(c)

(b)

(d)

TE0

TE1

50 100 150 200 250

440

450

460

470

480

490

500

50 100 150 200 250

1.59

1.62

1.65

1.68

1.71

1.74

1.77

1.80 anisotropic F8 isotropic F8

W

ave

len

gth

(n

m)

Thickness (nm)

ne

ff

430 440 450 460 470 4800

10000

20000

30000

40000

50000

60000

70000461458

82nm 78nm

448.80

445.53

Inte

nsi

ty (

a.u

.)

Wavelength (nm)

147nm

173nm

430 440 450 460 470 480 4900

20000

40000

60000 85nm 78nm 62nm 57nm 46nm

449.23

454.23 458461 468.72

Inte

ns

ity

(a

.u.)

Wavelength (nm)

400 450 500 5500

2000

4000

6000

8000

10000 0o

4o

8o

13o495.3

446

Inte

nsi

ty (

a.u

.)

Wavelength (nm)

(Above) Lasing spectra measured (a) for the anisotropic F8 laser sample cell and (b) for the isotropic F8 laser sample cell with various film thickness of F8 layer. (c) A few photoluminescence spectra of -polarized waveguide, and insect show the effective index vs wavelength for, waveguide modes in a 193nm-thick aligned F8 film. (d) Lasing wavelengths and effective refractive index of the anisotropic F8 laser sample cell (black-filled triangles) and the isotropic F8 laser sample cell (red-open circles) as a function of F8 film thickness.

(a)

(c)

(b)

(d)

CavendishLaboratory

(Above) (a) Schematic of the four different excitation configurations. (b) TE-polarized emission spectra from the anisotropic F8 laser cell (the polarization beam is parallel to the F8 chain alignment) with 62nm thickness for pump energies above and below threshold. (c) Threshold behavior in the anisotropic F8 laser cell. The polarization beam parallel (perpendicular) to the F8 chain alignment corresponds to case 1 (case 2). (d) Threshold behavior in an isotropic F8 laser cell. The polarization beam parallel (perpendicular) to the F8 chain alignment corresponds to case 3 (case 4).

How do DFB lasers work?