Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due...

66
Wednesday, August 27, 2013 Vectors Review

Transcript of Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due...

Page 1: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Wednesday, August 27, 2013

Vectors Review

Page 2: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Announcements Lab fee? Chris, Liam, Greg? Lab books due today with

Kinematics Graphing lab.

Page 3: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Scalars vs Vectors Scalars have magnitude only

Distance, speed, time, mass Vectors have both magnitude and

direction displacement, velocity, acceleration

R

headtail

Page 4: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Direction of Vectors The direction of a vector is

represented by the direction in which the ray points.

This is typically given by an angle.

Ax

Page 5: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Magnitude of Vectors The magnitude of a vector is the size of whatever

the vector represents. The magnitude is represented by the length of the

vector. Symbolically, the magnitude is often represented

as │A │

AIf vector A represents a displacement of three miles to the north…

B

Then vector B, which is twice as long, would represent a displacement of six miles to the north!

Page 6: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Equal Vectors

Equal vectors have the same length and direction, and represent the same quantity (such as force or velocity).

Page 7: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Inverse Vectors Inverse vectors have the same length,

but opposite direction.

A

-A

Page 8: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

A

B

RA + B = R

Graphical Addition of Vectors

Vectors are added graphically together head-to-tail.

The sum is called the resultant. The inverse of the sum is called the

equilibrant

Page 9: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Component Addition of Vectors

1) Resolve each vector into its x- and y-components.Ax = Acos Ay = AsinBx = Bcos By = Bsin etc.

2) Add the x-components together to get Rx and the y-components to get Ry.

3) Use the Pythagorean Theorem to get the magnitude of the resultant.

4) Use the inverse tangent function to get the angle.

Page 10: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

• Sample problem: Add together the following graphically and by component, giving the magnitude and direction of the resultant and the equilibrant.– Vector A: 300 m @ 60o

– Vector B: 450 m @ 100o

– Vector C: 120 m @ -120o

Page 11: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.
Page 12: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Thursday, August 28, 2013

Unit Vectors

Page 13: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Announcements Lab fee? Chris, Liam, Greg? HW Quiz: Chapter 2

Problems 30, 36, 39, 42, 49, 52 Roll the die!

Page 14: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Consider Three Dimensions

z

y

x

a

ax

ay

az

xy Projection

Polar Angle

Azimuthal Angle

Page 15: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Unit Vectors

Unit vectors are quantities that specify direction only. They have a magnitude of exactly one, and typically point in the x, y, or z directions.

ˆ points in the x direction

ˆ points in the y direction

ˆ points in the z direction

i

j

k

Page 16: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Unit Vectors

z

y

x

ijk

Page 17: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Unit Vectors

Instead of using magnitudes and directions, vectors can be represented by their components combined with their unit vectors.

Example: displacement of 30 meters in the +x direction added to a displacement of 60 meters in the –y direction added to a displacement of 40 meters in the +z direction yields a displacement of:

ˆˆ ˆ(30 -60 40 ) m

30,-60,40 m

i j k

Page 18: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Adding Vectors Using Unit Vectors

Simply add all the i components together, all the j components together, and all the k components together.

Page 19: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample problem: Consider two vectors, A = 3.00 i + 7.50 j and B = -5.20 i + 2.40 j. Calculate C where C = A + B.

Page 20: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample problem: You move 10 meters north and 6 meters east. You then climb a 3 meter platform, and move 1 meter west on the platform. What is your displacement vector? (Assume East is in the +x direction).

Page 21: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Suppose I need to convert unit vectors to a magnitude and direction?

Given the vector

2 2 2

ˆˆ ˆx y z

x y z

r r i r j r k

r r r r

Page 22: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample problem: You move 10 meters north and 6 meters east. You then climb a 3 meter platform, and move 1 meter west on the platform. How far are you from your starting point?

Page 23: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Friday, August 29, 2013

Position, Velocity, and Acceleration Vectors in

Multiple Dimensions

Page 24: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

1 Dimension 2 or 3 Dimensions

x: position x: displacement v: velocity a: acceleration

r: position r: displacement v: velocity a: acceleration

r = x i + y j + z k r = x i + y j + z k v = vx i + vy j + vz k a = ax i + ay j + az k

In Unit VectorNotation

Page 25: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample problem: The position of a particle is given by r = (80 + 2t)i – 40j - 5t2k. Derive the velocity and acceleration vectors for this particle. What does motion “look like”?

Page 26: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample problem: A position function has the form r = x i + y j with x = t3 – 6 and y = 5t - 3.

a) Determine the velocity and acceleration functions.

b) Determine the velocity and speed at 2 seconds.

Page 27: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Miscellaneous Let’s look at some video analysis. Let’s look at a documentary. Homework questions?

Page 28: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Tuesday, September 2, 2013

Multi-Dimensional Motion with Constant (or Uniform)

Acceleration

Page 29: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample Problem: A baseball outfielder throws a long ball. The components of the position are x = (30 t) m and y = (10 t – 4.9t2) ma) Write vector expressions for the ball’s position, velocity, and acceleration as functions of time. Use unit vector notation!

b) Write vector expressions for the ball’s position, velocity, and acceleration at 2.0 seconds.

Page 30: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample problem: A particle undergoing constant acceleration changes from a velocity of 4i – 3j to a velocity of 5i + j in 4.0 seconds. What is the acceleration of the particle during this time period? What is its displacement during this time period?

Page 31: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Trajectory of Projectile

g

g

g

g

g

This shows the parabolic trajectory of a projectile fired over level ground.

Acceleration points down at 9.8 m/s2 for the entire trajectory.

Page 32: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Trajectory of Projectile

vx

vy

vy

vx

vx

vy

vx

vy

vx

The velocity can be resolved into components all along its path. Horizontal velocity remains constant; vertical velocity is accelerated.

Page 33: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Position graphs for 2-D projectiles. Assume projectile fired over level ground.

x

y

t

y

t

x

Page 34: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

t

Vy

t

Vx

Velocity graphs for 2-D projectiles. Assume projectile fired over level ground.

Page 35: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Acceleration graphs for 2-D projectiles. Assume projectile fired over level ground.

t

ay

t

ax

Page 36: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Remember…To work projectile problems…

…resolve the initial velocity into components.

VoVo,y = Vo sin

Vo,x = Vo cos

Page 37: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample problem: A soccer player kicks a ball at 15 m/s at an angle of 35o above the horizontal over level ground. How far horizontally will the ball travel until it strikes the ground?

Page 38: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample problem: A cannon is fired at a 15o angle above the horizontal from the top of a 120 m high cliff. How long will it take the cannonball to strike the plane below the cliff? How far from the base of the cliff will it strike?

Page 39: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample problem: derive the trajectory equation.

22 2

(tan )2 coso

gy x x

v

Page 40: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample problem: Derive the range equation for a projectile fired over level ground.

22 sin cosovRg

Page 41: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample problem: Show that maximum range is obtained for a firing angle of 45o.

22 sin cosovRg

Page 42: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Wednesday, September 3, 2013

Monkey Gun

Page 43: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Announcements Homework policy change.

Page 44: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Will the projectile always hit the target presuming it has enough range? The target will begin to fall as soon as the projectile leaves the gun.

Page 45: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Friday, September 5, 2008

Review of Uniform Circular Motion

Page 46: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Uniform Circular Motion Occurs when an object moves in a circle

without changing speed. Despite the constant speed, the object’s

velocity vector is continually changing; therefore, the object must be accelerating.

The acceleration vector is pointed toward the center of the circle in which the object is moving, and is referred to as centripetal acceleration.

Page 47: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Vectors inUniform Circular Motion

a

v

a = v2 / r

va

v

av

a

Page 48: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample ProblemThe Moon revolves around the Earth every 27.3 days. The radius of the orbit is 382,000,000 m. What is the magnitude and direction of the acceleration of the Moon relative to Earth?

Page 49: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample problem: Space Shuttle astronauts typically experience accelerations of 1.4 g during takeoff. What is the rotation rate, in rps, required to give an astronaut a centripetal acceleration equal to this in a simulator moving in a 10.0 m circle.

Page 50: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Wednesday, September 10, 2008

Radial and Tangential Acceleration

Page 51: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Tangential acceleration Sometimes the speed of an object in circular

motion is not constant (in other words, it’s not uniform circular motion).

An acceleration component is tangent to the path, aligned with the velocity. This is called tangential acceleration.

The centripetal acceleration component causes the object to continue to turn as the tangential component causes the radius or speed to change.

Page 52: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

v

Tangential Acceleration

radial or centripetal component (ar or ac )

tangential component (aT )

aIf tangential acceleration exists, the orbit is not stable.

Page 53: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample Problem: Given the figure at right rotating at constant radius, find the radial and tangential acceleration components if = 30o and a has a magnitude of 15.0 m/s2. What is the speed of the particle? How is it behaving?

5.00 ma

Page 54: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample problem: Suppose you attach a ball to a 60 cm long string and swing it in a vertical circle. The speed of the ball is 4.30 m/s at the highest point and 6.50 m/s at the lowest point. Find the acceleration of the ball at the highest and lowest points.

Page 55: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample problem: A car is rounding a curve on the interstate, slowing from 30 m/s to 22 m/s in 7.0 seconds. The radius of the curve is 30 meters. What is the acceleration of the car?

Page 56: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Thursday, September 11, 2013

Relative Motion

Page 57: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Relative Motion When observers are moving at

constant velocity relative to each other, we have a case of relative motion.

The moving observers can agree about some things, but not about everything, regarding an object they are both observing.

Page 58: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Consider two observers and a particle. Suppose observer B is moving relative to observer A.

Pparticle

Aobserver

Bobserver

vrel

Page 59: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Also suppose particle P is also moving relative to observer A.

Pparticle

Aobserver

Bobserver

vrel

vA

In this case, it looks to A like P is moving to the right at twice the speed that B is moving in the same direction.

Page 60: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

However, from the perspective of observer B…

Pparticle

Aobserver

Bobserver

-vrel

vB

it looks like P is moving to the right at the same speed that A is moving in the opposite direction, and this speed is half of what A reports for P.

vA

vrel

Page 61: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

The velocity measured by two observers depends upon the observers’ velocity relative to each other.

Pparticle

Aobserver

Bobserver

-vrel

vB

vB = vA – vrel

vA = vB + vrel

vA

vrel

Page 62: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample problem: Now show that although velocity of the observers is different, the acceleration they measure for a third

particle is the same provided vrel is constant. Begin with vB = vA - vrel

Page 63: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Galileo’s Law of Transformation of Velocities If observers are moving but not

accelerating relative to each other, they agree on a third object’s acceleration, but not its velocity!

Page 64: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Inertial Reference Frames Frames of reference which may move

relative to each other but in which observers find the same value for the acceleration of a third moving particle.

Inertial reference frames are moving at constant velocity relative to each other. It is impossible to identify which one may be at rest.

Newton’s Laws hold only in inertial reference frames, and do not hold in reference frames which are accelerating.

Page 65: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample problem: How long does it take an automobile traveling in the left lane at 60.0km/h to pull alongside a car traveling in the right lane at 40.0

km/h if the cars’ front bumpers are initially 100 m apart?

Page 66: Wednesday, August 27, 2013 Vectors Review Announcements Lab fee? Chris, Liam, Greg? Lab books due today with Kinematics Graphing lab.

Sample problem: A pilot of an airplane notes that the compass indicates a heading due west. The airplane’s speed relative to the air is 150 km/h. If

there is a wind of 30.0 km/h toward the north, find the velocity of the airplane relative to the ground.