Vertebrate Limb Development - University of Minnesota Duluth

28
Tetrapod Limb Development Biology 4361 Developmental Biology July 29, 2009

Transcript of Vertebrate Limb Development - University of Minnesota Duluth

Page 1: Vertebrate Limb Development - University of Minnesota Duluth

Tetrapod Limb Development

Biology 4361 – Developmental Biology

July 29, 2009

Page 2: Vertebrate Limb Development - University of Minnesota Duluth

Tetrapod Limbs

© Vicki Lockard and Paul Barry

© Father Alejandro Sanchez

© Merlin D. Tuttle

© Anne Fischer

Page 3: Vertebrate Limb Development - University of Minnesota Duluth

Limb Development - Overview

Patterning

Early development

Specification

Establishing limb axes

Morphogenic models

Cross-talk / regulation

Page 4: Vertebrate Limb Development - University of Minnesota Duluth

Francesca V. Mariani and Gail R. Martin 2003 Nature 423:319-325 doi:10.1038/nature01655

Limb Patterning

Humerus

Radius

Ulna

Carpals Metacarpals

Phalanges

Human

arm

Chicken wing

Chicken

leg

Shoulder Finger

Pinkie

Thumb

Knuckle

Palm

Proximal Distal

Posterior

AnteriorDorsal

Ventral

Page 5: Vertebrate Limb Development - University of Minnesota Duluth

Limb Field

Page 6: Vertebrate Limb Development - University of Minnesota Duluth

Limb Bud

Formation

Page 7: Vertebrate Limb Development - University of Minnesota Duluth

Vertebrate Limb Buds

Limb bud

So

mite

s

Ectoderm

Mesodermal

mesenchymeLateral

plate

mesoderm

Hox expression

determines limb

bud locationHox5

Hox6

Page 8: Vertebrate Limb Development - University of Minnesota Duluth

Hoxc6 Specification of Limb Buds

Forelimb initiation:

- anterior-most point of

Hoxc6 expression

Page 9: Vertebrate Limb Development - University of Minnesota Duluth

Tbx Genes Specify Limb Type

Tbx expression initiated by Wnts, FGFs

NOTE – Tbx genes are not the first step in forelimb/hindlimb specification

(initial step(s) unknown)

Page 10: Vertebrate Limb Development - University of Minnesota Duluth

Fgf/Wnt - Limb Bud Initiation

Page 11: Vertebrate Limb Development - University of Minnesota Duluth

Limb Bud Axes

Distal

Proximal

Anterior

Posterior

Dorsal

Ventral

Page 12: Vertebrate Limb Development - University of Minnesota Duluth

Apical Ectodermal Ridge

Apical Ectodermal

Ridge (AER)

Fgf10 initiates AER via Wnt3a, β-catenin

AER expresses Fgf8, Fgf4; maintains Fgf10 expression

Proximal-Distal Axis

Apical Ectodermal Ridge (AER) forms at boundary

between dorsal and ventral ectoderm

Fgf8

lateral

plate

mesoderm

Fgf10Fgf10

Lateral plate mesoderm expresses Fgf10

Page 13: Vertebrate Limb Development - University of Minnesota Duluth

Apical Ectodermal Ridge Manipulation

Extent of development depends

on time of AER removal

Distal structures

are duplicated;

- note structure

Degree of “legness” of wing

depends on placement of

leg mesenchyme

Page 14: Vertebrate Limb Development - University of Minnesota Duluth

Progress Zone

Progress Zone – mesodermal mesenchyme; receives AER signals:

- promotes proliferation (mitosis)

- prevents differentiation into cartilage

- maintains expression of A/P and D/V-related signals

Progress Zone

(PZ)

Apical Ectodermal

Ridge (AER)

Fgf8

Fgf4

PZFgf8

Fgf10

PZ mesenchyme specifies proximal-distal axis

- transplantation experiments demonstrated that positional

information was carried by PZ cells

- PZs conveyed age-appropriate specification instructions

AER establishes

Progress Zone

~200 μm

Page 15: Vertebrate Limb Development - University of Minnesota Duluth

Proximal-Distal Specification ModelsProgress zone model: Identity established by residence time in PZ

Pro

xim

al

Dis

tal

Early allocation and progenitor expansion: Elements specified early

Specifying mechanism - ??

Page 16: Vertebrate Limb Development - University of Minnesota Duluth

Anterior-Posterior Specification

Zone of Polarizing

Activity (ZPA)

Apical Ectodermal

Ridge (AER)

Progress Zone (PZ)

Morphogen

Shh

Shh necessary and sufficient for establishing ZPA

(NOTE – Shh not necessary for polarity of styolpod)

Shh induced by dHAND and Hoxb8

ZPA maintained by feedback loop with AER

Page 17: Vertebrate Limb Development - University of Minnesota Duluth

ZPA/AER Feedback Loop Model

1. dHAND - bHLH transcription factor

and Fgf8 from AER stimulate Shh

- Fgf8 (and Fgf4) maintains Shh

expression

2. Shh up-regulates Gremlin1 in

posterior mesenchyme

- Grem1 antagonizes BMP ligands

(BMPs repress Fgf expression in AER)

3. Wnt7a maintains Shh

Wnt7a determines the size of AER

Loss-of-function mutants (both Shh and Grem1) = syndactyly, loss of digits

Page 18: Vertebrate Limb Development - University of Minnesota Duluth

ZPA Morphogen Gradient

ZPA

Shh gradient

12

3

4

5

[Morphogen]

High

Low

Posterior Anterior

5

4

32

Page 19: Vertebrate Limb Development - University of Minnesota Duluth

ZPA Transplantation

Mirror-image duplication effects can be replicated by transplanting Shh bead

Posterior tissue transplant to anterior = duplicated autopod

Retinoic acid operates upstream of Shh

- implant RA-soaked bead =mirror-image duplication

- possible Hox gene involvement

C. Tickle, Nature Molecular Biology 7(2006)45-53

2

34

43

2

“new” posterior

Page 20: Vertebrate Limb Development - University of Minnesota Duluth

Drosophila Hedgehog PathwayShh

(vertebrates)

/ Gli1, 2, 3

(vertebrates)

/ Gli1, 2, 3

(vertebrates)

Page 21: Vertebrate Limb Development - University of Minnesota Duluth

Shh/Gli Interactions

Gli3 – proteolytic fragment – acts as a transcriptional repressor (Gli3R)

- represses e.g. dHAND, Gremlin, Fgf4, Hoxd13

Without Shh:

With Shh:

Gli’s retained in long form – acts as a transcriptional activator (Gli3A)

- e.g. Gli1 activates Shh

ZPA

Shh gradient

Gli3A

Gli3R

Page 22: Vertebrate Limb Development - University of Minnesota Duluth

Shh/Gli Interactions

C. Tickle, Nature Molecular Biology 7(2006)45-53

Shh main function may be to relieve Gli3R repression in posterior region

Anterior – high Gli3R

Posterior – low Gli3R/ high Gli3A

Shh-/- = 1 digit;

- Gli3R prevails

Gli3-/- = polydactyly

- Shh prevails

~ 8 digits

- unpatterned

Page 23: Vertebrate Limb Development - University of Minnesota Duluth

Shh Specifies Digit Identity

digit 4 progenitor cells

digit 5 precursors

(paracrine)

(autocrine & paracrine)

(autocrine)

Page 24: Vertebrate Limb Development - University of Minnesota Duluth

BMPs Regulate Digital IdentityShh initiates BMP2 and BMP7 gradients

- BMPs in interdigital mesoderm specifies identity of digits anteriorly

Noggin – BMP

antagonist

Insert BMP antagonist

into interdigital webbing

NOTE – Fgfs from AER control phalange development;

Shh bead inserted between digits can add phalange; Shh

sustains Fgf signal; Fgf inhibitor = lack of phalange

Remove interdigital

mesoderm

- BMP targets unknown

NOTE – BMP effects probably only on tissue “primed” by Shh

Page 25: Vertebrate Limb Development - University of Minnesota Duluth

Hox Genes in Early Limb Bud

Page 26: Vertebrate Limb Development - University of Minnesota Duluth

5’ Hox Genes Pattern Limb ElementsForelimb

Hindlimb

Page 27: Vertebrate Limb Development - University of Minnesota Duluth

Dorsal-Ventral Specification

Zone of

Polarizing

Activity

(ZPA)

Apical Ectodermal

Ridge (AER)

Progress Zone (PZ)

Ectoderm

Wnt7a – necessary and sufficient to dorsalize limb bud

- induces Lmx1 in dorsal mesenchyme

- Lmx1 knockouts = ventralized phenotype

- Wnt7a knockouts = ventral footpads on both surfaces

Dorsal

Ventral

Page 28: Vertebrate Limb Development - University of Minnesota Duluth

Apoptosis in Limb Primordia

BMP signals