UV Photodissociation of cyclic ketones in the gas phase and cold inert gas matrixes Anamika...

14
otodissociation of cyclic ketones in the gas phase cold inert gas matrixes Anamika Mukhopadhyay , Moitrayee Mukherjee, Amit K. Samanta and Tapas Chakraborty Physical Chemistry Department Indian Association for the Cultivation of Science Jadavpur, Calcutta 700032, India 65 th OSU Symposium on Molecular Spectroscopy Date: 21 st June IACS MG17

Transcript of UV Photodissociation of cyclic ketones in the gas phase and cold inert gas matrixes Anamika...

UV Photodissociation of cyclic ketones in the gas phase and cold inert gas matrixes

Anamika Mukhopadhyay, Moitrayee Mukherjee, Amit K. Samanta and Tapas Chakraborty

Physical Chemistry DepartmentIndian Association for the Cultivation of Science

Jadavpur, Calcutta 700032, India

65th OSU Symposium on Molecular SpectroscopyDate: 21stJune

IACS

MG17

Photodissociation of cyclic ketones: Products

exct : 254 nm

exct : 254 nm

O

O

+ CO

Initial step follows Norrish-I reaction

+ CO

2C2H4 + CO

O

O

O

O

exct : 254 nm

?

?

250 300 350 400 450 500

Molecule of interest

1, 2 cyclohexanedione (1,2 CHD): Considered to be responsible for coffee aroma.Active site of the anticancer drug and anti-tumor steroid

O

O O

O H

H

Monoenolic form

1,2 CHD

Wavelength (nm)

Inte

nsity

(ar

b. u

nit)

O

O

3,4 hexanedione

Goal of study: Fragmentation channels in the gas phase

Small chemical substitution

Ring size effect

Comparision with monocarbonyls to explore the role of 2nd carbonyl on gas phase photochemistry

Environment effect, i.e. if the molecule is taken in a rigid environment

UVC Lamp=254nm

channeltron

-5 kV Signal+

-2 kV

eee

Quadrupole mass filter

Axial Ionizer

Continuous Molecular Beam

Turbo pumpDiffusion pump

Sample

pump

Computer

Gauge

Entrance Lens

Exit Lens

Multipass absorption cell

Detector

MIR source

FTIR Spectrometer

Reaction chamber

Experimental Scheme for gas phase study

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Scheme of UV Photodissociation in Matrix Environment

IR beam from an FTIR spectrometer

266 nm light from Nd:YAG laser

KBr window cooled at 7K temp

………..………..….……..………...…….….………...………...…………………………………………………....

O

O

O

O

λexct =254 nm light

O

O

Proposed Channels

λexct =254 nm light + CO

O

Norrish-I

+ C2H4

cyclobutane

O254 nm light

CO +

CO + 2C2H4

CCO

H

H

λexct =254 nm lightCCO

H

H

CCO

C2H5

H+

O

O

λexct =254 nm lightCO

CH3

H

20 40 60 80 100 120

m/z (amu)

84

70

112

8356

O

O

CH2CH2CH2CH2C=O+(84) + CO(28)O

O

CH2CH2CH2C=O+(70) + H2CCO(42)

O

O

2 CH2CH2C=O+(56)

20 40 60 80 100 120

m/z (amu)

8483

70

55

28

42 56

Mass spectrometric experiment

Before UV exposure

After ½ hr UV exposure

KE of electron=11 eV

0 20 40 60 80 100

O

C2H

4

C

C

O

HH

500 1000 1500 2000 2500 3000 3500 4000

500 1000 1500 2000 2500 3000 3500 4000

Wavenumber (cm-1)

A

A

C

B

D

FTIR Spectrum of 1,2 CHD before and after UV irradiation

Before UV exposure

After ½ hr UV exposureB

C D

949

900 950 1000

1650 1700 1750 1800 2600 2700 2800 2900 3000 3100 3200

Ocyclopentanone

C=O C–H

Ocyclopentanone

2000 2050 2100 2150 2200 2250

2151

A B

Wavenumber(cm-1)

Identification of final products after UV exposure by FTIR spectroscopy

2030 2100 2170 2240

1200 1400 1600 1800 2000 2200

1 hr UV exposure

Before UV exposure

266 nm light

Wavenumber (cm-1)

O

O

O

O

+

Methyl ketene

Ethyl ketene

ketene

Photodissociation of 1,2 CHD in the inert Ar matrix environment

21232127

2142 keteneEthyl ketene

2100 2110 2120 2130 2140 2150 2160

O

O

C

H

HH

O

O

H

C

H

HH

Photodissociation of 3-methyl-1,2-CHD: Substituent effect

O

O

C

H

HH

20 40 60 80 100

0 30 60 90 120 150

Mass m/z (amu)

126

84 98

84

984228

Before exposure

After exposure with 254 nm light

Electron kinetic energy=11 eV

O

CH3

+ CO

CO + C2H4

98

+ C2H4

CO

CH3

H

+

56

42

28

O

O

C

H

HH

CCO

H

H

CO

CH3

H

No reactivity in matrix with 266nm light

Photodissociation of 3-methyl-1,2-CPN in the inert N2 matrix environment

O

CH3

O

HO

O

CH3

+

O

O

CH3

266 nm

O

O

CH3

266 nm2100 2120 2140 2160

2116

2121

2136

Wavenumber (cm-1)

Photoreactivity enhanced compared to the six membered diketone

(K)

(MK)

(DMK)

Summary and outlook:

Gas phase photodissociation results ketene, ethylene, carbonmonoxide and cyclopentanone as the major photoproducts of 1,2 CHD by UV exposure of wavelength 254nm

In 7K argon matrix environment, photodissociation channels are drastically altered, and only ketene, methyl and ethyl ketene are produced

An ortho methyl substitution to 1,2 CHD make the molecule resistant to photodissociation. No photodissociation is found in cold Ar-matrix, and in the gas-phase reactivity is much weaker compared to the parent molecule

On the other hand, methyl substituted 1,2-cyclopentanedione show larger photoreactivity both in gas phase and in matrix

Mass spectrometric as well as spectroscopic measurements for identification of the the reaction intermediates of the above mentioned photodissociation reaction are in progress

Thank You