Unsymm Bending

download Unsymm Bending

of 29

Transcript of Unsymm Bending

  • 8/12/2019 Unsymm Bending

    1/29

    Combined bending of unsymmetrical beams

    Internal forces and moments are defined positive as shown

    y

    z

    x

    My

    Mz

    Vy

    Vz

    Mx =T

  • 8/12/2019 Unsymm Bending

    2/29

    Looking down the negative y -axis

    O

    dx

    zV z

    z

    dVV dx

    dx+

    y

    y

    y

    dM

    M dxdx+

    0

    0

    O

    y

    y z y

    M

    dMM V dx M dx

    dx

    =

    + + =

    y

    z

    dMV

    dx=

    +

  • 8/12/2019 Unsymm Bending

    3/29

    Looking down the z -axis

    O

    dx

    yV y

    y

    dVV dx

    dx+

    z

    z

    z

    dM

    M dxdx+

    0

    0

    O

    zz y z

    M

    dMM V dx M dx

    dx

    =

    + + + =

    zy

    dMV

    dx=

    +

  • 8/12/2019 Unsymm Bending

    4/29

    Assume that plane sections remain plane but that is bending

    induced about both the y and z axes even if the moment might onlybe about one axis

    x

    dw dvu z y

    dx dx

    =

    w is the displacement of the neutral axis in the z-direction

    v is the displacement of the neutral axis in the y-direction

    Thus, the axial strain developed is

    2 2

    2 2

    x

    xx

    u d w d ve z y

    x dx dx

    = =

    curvatures of the neutral axis

    If xx is the only major stress 2 2

    2 2xx xx

    d w d v

    Ee E z ydx dx

    = =

  • 8/12/2019 Unsymm Bending

    5/29

    Note that there are also strains

    2 2

    2 2yy zz xx

    d w d ve e e z y

    dx dx = = = +

    Relationship between the flexural stress and the internal moments

    y

    z

    x

    xxy

    zMy

    Mz

    0xx

    xx z

    xx y

    dA

    y dA M

    z dA M

    =

    =

    =

    (1)

    (2)

    (3)

  • 8/12/2019 Unsymm Bending

    6/29

    From (1) 2 2

    2 2

    0d w d v

    E zdA E ydAdx dx

    =

    0zdA ydA= = i.e. neutral axis is at the centroidof the cross section

    From (2) 2 22

    2 2

    2 2

    2 2

    z

    yz zz z

    d w d vE yzdA E y dA M

    dx dx

    d w d vE I E I Mdx dx

    + =

    + =

    From (3)2 2

    22 2

    2 2

    2 2

    y

    yy yz y

    d w d vE z dA E yzdA Mdx dx

    d w d vE I E I M

    dx dx

    =

    =

  • 8/12/2019 Unsymm Bending

    7/29

  • 8/12/2019 Unsymm Bending

    8/29

    ( ) ( )

    ( )2y zz z yz z yy y yz

    xx

    yy zz yz

    I M I z M I M I y

    I I I

    + +

    =

    Note: If either the y or z axis is a plane of symmetry then Iyz =0 and

    we find

    y zxx

    yy zz

    M z y

    I I =

    The neutral surface is located where xx = 0

    y

    z

    neutral surface

    tanz y=

    where

    ( )( )/

    tan/

    z y yy yzz yy y yz

    y zz z yz zz z y yz

    M M I IM I M I

    M I M I I M M I

    ++= =+ +

  • 8/12/2019 Unsymm Bending

    9/29

  • 8/12/2019 Unsymm Bending

    10/29

    Flexure Stress Expressions

    ( ) ( )( )2

    y zz z yz z yy y yz

    xx

    yy zz yz

    I M I z M I M I y

    I I I

    + +=

    (1)

    (2) can use( )

    ( )

    /tan

    /

    z y yy yz

    zz z y yz

    M M I I

    I M M I

    +=

    +to eliminate explicit dependency

    on Mz

    in equation (1) and obtain

    ( )tan

    tan

    y

    xx

    yy yz

    z y

    I I

    =

    Note: Mz is still in here

  • 8/12/2019 Unsymm Bending

    11/29

    (3) can use principal axes of the cross section

    y

    z

    Y

    Z

    p

    sin cos

    cos sin

    Y z y

    Z z y

    = +

    =

    Y Zxx

    YY ZZ

    Z M Y

    I I =

  • 8/12/2019 Unsymm Bending

    12/29

    y

    z

    yz

    ( ) ( )

    ( ) ( )

    ( ) ( )

    cos 2 sin 2

    2 2

    cos 2 sin 22 2

    sin 2 cos 22

    yy zz yy zz

    y y yz

    yy zz yy zz

    z z yz

    yy zz

    y z yz

    I I I II I

    I I I II I

    I II I

    + = +

    + = +

    = +

    transformation relations for area moments

  • 8/12/2019 Unsymm Bending

    13/29

    parallel axis theorem

    y

    z

    G

    yG

    zG

    y

    z

    ( ) ( )22 2

    zz G z z GGI y dA y y dA I Ay = = + = +

    similarly

    ( )

    ( )

    2

    yy y y GG

    yz y z G GG

    I I Az

    I I Ay z

    = +

    = +

    G is the centroid of A

  • 8/12/2019 Unsymm Bending

    14/29

    principal area moments and principal directions

    ( )

    2

    2

    1, 2

    2tan 2

    2 2

    yz

    p

    yy zz

    yy zz yy zz

    p p yz

    I

    I I

    I I I II I

    =

    + = +

  • 8/12/2019 Unsymm Bending

    15/29

    (4) can use neutral surface coordinates

    y

    z

    (eta)

    (zeta)

    can write ( )2 tany zz z yz

    xx

    yy zz yz

    M I M I z yI I I

    +=

    butcos sin

    tan

    cos cos

    z yz y

    = =

    so

    2 cos

    y zz z yz

    xx

    yy zz yz

    M I M I

    I I I

    +=

  • 8/12/2019 Unsymm Bending

    16/29

    displacements of the neutral axis

    ( )( )

    ( )( )

    2

    2 2

    2

    2 2

    z yy y yz

    yy zz yz

    y zz z yz

    yy zz yz

    M I M Id v

    dx E I I I

    M I M Id w

    dx E I I I

    +=

    +=

    we must integrate

    twice to obtain the displacements, using

    boundary conditions on both v and w

    ( )( )

    2

    2

    2

    2

    2 2

    2 2

    tan

    tan

    z yy y yz

    y zz z yz

    d v M I M Idx

    d w M I M I

    dx

    d v d wdx dx

    += =

    +

    =

    If is a constant and we let ( )2

    2

    d wF x

    dx= we find, on integration

  • 8/12/2019 Unsymm Bending

    17/29

    ( )

    ( )

    1 2

    3 4tan

    w F x dxdx C x C

    vF x dxdx C x C

    = + +

    = + +

    If the boundary conditions on v, w are the same so that

    1 3 2 4,C C C C = =then

    1

    tan

    w

    v

    = or tan v

    w

    =

    y

    z

    w

    -v

    = total displacement

    Thus, in this case the total displacement

    2 2w u= + is perpendicular to the

    neutral surface.

  • 8/12/2019 Unsymm Bending

    18/29

    Example 1

    3 m

    60o P = 12 kN (through the shear center)

    140 mm

    200 mm

    20 mm all around

    Determine:

    1. The maximum tensile andcompressive stresses and their location

    2. The total deflection at the load P

    E = 72 GPa

  • 8/12/2019 Unsymm Bending

    19/29

    140 mm

    200 mm

    20 mm all around

    1

    2

    3 y

    z

    zc

    ( ) ( ) ( ) ( )

    1 1 2 2 3 3

    1 2 3

    2 100 4000 10 2000

    1000082

    c

    z A z A z Az

    A A A

    mm

    + +=

    + +

    +=

    =

    ( ) ( ) ( ) ( ) ( ) ( )( )

    ( ) ( ) ( ) ( ) ( )

    ( )( ) ( ) ( ) ( )

    3 2 3

    6 4

    3 2

    3 2

    6 4

    01 1

    2 200 20 200 20 70 10 20 10012 12

    30.73 10

    12 20 200 200 20 100 8212

    1100 20 100 20 82 10

    12

    39.69 10

    yz

    zz

    yy

    I

    I

    mm

    I

    mm

    =

    = + +

    =

    = +

    + +

    =

  • 8/12/2019 Unsymm Bending

    20/29

    Maximum bending moments are at the wall

    y

    z

    sin 60P o

    cos60P o

    6

    6

    300 sin 60 31.17 10

    3000 cos 60 18 10

    y

    z

    P N mm

    M P N mm

    = =

    = =

    o

    o

    cot 60 0.577z

    y

    M

    M= = o

    ( )( )

    ( )

    /tan/

    39.690.577 0.746

    30.73

    z y yy yz

    zz z y yz

    M M I II M M I

    +=+

    = =

    0.640

    36.7

    rad=

    = o36.7o

  • 8/12/2019 Unsymm Bending

    21/29

    ( )

    ( )

    tan

    tan

    31.170.746

    39.69

    0.785 0.585

    y

    xx

    yy yz

    M z y

    I I

    z y

    z y

    =

    = +

    =

    N-mm mm

    mm4

    N/mm2 = MPa

    36.7o

    A

    B

    At point A: 200 82 118

    70

    z mm

    y mm

    = =

    =

    ( ) ( ) ( ) ( )( )0.785 118 0.585 70

    133.6

    xx A

    MPa

    =

    =

    At point B: 82

    70

    z mm

    y mm

    =

    =

    ( ) ( )( ) ( )( )0.785 82 0.585 70

    105.3

    xx B

    MPa

    =

    =

  • 8/12/2019 Unsymm Bending

    22/29

    alternately, with principal values

    31.17 18

    39.69 30.73

    0.785 0.585

    y zxx

    yy zz

    M z M y

    I I

    z y

    z y

    =

    =

    = which is same as before

  • 8/12/2019 Unsymm Bending

    23/29

    Now, compute deflection at the load

    yz

    sin 60P o

    cos60P o

    2

    2

    y

    yy

    Md w

    dx EI

    =

    P

    3

    3

    PLw

    EI=

    L

    ( )

    ( )( )( )( )

    3

    3

    3 6

    sin 60

    3

    12, 000sin 60 3000

    3 72 10 39.69 10

    32.72

    yy

    P Lw

    EI

    mm

    =

    =

    =

    o

    o

    tan 0.745 24.38v w w mm= = =

    2 2

    40.8w v mm= + =

  • 8/12/2019 Unsymm Bending

    24/29

    Example 2

    1.5 m

    P = 500 N1.5 m

    q = 1000 N/m

    Determine the angle that the neutral surface makes with

    respect to the y-axis as a function of x. Use the cross section

    properties of example 1.

    y

    z

  • 8/12/2019 Unsymm Bending

    25/29

    First, we need the reactions at the wall

    3.0 m

    P = 500 N

    0.75 m

    500 N 1500 N1125 N-m

    1500 N-m

    1500 N

  • 8/12/2019 Unsymm Bending

    26/29

    500 N1500 N

    1125 N-m 1500 n-m

    My

    Mz

    x

    1000 N/m

    For 0 < x < 1.5

    o

    2

    2

    0

    1500 1000 / 2 1125 0500 1500 1125

    zo

    z

    z

    M

    M x xM x x N m

    =

    + == +

    0

    550 1500 01500 500

    yo

    y

    y

    M

    M xM x N m

    =

    + == +

  • 8/12/2019 Unsymm Bending

    27/29

    For 1.5 < x < 3

    x

    0.75 m

    500 N 1500 N1125 N-m

    1500 n-m

    1500 N

    My

    Mz

    o

    0

    1500 1500( 0.75) 1125 0

    0

    zo

    z

    z

    M

    M x x

    M

    =+ =

    =

    01500 500 0

    500 1500

    yo

    y

    y

    M

    M x

    M x N m

    =+ =

    =

  • 8/12/2019 Unsymm Bending

    28/29

    39.69tan 1.29

    30.73

    yy z z z

    zz y y y

    I M M M

    I M M M= = =

    0 < x < 1.5

    2500 1500 1125tan 1.29

    500 1500

    x x

    x +=

    1.5 < x < 3

    0tan 1.29 0

    500 1500

    0

    x

    = =

    =

  • 8/12/2019 Unsymm Bending

    29/29

    % script neutral_axis

    x=linspace(0,1.5,200);

    num=1.29.*(500*x.^2-1500.*x+1125);

    denom = 500.*x-1500;

    ang=atan(num./denom);

    ang = ang*180/pi; % change angle to degrees

    x_plot=linspace(0,3,400);

    ang_plot=[ang zeros(size(x))];

    plot(x_plot, ang_plot)xlabel('x-distance')

    ylabel('angle, degrees')

    0 0.5 1 1.5 2 2.5 3-45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    x-distance

    angle,

    degrees