Wayne Hu- NeoClassical Probes of the Dark Energy

download Wayne Hu- NeoClassical Probes of the Dark Energy

of 49

Transcript of Wayne Hu- NeoClassical Probes of the Dark Energy

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    1/49

    in

    Wayne Hu

    COSMO04 Toronto, September 2004

    of the Dark Energy

    NeoClassical Probes

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    2/49

    Structural Fidelity

    Dark matter simulations approaching the accuracy ofCMB

    calculations

    WMAP Kravtsov et al (2003)

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    3/49

    Equation of State Constraints

    NeoClassical probes statistically competitive already

    CMB+SNe+Galaxies+Bias(Lensing)+Ly

    Future hinges on controlling systematicsSeljak et al (2004)

    -2

    -1.8

    -1.6

    -1.4

    -1.2

    -1

    -0.8

    -0.6

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    w

    z

    smooth: w=w0+(1-a)wa+(1-a)2waa

    68%

    95%

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    4/49

    Dark Energy Observables

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    5/49

    Making Light of the Dark Side Line element:

    ds2 = a2[(1 2)d2 (1 + 2)(dD2 + D2Ad)]

    where is the conformal time, D comoving distance, DA the

    comoving angular diameter distance and the gravitational

    potential

    Dark components visible in their inuence on the metric elements

    a and general relativity considers these the same: consistency

    relation for gravity

    Light propagates on null geodesics: in the background D = ;

    around structures according to lensing by

    Matter dilutes with the expansion and (free) falls in the

    gravitational potential

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    6/49

    Friedmann and Poisson Equations Friedmann equation:

    dln a

    d

    2

    =8G

    3a2

    [aH(a)]2

    implying that the densities of dark components are visible in the

    distance-redshift relation (a = (1 + z)

    1)

    D =

    d =

    d ln a

    aH(a)=

    dz

    H

    Poisson equation:

    2 = 4Ga2

    implying that the (comoving gauge) density eld of the dark

    components is visible in the potential (lensing, motion of tracers).

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    7/49

    Growth Rate Relativistic stresses in the dark energy can prevent clustering. If

    only dark matterperturbationsm

    m

    /m are responsible for

    potential perturbations on small scales

    d2mdt2

    + 2H(a)dmdt

    = 4Gm

    (a)m

    In a at universe this can be recast into the growth rateG(a)

    m/a equation which depends only on the properties of

    the dark energy

    d2G

    d ln a2 +5

    2

    3

    2w(a)DE(a) dGd ln a +

    3

    2[1 w(a)]DE(a)G = 0

    with initial conditions G =const.

    Comparison ofdistance and growth tests dark energy smoothness

    and/orgeneral relativity

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    8/49

    Fixed Deceleration Epoch

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    9/49

    High-z Energy Densities

    WMAP + small scale temperature andpolarization measures

    provides self-calibrating standards for the dark energy probes

    WMAP: Bennett et al (2003)

    Multipole moment (l)

    l(l+1)Cl/2

    (K2)

    Angular Scale

    0

    0

    1000

    2000

    3000

    4000

    5000

    6000

    10

    90 2 0.5 0.2

    10040 400200 800 1400

    ModelWMAP

    CBI

    ACBAR

    TT Cross PowerSpectrum

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    10/49

    High-z Energy Densities

    Relative heights of the first 3 peaks calibrates sound horizon and

    matter radiation equality horizon

    Multipole moment (l)

    l(l+1)Cl/2

    (K2)

    0

    0

    1000

    2000

    3000

    4000

    5000

    6000

    10 10040 400200 800 1400

    baryons(sound speed)

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    11/49

    High-z Energy Densities

    Relative heights of the first 3 peaks calibrates sound horizon and

    matter radiation equality horizon

    Multipole moment (l)

    l(l+1)Cl/2

    (K2)

    0

    0

    1000

    2000

    3000

    4000

    5000

    6000

    10 10040 400200 800 1400

    dark matter(horizon, equality)

    leading source

    of error!

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    12/49

    High-z Energy Densities

    Cross checked with damping scale (diffusion during horizon time)

    andpolarization (rescattering after diffusion): self-calibrated and internally cross-checked

    WMAP: Bennett et al (2003)

    Multipole moment (l)

    l(l+1)Cl/2

    (K2)

    0

    0

    1000

    2000

    3000

    4000

    5000

    6000

    10 10040 400200 800 1400

    cross checked

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    13/49

    Standard Ruler

    Standard rulerused to measure the angular diameter distance to

    recombination (z~1100; currently 2-4%) orany redshift for whichacoustic phenomena observable

    WMAP: Bennett et al (2003)

    Multipole moment (l)

    l(l+1)Cl/2

    (K2)

    0

    0

    1000

    2000

    3000

    4000

    5000

    6000

    10 10040 400200 800 1400

    angular scalev. physical scale

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    14/49

    Standard Amplitude

    Standard fluctuation: absolute power determines initial fluctuations

    in the regime 0.01-0.1 Mpc-1

    WMAP: Bennett et al (2003)

    Multipole moment (l)

    l(l+1)Cl/2

    (K2)

    0

    0

    1000

    2000

    3000

    4000

    5000

    6000

    10 10040 400200 800 1400

    k~0.02Mpc-1

    k~0.06Mpc-1

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    15/49

    Standard Amplitude

    Standard fluctuation:precision mainly limited by reionization which

    lowers the peaks as e-2

    ; self-calibrated bypolarization,cross checkedby CMB lensing in future

    WMAP: Bennett et al (2003)

    Multipole moment (l)

    l(l+1)Cl/2

    (K2)

    0

    0

    1000

    2000

    3000

    4000

    5000

    6000

    10 10040 400200 800 1400

    e-2see saturday/astroph

    CAPMAP, CBI, DASI

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    16/49

    8(z) Determination of the normalization during the acceleration epoch,

    even 8, measures the dark energy with negligible uncertaintyfrom other parameters

    Approximate scaling (at, negligible neutrinos: Hu & Jain 2003)

    8(z) 5.6 105bh

    2

    0.0241/3

    mh

    2

    0.140.563

    (3.12h)(n1)/2

    h

    0.72

    0.693G(z)

    0.76,

    , bh2, mh2, n all well determined; eventually to 1%precision

    h =mh2/m (1 DE)

    1/2 measures dark energy density

    G measures dark energy dependent growth rate

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    17/49

    Reionization

    Biggest surprise ofWMAP: early reionization from temperature

    polarization cross correlation (central value

    =0.17)

    Kogut et al (2003)

    Multipole moment (l)

    0

    (l+1)C

    l

    /2

    (K

    2)

    -1

    0

    1

    2

    3

    10 10040 400200 800 1400

    TE Cross PowerSpectrumReionization

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    18/49

    Leveraging the CMB

    Standard fluctuation: large scale - ISW effect; correlation with

    large-scale structure; clustering of dark energy; low multipoleanomalies? polarization

    WMAP: Bennett et al (2003)

    Multipole moment (l)

    l(l+1)Cl/2

    (K2)

    0

    0

    1000

    2000

    3000

    4000

    5000

    6000

    10 10040 400200 800 1400

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    19/49

    Standard Deviants[H0 w(z = 0.4)]

    [8 dark energy]

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    20/49

    Dark Energy Sensitivity

    Fixed distance to recombinationDA(z~1100)

    Fixed initial fluctuationG(z~1100) Constant w=wDE; (DE adjusted - one parameter family of curves)

    DA/DA

    G/G

    H-1/H-1

    wDE=1/3

    0.1

    0

    0.1

    0.2

    -0.2

    -0.1

    1z

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    21/49

    Dark Energy Sensitivity

    Other cosmological test, e.g. volume, SNIa distance constructed

    as linear combinations

    deceleration

    epoch measures

    Hubble constant

    DA/DA

    (H0DA)/H0DA

    H0/H

    0G/G

    H-1/H-1

    wDE=1/3

    0.1

    0

    0.1

    0.2

    -0.2

    -0.1

    1z

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    22/49

    Amplitude of Fluctuations

    Recent determinations:

    compilation: Refrigier (2003)

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    23/49

    Dark Energy Sensitivity

    Three parameterdark energy model: w(z=0)=w0; wa=-dw/da; DE

    wa sensitivity; (fixed w0 = -1; DE adjusted)

    deceleration

    epoch measures

    Hubble constant

    DA/DA

    (H0DA)/H0DA

    H0/H

    0G/G

    H-1/H-1

    wa=1/2; w0=0

    0.1

    0

    0.1

    0.2

    -0.2

    -0.1

    1z

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    24/49

    Pivot Redshift

    Any deviation from w=-1 rules out a cosmological constant

    Seljak et al (2004)

    -2

    -1.8

    -1.6

    -1.4

    -1.2

    -1

    -0.8

    -0.6

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    w

    z

    smooth: w=w0+(1-a)wa+(1-a)2waa

    68%

    95%

    Equation of state best measured at z~0.2-0.4 = Hubble constant

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    25/49

    Dark Energy Sensitivity

    Three parameter dark energy model: w(z=0)=w0; wa=-dw/da; DE

    H0 fixed (orDE); remaining w0-wa degeneracy Note: degeneracy does notpreclude ruling out (w(z)-1 at somez)

    deceleration

    epoch measures

    Hubble constant

    DA/DA

    (H0DA)/H0DA

    G/G

    H-1/H-1

    wa=1/2; w0=-0.15

    0.1

    0

    0.01

    0.02

    -0.02

    -0.01

    1z

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    26/49

    Rings of Power

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    27/49

    Local Test: H0 Locally DA = z/H0, and the observed powerspectrum

    is isotropic in h Mpc-1

    space Template matching the features yields the Hubble constant

    Eisenstein, Hu & Tegmark (1998)k(Mpc1)

    0.05

    2

    4

    6

    8

    0.1

    Power

    h

    Observed

    h Mpc-1

    CMB provided

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    28/49

    Cosmological Distances

    Modesperpendicular to line of sight measure angular diameter

    distance

    Cooray, Hu, Huterer, Joffre (2001)k(Mpc1)

    0.05

    2

    4

    6

    8

    0.1

    Power

    Observed

    l DA-1

    CMB provided

    DA

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    29/49

    Cosmological Distances

    Modesparallel to line of sight measure the Hubble parameter

    Eisenstein (2003); Seo & Eisenstein (2003) [also Blake & Glazebrook 2003; Linder 2003; Matsubara & Szalay 2002]

    k(Mpc1)0.05

    2

    4

    6

    8

    0.1

    Power

    Observed

    H/z

    CMB provided

    H

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    30/49

    0.02

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.04 0.06 0.08 0.10 0.12 0.14

    k (Mpc-1)

    k

    (Mpc-1)

    0.02 0.04 0.06 0.08 0.10 0.12 0.14

    k (Mpc-1)

    Hu & Haiman (2003)

    Information density in k-space sets requirements for the redshifts

    Purely angular limit corresponds to a low-pass k||redshift survey inthe fundamental mode set by redshift resolution

    Projected Power

    (a)DA (b) H

    angular

    Limber

    limit

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    31/49

    Galaxies and Halos

    Recent progress in the assignment ofgalaxies to halos and halo

    substructure reduces galaxy bias largely to a counting problemKravtsov et al (2003)SDSS: Zehavi et al (2004)

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    32/49

    Gravitational Lensing

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    33/49

    Lensing Observables

    Correlation ofshear distortion of background images: cosmic shear

    Cross correlation between foreground lens tracers and shear:galaxy-galaxy lensing

    cosmic

    shear

    galaxy-galaxy lensing

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    34/49

    Halos and Shear

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    35/49

    Lensing Tomography

    Divide sample byphotometric redshifts

    Cross correlate samples

    Order of magnitude increase in precision even afterCMB breaksdegeneracies

    Hu (1999)

    1

    1

    2

    2

    D

    0 0.5

    0.1

    1

    2

    3

    0.2

    0.3

    1 1.5 2.0

    gi(D)

    ni(D)

    (a) Galaxy Distribution

    (b) Lensing Efficiency

    22

    11

    12

    100 1000 104

    105

    104

    l

    Power

    25 deg2, zmed=1

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    36/49

    Galaxy-Shear Power Spectra

    Auto and cross power spectra ofgalaxy density and shear

    in multiple redshift bins

    g1g1

    11

    12

    22g12

    g11

    g22

    g21

    g2g2

    100

    10-4

    0.001

    0.01

    0.1

    1000

    l

    l2Cl/2

    Hu & Jain (2003)[also geometric constraints: Jain & Taylor (2003); Bernstein & Jain (2003); Zhang, Hui, Stebbins (2003); Knox & Song (2003)]

    shear-shear

    cross correlation

    and B modes

    check systematics

    Hoekstra et al (2002); Guzik & Seljak (2001)

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    37/49

    Mass-Observable Relation

    With bias determined, galaxy spectrum measures mass spectrum

    Use galaxy-galaxy lensing to determine relation with halos orbias

    0.001

    0.01

    0.1

    1

    10

    1011 1012 1013 1014 1015

    Mh (h-1M)

    M*

    0

    dnh

    dlnMhN(Mh)

    ms

    As

    Mth

    lnM

    z=0

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    38/49

    Cluster Abundance

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    39/49

    Counting Halos

    Massive haloslargely avoidN(Mh)problem ofmultiple objects

    0.001

    0.01

    0.1

    1

    10

    1011 1012 1013 1014 1015

    Mh (h-1M)

    M*0

    dnhdln Mh N(Mh)

    ms

    As

    Mth

    lnM

    z=0

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    40/49

    Counting Halos for Dark Energy Number density of massive halos extremely sensitive to the growth of structure and hence the dark energy

    Potentially %-levelprecision in dark energy equation of state

    Haiman, Holder & Mohr (2001)

    M Ob bl R l i

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    41/49

    Mass-Observable Relation

    Relationship between halos of given mass and observables setsmass threshold and scatteraround threshold

    Leading uncertainty in interpreting abundance; self-calibration?

    0.001

    0.01

    0.1

    1

    10

    1011 1012 1013 1014 1015

    Mh (h-1M)

    M*

    0

    dnh

    dlnMhN(Mh)

    ms

    As

    Mth

    lnM

    z=0

    Pierpaoli, Scott & White (2001); Seljak (2002); Levine, Schultz & White (2002)

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    42/49

    Dark Energy Clustering

    ISW Eff

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    43/49

    ISW Effect

    Ifdark energy is smooth, gravitational potential decays with expansion

    Photon receives a blueshift falling in without compensating redshift

    Doubled by metric effect of stretching the wavelength

    Sachs & Wolfe (1967); Kofman & Starobinski (1985)

    ISW Eff t

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    44/49

    ISW Effect

    ISW effect hidden in the temperature power spectrum byprimaryanisotropy and cosmic variance

    [plot: Hu & Scranton (2004)]

    10-12

    10-11

    10-10

    10-9

    l(l+1)Cl

    /2

    10 100

    l

    total

    ISW

    w=-0.8

    ISW G l C l ti

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    45/49

    ISW Galaxy Correlation

    A 2-3detection of the ISW effect through galaxy correlations

    Boughn & Crittenden (2003); Nolte et al (2003); Fosalba & Gaztanaga (2003); Fosalba et al (2003);

    Afshordi et al (2003)

    0 10 20 30

    (degrees)

    - 0.4

    - 0.2

    0

    0.2

    0.4

    (TOT

    cntss

    -1

    K)

    Boughn & Crittenden (2003)

    D k E S th

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    46/49

    Dark Energy Smoothness

    Ultimately can test the dark energy smoothness to ~3% on 1 Gpc

    Hu & Scranton (2004)

    (

    s

    )/s

    0.011 10

    0.03

    0.10

    ce0 (Gpc)

    total

    z10

    fsky=1

    S

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    47/49

    Summary NeoClassical probes based on the evolution ofstructure

    CMB xes deceleration epoch observables: expansion rate, energydensities, growth rate, absolute amplitude, volume elements

    General relativity predicts a consistency relation between

    deviations in distances and growth due to dark energy

    Leading dark energy distance observable is H0 or equivalentlyw(z 0.4)

    Leading growth observable 8 measures dark energy (and

    neutrinos)

    Many NeoClassical tests can measure the evolution ofw but all

    will require a control oversystematic errors at the 1%

    Promising probes are beginning to bear fruit: cluster abundance,

    cosmic shear, galaxy clustering, galaxy galaxy lensing,

    D k E S iti it

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    48/49

    Dark Energy Sensitivity

    H0 fixed (orDE); remaining wDE-Tspatial curvature degeneracy

    Growth rate breaks the degeneracy anywhere in the accelerationregime

    deceleration

    epoch measures

    Hubble constant

    DA/DA

    (H0DA)/H0DA

    G/G

    H-1/H-1

    0.1

    0

    0.01

    0.02

    -0.02

    -0.01

    1z

    wDE=0.05; T=-0.0033

    K i th Hi h Fi d

  • 8/3/2019 Wayne Hu- NeoClassical Probes of the Dark Energy

    49/49

    Keeping the High-z Fixed

    CMB fixes energy densities, expansion rate and distances to deceleration epoch fixed

    Example: constant w=wDE models require compensating shiftsin DE and h

    -1

    0.7

    0.6

    0.5

    -0.8 -0.6 -0.4

    wDE

    DE

    h