t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6...

440
t/ Upgvsjb- w/ ypXpmbwb- o/ nbXbsbTwjmj- h/ bcftb[f- {/ nfusfwfmj maTematika pirveli nawili (Teoria da amocanaTa krebuli) rekomendebulia stu-s saredaqcio-sagamomcemlo sabWos mier damxmare saxelmZRvanelod umaRles saswavleblebSi SemsvlelTaTvis profesor t/ Upgvsjbt redaqciiT mexuTe gadamuSavebuli gamocema Tbilisi 2009

Transcript of t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6...

Page 1: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

t/!Upgvsjb-!w/!ypXpmbwb-!o/!nbXbsbTwjmj-!h/!bcftb[f-!/!nfusfwfmj

maTematika

p i r v eli n a w ili

(Teoria da amocanaTa krebuli)

rekomendebulia stu-s

saredaqcio-sagamomcemlo sabWos

mier damxmare saxelmZRvanelod

umaRles saswavleblebSi SemsvlelTaTvis

profesor t/!Upgvsjbt redaqciiT

mexuTe gadamuSavebuli gamocema

Tbilisi

2009

Page 2: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

wigni gankuTvnilia umaRles saswavleblebSi Semsvle-

lTaTvis, xolo rogorc damxmare saxelmZRvanelo, didad

sasargeblo iqneba saSualo skolebisaTvis.

wignSi mocemuli masalis safuZvliani Seswavla uzrun-

velyofs moswavle axalgazrdobis maTematikur momzadebas

im doneze, romelic moeTxoveba umaRles saswavleblebSi

Semsvlels.

wigni gamoadgeba agreTve yvelas, vinc maTematikis

saskolo kursiTaa dainteresebuli.

recenzentebi: 1. saqarTvelos mecnierebaTa

akademiis akademikosi,

prof. j/!ljSvsb[f 2. profesori w/!qbbubTwjmj

kompiuteruli uzrunvelyofa: d/!dbobwb!! ! ! f/!bsj[f

winamdebare gamocemaze yvela ufleba ekuTvnis avtorebs.

avtorebis werilobiTi Tanxmobis gareSe akrZalulia wignis

gadabeWdva, qseroaslis damzadeba da misi realizacia.

©sagamomcemlo saxli “teqnikuri universiteti”, 2008

ISBN 978-9941-14-170-6 (orive nawili)

ISBN 978-9941-14-171-3 (pirveli nawili)

Page 3: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

3

meoTxe gamocemis winasityvaoba

wignis “algebra da analizis sawyisebis” wina sami

gamocema saqarTvelos ganaTlebis saministros mier

damtkicebuli iyo saxelmZRvanelod umaRlesi saswavleb-

lebis mosamzadebeli ganyofilebis msmenelebisa da

abiturientebisaTvis. igi mTlianad moicavs umaRles

saswavleblebSi misaRebi gamocdebis programiT gaTvalis-

winebul masalas. Sedgeba is ori ganyofilebisagan.

pirvel ganyofilebaSi gadmocemulia Teoriuli masala,

romlis agebis dros SeZlebisdagvarad gaTvaliswinebulia

sakiTxebis gadmocemis logikuri Tanmimdevroba. amasTan,

saSualo skolis saxelmZRvaneloebisagan gansxvavebiT,

yoveli konkretuli sakiTxis Sesabamisi masala

Tavmoyrilia erTad. Teoriuli masalis ganmtkicebis

mizniT, iq, sadac saWirod miviCnieT, garCeulia

magaliTebi.

meore ganyofileba amocanaTa krebulia, romelic

Seicavs Teoriuli masalis Sesabamis mraval amocanasa da

savarjiSos. isini dalagebulia Temebis mixedviT, maTi

tipebisa da sirTulis gaTvaliswinebiT. yoveli Temis

bolos mocemulia savarjiSoTa saerTo ganyofileba.

magaliTebisa da amocanebis aseTi dalageba moswavles

gauadvilebs skolaSi Seswavlili masalis gameorebas da

SeZenili codnis gaRrmavebas.

meoTxe gamocema mTlianad gadamuSavebulia da

arsebiTad Sevsebulia, gasworebulia SemCneuli uzusto-

bani.

avtorebi madlobas uxdian yvelas, vinc mogvawoda

SeniSvnebi SemCneul xarvezebze.

avtorebi siamovnebiT miiReben mkiTxvelTa yvela

saqmian SeniSvnas, romlebic gaTvaliswinebuli iqneba

wignis Semdgom gamocemaSi.

wigni rom sasargeblo iyos yvelasaTvis, vinc

maTematikis saskolo kursiTaa dainteresebuli, masSi

Setanili zogierTi amocana da magaliTi saSualoze ufro

maRali sirTulisaa.

Page 4: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

4

mexuTe gamocemis winasityvaoba

mexuTe gamocemaSi amoRebulia is sakiTxebi, romlebic

ar aris saSualo skolisa da misaRebi gamocdebis amJamad

moqmed programebSi. damatebulia albaTobis Teoriisa da

maTematikuri statistikis elementebi (Teoria da

amocanebi). gasworebulia SemCneuli uzustobani.

avtorebi madlobas uxdian yvelas, vinc mogvawoda

SeniSvnebi SemCneul xarvezebze.

Page 5: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

5

Sesavali

qjswfmbej! dofcfcj/! brtjpnb! eb! Ufpsfnb/ ganvsazRvroT raime

cneba niSnavs_gadmovceT misi Sinaarsi sxva, ufro martivi,

adre SemoRebuli cnebebis saSualebiT. Aaqedan

gamomdinare, Tu raime cneba SemoRebulia adre

gansazRvruli cnebebis saSualebiT, maSin ismis kiTxva:

rogor ganisazRvros pirveli maTgani. amrigad, unda

gamoiyos iseTi cnebebi, romlebsac miviRebT ZiriTad,

pirvelad cnebebad da maTze dayrdnobiT ganisazRvros

yvela sxva cneba. aseTebia simravlis, wertilis, manZilis

da a.S. cnebebi.

davamtkicoT raime winadadeba (debuleba) niSnavs

vaCvenoT rom misi WeSmariteba gamomdinareobs adre

cnobili winadadebebidan (debulebebidan). aqedan

gamomdinare, Tu raime winadadeba damtkicebulia adre

cnobili winadadebebis saSualebiT, maSin ismis kiTxva:

rogor davamtkicoT pirveli maTgani. Aamrigad, unda

gamoiyos iseTi winadadebebi, romlebsac miviRebT

daumtkiceblad da maTze dayrdnobiT damtkicdes yvela

sxva winadadeba.

winadadebas, romelic daumtkiceblad miiReba, aqsioma

ewodeba.

winadadebas, romlis WeSmarireba mtkicdeba, Teorema

ewodeba.

Teoremebis damtkicebis dros gamoiyeneba cnebebi,

aqsiomebi da adre damtkicebuli Teoremebi.

nbUfnbujlvsj! joevrdjjt! qsjodjqj/ maTematikis erT-erT

ZiriTad aqsiomas warmoadgens e.w. maTematikuri induqciis

principi, romelic gamoiyeneba naturalur ricxvebze

damokidebul debulebaTa dasamtkiceblad. es principi

SemdegSi mdgomareobs:

Tu naturalur n ricxvze damokidebuli winadadeba

marTebulia raime 1nn = , sawyisi mniSvnelobisaTvis, da im

daSvebidan, rom igi marTebulia n=k-saTvis (sadac 1nk ≥

nebismieri naturaluri ricxvia) gamomdinareobs, rom

winadadeba marTebulia agreTve n=k+1-saTvis, maSin

winadadeba marTebulia nebismieri 1nn ≥ naturaluri

ricxvisaTvis.

Page 6: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

6

nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT

davamtkicoT, rom 14 −n iyofa 3-ze, nebismieri naturaluri

n-isaTvis. bnpytob/ roca n=1, maSin cxadia 3141 =− iyofa 3-ze.

davuSvaT, rom 14 −k iyofa 3-ze, sadac k nebismieri

naturaluri ricxvia, da davamtkicoT, rom 14 1 −+k agreTve

iyofa 3-ze. marTlac

3)14(4344414414 1 +−=+−⋅=−⋅=−+ kkkk,

saidanac daSvebis Tanaxmad cxadia, rom 14 1 −+k iyofa 3-ze.

amrigad, maTematikuri induqciis principis Tanaxmad

winadadeba damtkicebulia.

bvdjmfcfmj!eb!tblnbsjtj!qjspcfcj/ maTematikuri msjeloba

warmoadgens erTimeoridan gamomdinare gamonaTqvamebis

erTobliobas. Tu gvaqvs ori A da B gamonaTqvami da A-dan gamomdinareobs B, am faqts simbolurad ase Caweren: BA⇒ .

TviT ⇒ simbolos logikuri gamomdinareobis simbolos

uwodeben.

Tu BA⇒ , maSin A-s ewodeba B-s sakmarisi piroba, B-s ki_A-s aucilebeli piroba.

magaliTad, piroba “n ricxvi iyofa 10-ze” aris

sakmarisi piroba imisa, rom n ricxvi gaiyos 5-ze, magram ar aris aucilebeli. amave dros piroba “n ricxvi iyofa 5-ze” aris aucilebeli piroba imisa, rom n ricxvi gaiyos 10-ze, magram ar aris sakmarisi.

Tu BA⇒ da AB ⇒ , maSin amboben, rom B aris A-s aucilebeli da sakmarisi piroba (agreTve, A aris B-s aucilebeli da sakmarisi piroba) da am faqts simbolurad

ase Caweren: BA ⇔ . TviT ⇔ simbolos logikuri

tolfasobis simbolos uwodeben.

magaliTad, imisaTvis, rom ricxvi unaSTod gaiyos 10-

ze, aucilebeli da sakmarisia, rom es ricxvi

bolovdebodes nuliT.

tjnsbwmf-!tjnsbwmjt!fmfnfouj/!rwftjnsbwmf-!tjnsbwmfUb!hbfsUjbofcb!eb!UboblwfUb/ simravlis cneba pirveladi cnebaa da amitom igi

ar ganisazRvreba. simravleze warmodgenas gvaZlevs raime

niSnis mixedviT gaerTianebul obieqtTa erToblioba.

magaliTad, SeiZleba vilaparakoT saqarTvelos umaRles

saswavlebelTa simravleze, mzis sistemis planetaTa

simravleze, qarTuli anbanis asoebis simravleze da a. S.

Page 7: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

7

obieqtebs, romelTaganac Sedgeba simravle, am

simravlis elementebi ewodeba.

simravleebs aRniSnaven laTinuri anbanis asoebiT: A, B, C, D,K , xolo mis elementebs patara asoebiT: a, b, c, d,K . im faqts, rom a warmoadgens A simravlis elements,

simbolurad ase Caweren: Aa∈ (ikiTxeba “a ekuTvnis A-s”), xolo Tu a ar warmoadgens A-s elements, maSin weren:

Aa∉ (ikiTxeba “a ar ekuTvnis A-s”). simravle mocemulia, Tu nebismier obieqtze SeiZleba

iTqvas warmoadgens Tu ara igi am simravlis elements.

simravle, romlis elementebia a, b, c,K aRiniSneba ase: a, b, c,K , xolo simravlis yvela im x elementTa

simravle, romlebic akmayofileben raime P pirobas ase: Px . magaliTad, yvela im naturalur ricxvTa simravle,

romlebic naklebia 1000-ze ase aRiniSneba: 1000, <∈ xNxx .

simravles, romelic arcerT elements ar Seicavs

carieli simravle ewodeba da Ø simboloTi aRiniSneba.

magaliTad, mzeze mcxovreb adamianTa simravle da 012 =+x

gantolebis namdvil amonaxsnTa simravle carieli

simravleebia.

A simravles ewodeba B simravlis qvesimravle, Tu A simravlis yoveli elementi ekuTvnis B simravles da

weren BA ⊂ (ikiTxeba: ”A qvesimravlea B –si”). Tu A simravle ar aris B simravlis qvesimravle, maSin weren

BA ⊄ .

magaliTad, Tu A warmoadgens paralelogramTa

simravles, xolo B-oTxkuTxedebis simravles, maSin BA⊂ .

miRebulia, rom carieli simravle nebismieri A simravlis qvesimravlea, e. i. Ø A⊂ . cxadia, rom nebismieri A simravle Tavisi Tavis

qvesimravles warmoadgens, e. i. AA⊂ .

Tu A simravle B simravlis qvesimravlea, xolo B-Si arsebobs erTi elementi mainc, romelic A-s ar ekuTvnis, maSin A-s ewodeba B-s sakuTrivi qvesimravle.

magaliTad, Tu 3,2,1=A , xolo 5,3,2,1=B , maSin A aris B-s sakuTrivi qvesimravle.

Tu BA ⊂ da AB ⊂ , maSin A da B simravleebs toli

ewodeba da weren A=B.

Page 8: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

8

ori A da B simravlis yvela im elementTa simravles,

romlebic mocemuli simravleebidan erT-erTs mainc

ekuTvnis, A da B simravleebis gaerTianeba ewodeba da

BAU simboloTi aRiniSneba.

ori A da B simravlis yvela im elementTa simravles,

romlebic erTdroulad orive mocemul simravles

ekuTvnian, A da B simravleebis TanakveTa ewodeba da BAI

simboloTi aRiniSneba.

or A da B simravles urTierTaragadamkveTi (Tanaukve-

Ti) ewodeba, Tu maTi TanakveTa carieli simravlea.

A da B simravleTa sxvaoba ewodeba A simravlis yvela

im elementis simravles, romlebic B simravles ar

ekuTvnian da A \ B simboloTi aRiniSneba. magaliTad, Tu 5,4,3,2,1=A , xolo 7,5,3,1=B , maSin

7,5,4,3,2,1=BAU , 5,3,1=BAI , 4,2\ =BA da 7\ =AB .

advilia Cveneba, rom moqmedebebs simravleebze gaaCniaT

Semdegi Tvisebebi:

1. ABBA UU = , ABBA II = (gadanacvlebadoba),

2. ( ) ( ) CBACBA UUUU = , ( ) ( ) CBACBA IIII = (jufdeba-

doba),

3. ( ) ( ) ( )CABACBA IUIUI = (distribuciuloba).

A simravleSi elementebis raodenoba n(A) simboloTi

aRiniSneba. magaliTad A=1;3;5;7 simravlisaTvis n(A)=4. simravleebs Soris damokidebulebis TvalsaCinod

warmodgenis mizniT gamoiyeneba e. w. venis diagramebi _

simravleebs raime wris saSualebiT gamovsaxavT.

vTqvaT A da B aracarieli simravleebia.

Tu BA ⊄ , AB ⊄ da Ø≠BAI , maSin wreebiT

gamosaxuli A da B simravleebis TanakveTa am

wreebis saerTo nawilia, romelic naxazze

daStrixulia.

am simravleTa gaerTianebaa daStrixuli

simravle.

advilia Semowmeba (venis diagramebidan es naTlad

Cans), Tu A da B nebismieri ori sasruli simravlea, maSin

( ) ( ) ( ) ( )BAnBnAnBAn IU −+= .

AUB

BA

A∩B

A B

Page 9: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

9

aseve, Tu A, B da C sasruli simravleebia, maSin

( ) ( ) ( ) ( ) ( ) ( ) ( )+−−−++= CBnCAnBAnCnBnAnCBAn IIIUU

+ ( )CBAn II . nbhbmjUj/!klasSi 20 moswavle fexburTiTaa gatacebuli,

15 _ CogburTiT da 8 erTdroulad oriveTi. ramdeni

moswavlea klasSi, Tu yoveli moswavle sportis am

saxeobebidan erTiT mainc aris gatacebuli?

bnpytob/!vTqvaT A aris simravle im moswavleebisa, rom-

lebic fexburTiT arian gatacebuli, xolo B _ romlebic

CogburTiT arian gatacebuli. pirobiT ( ) =BAn I 8. zemoT-

moyvanili formulis ZaliT

( ) =BAn U 20+15-8=27.

amrigad, klasSi aris 27 moswavle.

Tftbcbnjtpcb/!flwjwbmfouvsj!tjnsbwmffcj/ vTqvaT, mocemulia

A da B simravleebi da wesi, romlis saSualebiTac A simravlis yovel a elements Seesabameba B simravlis

erTaderTi b elementi. am SemTxvevaSi amboben, rom

mocemulia Sesabamisoba A simravlisa B simravleSi. b -s

uwodeben a elementis Sesabamiss.

A da B simravleebs Soris Sesabamisobas ewodeba urTi-

erTcalsaxa, Tu A simravlis yovel elements Seesabameba

erTaderTi elementi B simravlidan da B simravlis yove-

li elementi Seesabameba A simravlis erTaderT elements.

e. i. aseTi Sesabamisoba Seqcevadia.

A da B simravleebs ewodeba ekvivalenturi, Tu maT

Soris SeiZleba damyardes urTierTcalsaxa Sesabamisoba

da weren: A~B. magaliTad, naturalur ricxvTa K,3,2,1 da luw natu-

ralur ricxvTa K,6,4,2 simravleebi ekvivalenturia, rad-

gan maT Soris SeiZleba damyardes urTierTcalsaxa Sesa-

bamisoba Semdegnairad: yovel n naturalur ricxvs Sevusa-

bamoT 2n luwi ricxvi.

A simravles ewodeba sasruli, Tu igi aris carieli an

arsebobs iseTi naturaluri ricxvi n, rom A~ n,,3,2,1 K . am SemTxvevaSi vityviT, rom A simravlis elementTa ricxvi

aris n. cariel simravleSi elementTa ricxvi miRebulia

nulis tolad.

Page 10: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

10

cxadia, rom ori sasruli simravle erTmaneTis ekviva-

lenturia maSin da mxolod maSin, roca maTi elementebis

ricxvi erTmaneTis tolia.

simravles ewodeba usasrulo, Tu igi sasruli ar aris.

magaliTad, naturalur ricxvTa simravle usasruloa.

rogorc zemoT vnaxeT, is Tavisi sakuTrivi luw ricxvTa

qvesimravlis ekvivalenturia. SevniSnoT, rom am TvisebiT

xasiaTdeba nebismieri usasrulo simravle, xolo sasrul

simravleebs es Tviseba ar gaaCniaT.

§1. obuvsbmvsj!sjdywfcj!eb!Uwmjt!tjtufnfcj!

J/! obuvsbmvsj!sjdywfcj/ naturaluri ricxvis cneba aris

maTematikis umartivesi, pirveladi cneba da ar ganisaz-

Rvreba sxva, ufro martivi cnebebis saSualebiT.

naturaluri ricxvebi Tvlis Sedegad miRebuli ricxve-

bia. naturalur ricxvTa simravle N asoTi aRiniSneba, e.i.

K,3,2,1=N

yoveli naturaluri ricxvi SeiZleba ganvixiloT ro-

gorc garkveuli, aracarieli, sasruli simravlis raode-

nobrivi maxasiaTebeli. magaliTad, sityva “ia”-Si asoebis

simravlis raodenobrivi maxasiaTebelia ricxvi “2”.

iseve rogorc yoveli aracarieli sasruli simravle

xasiaTdeba garkveuli naturaluri ricxviT, carieli

simravlec xasiaTdeba ricxviT “0”.

naturalur ricxvTa N simravlisa da 0-is gaerTi-

anebas arauaryofiT mTel ricxvTa simravle ewodeba da

0Z -iT aRiniSneba:

K,3,2,1,00 =Z .

cxadia, 0ZN ⊂ .

rogorc naturalur, aseve arauaryofiT mTel ricxvTa

simravles gaaCnia umciresi elementi, xolo udidesi_ar

gaaCnia. N simravlis umciresi elementia 1, 0Z simravlisa

ki_0.

zrdis mixedviT dalagebuli naturaluri ricxvebi

qmnian e. w. naturalur ricxvTa rigs.

gavecnoT xuT ZiriTad moqmedebas arauaryofiT mTel

ricxvebze: Sekrebas, gamoklebas, gamravlebas, gayofas da

axarisxebas.

Page 11: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

11

1.! Tflsfcb/ m da n naturaluri ricxvebis jami ewodeba

ricxvs, romelic naturalur ricxvTa rigSi m-dan n erTeuliT marjvniv mdebareobs da m+n simboloTi aRiniS-

neba. jamis povnis operacias Sekreba ewodeba. SevniSnoT,

rom m+n=n+m. magaliTad, 2+3 aris ricxvi, romelic naturalur

ricxvTa 1,2,3,4,5,6,7,K rigSi 2-dan 3 erTeuliT marjvniv

mdebareobs, aseTi ki aris ricxvi 5, e. i. 2+3=5.

amave dros vigulisxmoT, rom nebismieri 0Zm∈ ricxvi-

saTvis m+0=0+m=m. cxadia, rom Tu m, n 0Z∈ , maSin 0Znm ∈+ .

imisaTvis, rom SevkriboT ramdenime naturaluri ricxvi,

saWiroa jer SevkriboT pirveli ori ricxvi, miRebul jams

davumatoT Semdegi ricxvi da a. S.

2. hbnplmfcb/ m da n ( nm ≥ ) arauaryofiT mTel ricxvTa

sxvaoba ewodeba iseT x ricxvs, romelic akmayofilebs

pirobas mxn =+ da nm − simboloTi aRiniSneba. m-s ewodeba saklebi, n-s ki maklebi. sxvaobis povnis operacias gamokleba

ewodeba.

3. hbnsbwmfcb/ m da n naturalur ricxvTa namravli ewodeba

iseT n SesakrebTa jams, romelTagan TiToeuli m-is tolia

da nm× , nm ⋅ , mn simboloTi aRiniSneba. e. i.

44 344 21 Ljer−

+++=⋅n

mmmnm .

SevniSnoT, rom mn=nm. SevTanxmdeT, rom nebismieri 0Zm∈ ricxvisaTvis

000 =⋅=⋅ mm .

cxadia, rom Tu 0, Znm ∈ , maSin 0Znm ∈⋅ . amave dros

0=⋅nm tolobidan gamomdinareobs, rom m=0 an n=0. imisaTvis, rom gadavamravloT ramdenime naturaluri

ricxvi, saWiroa jer gadavamravloT pirveli ori ricxvi,

miRebuli namravli gavamravloT Semdeg ricxvze da a. S.

4. hbzpgb/ 0Zm∈ da Nn∈ ricxvebis ganayofi ewodeba

iseT x ricxvs, romelic akmayofilebs pirobas mnx = da

m:n simboloTi aRiniSneba.

0-ze gayofa ar ganisazRvreba.

cxadia, rom naturalur ricxvTa simravleSi nebismieri

m da n ricxvebis ganayofi yovelTvis ar arsebobs.

Page 12: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

12

SeiZleba vaCvenoT, rom nebismieri 0Zm∈ da Nn∈ ric-

xvebisaTvis moiZebneba 0, Zkp ∈ ricxvebi, romelTaTvisac

m=np+k, sadac nk <≤0 .

Tu k=0, amboben, rom m iyofa n-ze unaSTod, xolo Tu

0≠k , maSin m iyofa n-ze naSTiT k. 5. bybsjtyfcb/ m ricxvis n-uri xarisxi, sadac 0Zm∈ ,

Nn∈ , 1≠n ewodeba n TanamamravlTa namravls, romelTagan

TiToeuli m-is tolia da nm simboloTi aRiniSneba, e. i.

,43421 Kjer−

⋅=n

n mmmm 2≥n .

m-s xarisxis fuZe ewodeba, n-s ki_xarisxis maCvenebeli.

miRebulia, rom mm =1 da Tu 0≠m , 10 =m .

00 ar ganisazRvreba.

Sekrebas da gamoklebas I safexuris moqmedebebi ewode-

ba, gamravlebas da gayofas II safexurisa, xolo axarisxe-

bas III safexuris moqmedeba. Tu Sesasrulebelia ramdenime

moqmedeba, pirvel rigSi sruldeba ufro maRali safexu-

ris moqmedeba. erTi da imave safexuris moqmedebebi srul-

deba mimdevrobiT marcxnidan marjvniv. magaliTad,

=⋅+−=⋅+− 1653:67453:67 2

858027 =+−= .

imis aRsaniSnavad, rom moqmedebaTa Sesrulebis rigi

darRveulia, gamoiyeneba frCxilebi. am SemTxvevaSi pirvel

rigSi sruldeba frCxilebSi moTavsebuli moqmedebani.

magaliTad:

42:82:)53( ==+ .

JJ/! Uwmjt! tjtufnfcj/!radgan naturalur ricxvTa simravle

usasruloa, amitom SeuZlebelia yoveli maTganisaTvis gan-

sxvavebuli simbolos SerCeva. praqtikulad ufro mosaxer-

xebelia naturalur ricxvTa Caweris egreT wodebuli pozi-

ciuri sistemebi. es sistemebi gulisxmoben sasruli rao-

denobis simboloTa meSveobiT Caiweros nebismieri natura-

luri ricxvi, simboloTa urTierTmdebareobis (poziciis)

gaTvaliswinebiT. imisda mixedviT, Tu ramden ZiriTad

simbolos avirCevT, gveqneba ricxvis Caweris `orobiTi~;

`rvaobiTi~; `aTobiTi~ da a.S. sistemebi yvelaze ufro

gavrcelebulia aTobiTi sistema, sadac gamoiyeneba Z0

simravlis aTi elementi: 0,1,2,3,4,5,6,7,8,9, romelTac cifrebi

ewodeba. magaliTad, ricxvi 7256 Sedgeba oTxi cifrisagan,

Page 13: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

13

romlebic Tavisi mdebareobis (poziciis) mixedviT miuTi-

Teben, rom ricxvi Sedgeba 6 erTeulis, 5 aTeulis, 2

aseulis da 7 aTaseulisagan, e.i. ricxvi 7256 gaSlili

formiT ase warmoidgineba

7256 = 7⋅103 + 2⋅102 + 5⋅10 + 6 aTobiTi sistemis garda ZiriTadad xmarebaSia agreTve

`orobiTi~ da `rvaobiTi~ sistemebi. orobiTi sistemis

SemoReba dakavSirebulia eleqtronul-gamomTvleli manqa-

nis elementebis or mdgrad mdgomareobasTan – sadeni an

atarebs dens, an ar atarebs, rac mxolod ori ZiriTadi

simbolos gamoyenebis saSualebas iZleva. am sistemaSi

nebismieri ricxvis Casawerad gamoiyeneba Z0 simravlis

ori elementi: 0 da 1. magaliTad, sistemis fuZe `ori~

gamoisaxeba rogorc `10~. am ricxvisaTvis erTis mimatebiT

miiReba 11. e.i. ricxvi 3-is orobiTi Canaweri; kidev erTi

erTeulis damatebiT miviRebT ricxvs, romlis orobiT

sistemaSi Casawerad saWiroa axali Tanrigis damateba, ris

Sedegadac miviRebT 100-s, ricxvi 4-is orobiT Canawers da

a.S. naturalur ricxvTa pirveli 15 elementis orobiTi

Canawe-ri moyvanilia Semdeg cxrilSi*:

110 = 12 510 = 1012 910 = 10012 1310 = 11012

210 = 102 610 = 1102 1010 = 10102 1410 = 11102

310 = 112 710 = 1112 1110 = 10112 1510 = 11112

410 = 1002 810 = 10002 1210 = 11002

ricxvis aTobiTi sistemidan orobiTSi gadayvanis

algoriTmi sruldeba fuZeze – 2-ze, mimdevrobiT gayofis

gziT. magaliTad 962-sTvis gvaqvs:

* indeqsi miuTiTebs sistemis fuZes.

Page 14: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

14

gayofis Sedegad miRebuli 0,1,0,0,0,0,1,1,1,1 naSTebis mimed-

vroba, aRebuli Sebrunebuli rigiT, gvaZlevs orobiT

sistemaSi ricxv 962-is gamosaxulebas, e.i.

96210 = 11110000102.

aRniSnuli ricxvi gaSlili formiT Semdegnairad

Caiwereba:

1·29+1·28+1·27+1·26+0·25+0·24+0·23+0·22+1·21+0·20. rogorc aqedan Cans ricxvis orobiTi Canaweri Seicavs

cifrTa gacilebiT met raodenobas, vidre aTobiTi, rac

ricxvis zrdasTan erTad ufro SesamCnevi xdeba.

magaliTad, advilia Semowmeba, rom

385110 = 1111000010112.

savsebiT analogiurad, ricxvis aTobiT sistemidan

rvaobiTSi gadasayvanad, sadac gamoiyeneba Z0 simravlis 8

elementi: 0, 1, 2, 3, 4, 5, 6, 7, mivmarTavT axal fuZeze – 8-ze

mimdevrobiT gayofas:

2

0 0

8 1

8

0

960 120 8

962 8

120 152

7

8

1

1

1

0 0

6 3

14 7

30 15

2

60 30

22

120 60

240 120

2

1

962 481 2

962 2

480 2400

0

0

0

0

2

2

1

2

1 2 1

2

2

Page 15: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

15

e. i. 96210 = 17028.

rogorc ukve aRiniSna, eleqtronul-gamomTvlel manqana-

Si ricxvebi Caiwereba orobiTi sistemiT, Tumca manqanaSi

CasaSvebad gamzadebuli sawyisi monacemebi yovelTvis

aTobiT sistemaSia mocemuli. maTi orobiT sistemaSi

gadasayvanad ufro mosaxerxebelia isini jer rvaobiT

sistemaSi CavweroT, Semdeg ki TiToeuli cifri

SevcvaloT zemoT moyvanili cxrilis meSveobiT orobiTi

CanaweriT, amasTan unda vigulisxmoT, rom TiToeul

cifrs sami Tanrigi (triada) Seesabameba, garda

SesaZlebelia ukiduresi marcxena cifrisa, Tu igi oTxze

naklebia.

magaliTad: radgan 210=0102; 010=0002; 710=1112; 110=12, amitom 96210 =17028=1.111.000.0102.

Zveli fuZidan axal fuZeze gadasvlis operacias `kodire-

ba~ ewodeba, xolo Sebrunebul operacias _ `dekodireba~.

dekodirebis operacia sruldeba Semdegnairad:

1111000 0102 = 1⋅29 + 1⋅28 + 1⋅27 + 1⋅26 + 0⋅25 + 0⋅24 + 0⋅23 + 0⋅22 + +1⋅21 + 0⋅20 = 512+256+128+64+0+0+0+0+2+0=96210. an rvaobiTi sistemis gamoyenebiT SeiZleba misi Sesruleba

ufro swrafad:

1⋅111⋅000⋅0102 = 17028 = 1⋅83 + 7⋅82 + 0⋅81 + 2⋅80 = 512+448+2=96210 SemdgomSi visargeblebT mxolod aTobiT sistemaSi Cawerili

ricxvebiT.

§2. hbzpgbepcjt!ojTofcj!

0, 2, 4, 6 da 8 cifrebs luwi ewodeba, xolo cifrebs 1,

3, 5 , 7 da 9_kenti.

3.f! hbzpgbepcjt! ojTboj/ 2-ze iyofa is da mxolod is

ricxvi, romelic luwi cifriT bolovdeba.

0Zm∈ ricxvs, romelic 2-ze iyofa, luwi ricxvi

ewodeba. yoveli luwi ricxvi SeiZleba Caiweros m=2k saxiT, sadac 0Zk ∈ .

0Zn∈ ricxvs, romelic 2-ze ar iyofa, kenti ricxvi

ewodeba. yoveli kenti n ricxvi SeiZleba Caiweros n=2k+1 saxiT, sadac 0Zk∈ .

4.f! hbzpgbepcjt! ojTboj/ 3-ze iyofa is da mxolod is

ricxvi, romlis cifrTa jami iyofa 3-ze.

Page 16: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

16

magaliTad, 1956 iyofa 3-ze, radgan 1+9+5+6=21 iyofa 3-

ze.

5.f!hbzpgbepcjt! ojTboj/ imisaTvis, rom ricxvi, romelic

Seicavs aranakleb sam cifrs, gaiyos 4-ze, saWiroa, rom

bolo ori cifriT Sedgenili orniSna ricxvi iyofodes 4-

ze.

magaliTad, 25436 iyofa 4-ze, radgan 36 iyofa 4-ze,

agreTve 1700 iyofa 4-ze, radgan igi ori nuliT bolovdeba.

6.f! hbzpgbepcjt! ojTboj/ xuTze iyofa is da mxolod is

ricxvi, romelic bolovdeba 0-iT an 5-iT.

7.f! hbzpgbepcjt! ojTboj/ 6-ze iyofa is da mxolod is

ricxvi, romelic luwia da iyofa 3-ze.

magaliTad, 216 iyofa 6-ze, radgan igi luwia da 2+1+6=9

iyofa 3-ze.

:.f! hbzpgbepcjt! ojTboj/ 9-ze iyofa is da mxolod is

ricxvi, romlis cifrTa jami iyofa 9-ze.

magaliTad, 1791 iyofa 9-ze, radgan 1+7+9+1=18 iyofa 9-

ze.

21.f! hbzpgbepcjt! ojTboj/ 10-ze iyofa is da mxolod is

ricxvi, romelic 0-iT bolovdeba.

22.f! hbzpgbepcjt! ojTboj/ 11-ze iyofa is da mxolod is

ricxvi, romlis kent adgilebze mdgom cifrTa jami udris

luw adgilebze mdgom cifrTa jams, an gansxvavdeba

ricxviT, romelic iyofa 11-ze.

magaliTad, 1562 iyofa 11-ze, radgan 1+6=5+2. agreTve

19272506 iyofa 11-ze, radgan 1+2+2+0=5, 9+7+5+6=27 da 27-5=22

iyofa 11-ze.

§3. nbsujwj!eb!Tfehfojmj!sjdywfcj/!vejeftj!!tbfsUp!hbnzpgj/!vndjsftj!tbfsUp!kfsbej!

hbotbSwsfcb/ n naturaluri ricxvis gamyofi ewodeba

iseT m naturalur ricxvs, romelzedac n iyofa unaSTod.

cxadia, rom nebismieri naturaluri ricxvis gamyofTa

simravle sasrulia. magaliTad, 12-is gamyofTa simravlea

1, 2, 3, 4, 6, 12.

SevniSnoT, rom nebismieri naturaluri ricxvi unaSTod

iyofa 1-ze da Tavis Tavze. amrigad, 1-isagan gansxvavebul

yovel naturalur ricxvs ori gamyofi mainc aqvs.

Page 17: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

17

hbotbSwsfcb/ naturalur ricxvs ewodeba martivi, Tu

mas mxolod ori gamyofi aqvs, xolo_Sedgenili, Tu misi

gamyofTa ricxvi orze metia.

magaliTad, 2, 3, 5, 7, 11, 13, 17, 19_martivi ricxvebia,

xolo 4, 6, 8, 9, 10, 12, 14, 15_Sedgenili. ricxvi 1 arc

martivia da arc Sedgenili. mtkicdeba, rom rogorc

martiv ricxvTa simravle, ise Sedgenil ricxvTa simravle

usasruloa.

vityviT, rom ricxvi daSlilia martiv mamravlebad, Tu

igi warmodgenilia martiv ricxvTa namravlis saxiT.

SeiZleba vaCvenoT, rom nebismieri Sedgenili ricxvi

iSleba martiv mamravlebad da es daSla erTaderTia.

Sedgenili ricxvis martiv mamravlebad dasaSlelad

saWiroa gavyoT es ricxvi umcires martiv gamyofze,

miRebul ganayofs moveqceT analogiurad da a. S., vidre

ganayofSi ar miviRebT 1-s. magaliTad, 420:2=210, 210:2=105,

105:3=35, 35:5=7, 7:7=1. martiv mamravlebad daSlis algoriTmi

mosaxerxebelia Caiweros Semdegnairad:

75322

1735

105210420

sadac vertikaluri xazis marjvniv gvaqvs saZiebeli

martivi mamravlebi. amrigad, daSlas eqneba saxe:

420=2 ⋅2 ⋅3 ⋅5 ⋅7 hbotbSwsfcb/ ramdenime naturaluri ricxvis saerTo

gamyofi ewodeba ricxvs, romelic TiToeuli maTganis

gamyofs warmoadgens.

magaliTad, 18-is, 24-isa da 36-is saerTo gamyofebia: 1, 2,

3 da 6.

hbotbSwsfcb/ knm ,,, K naturaluri ricxvebis udidesi

saerTo gamyofi ewodeba maT saerTo gamyofebs Soris

udidess da D( knm ,,, K ) simboloTi aRiniSneba.

gansaxilveli ricxvebis saerTo gamyofTa simravle

warmoadgens maT gamyofTa simravleebis TanakveTas; es

simravle sasrulia da misi udidesi elementi aris am

ricxvebis udidesi saerTo gamyofi.

magaliTad, D(18, 24, 36)=6.

Page 18: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

18

udidesi saerTo gamyofis mosaZebnad saWiroa es

ricxvebi davSaloT martiv mamravlebad, amovweroT maTi

saerTo mamravlebi da gadavamravloT. magaliTad,

3222

136

1224

3322

139

1836

e. i. 24=2 ⋅2 ⋅2 ⋅3 da 36=2 ⋅2 ⋅3 ⋅3, amitom D(24,36)=2 ⋅2 ⋅3=12. radgan 24-isa da 36-is gaSlaSi ricxvi 2 saerTo mamravlad Sedis

2-jer, xolo 3 erTxel.

hbotbSwsfcb/ or naturalur ricxvs ewodeba

urTierTmartivi, Tu maTi udidesi saerTo gamyofi 1-is

tolia.

ase magaliTad, radgan D(18,25)=1, amitom 18 da 25

urTierTmartivi ricxvebia.

hbotbSwsfcb/ n naturaluri ricxvis jeradi ewodeba

iseT m naturalur ricxvs, romelic n-ze iyofa unaSTod.

nebismieri naturaluri ricxvis jeradTa simravle

usasruloa, mis umcires elements warmoadgens TviT es ricxvi,

xolo udidesi elementi ar gaaCnia. magaliTad, 12-is jeradTa

simravlea K,48,36,24,12 .

hbotbSwsfcb/ ramdenime naturaluri ricxvis saerTo

jeradi ewodeba ricxvs, romelic TiToeuli maTganis

jerads warmoadgens.

magaliTad, 18-is, 24-isa da 36-is saerTo jeradebia: 72,

144, 216,K

hbotbSwsfcb/ knm ,,, K naturaluri ricxvebis umcire-

si saerTo jeradi ewodeba maT saerTo jeradTa Soris

umciress da K( knm ,,, K ) simboloTi aRiniSneba.

gansaxilveli ricxvebis saerTo jeradTa simravle

warmoadgens maT jeradTa simravleebis TanakveTas. es

simravle usasruloa, magram arsebobs misi umciresi

elementi da igi am ricxvebis umciresi saerTo jeradis

tolia. magaliTad, K(18, 24, 36)=72. ramdenime ricxvis umciresi saerTo jeradis mosaZebnad

saWiroa es ricxvebi davSaloT martiv mamravlebad,

amovweroT erT-erTi maTganis yvela mamravli da

mivuweroT maT meore ricxvis is mamravlebi, romlebic

aklia amoweril mamravlebs, Semdeg mivuweroT mesame

Page 19: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

19

ricxvis is mamravlebi, romlebic aklia ukve amoweril

mamravlebs da a. S. mocemuli ricxvebis umciresi saerTo

jeradi udris yvela amoweril mamravlTa namravls.

magaliTad, 24=2 ⋅2 ⋅2 ⋅3, 36=2 ⋅2 ⋅3 ⋅3, amitom K(24, 36)=2 ⋅2 ⋅2 ⋅3 ⋅3=72, radgan 24-is 2 ⋅2 ⋅2 ⋅3 gaSlas aklia erTi 3-

iani 36-is gaSlidan.

SevniSnoT, rom, Tu Nnm ∈, , maSin

mnnmKnmD =⋅ ),(),(

§4. nUfmj!sjdywfcj

naturalur ricxvTa N simravleSi yovelTvis

SesaZlebelia Sekrebis operaciis Sesruleba, e. i.

nebismieri ori naturaluri ricxvis jami kvlav

naturaluri ricxvia. rac Seexeba gamoklebas, es operacia

naturalur ricxvTa simravleSi yovelTvis ar sruldeba.

magaliTad, ar arsebobs naturaluri ricxvi, romelic

52 − operaciis Sedegia.

gamoklebis operacia rom yovelTvis SesaZlebeli iyos,

SemoviRoT e. w. mTeli uaryofiTi ricxvebi_naturaluri

ricxvebi aRebuli “_” niSniT. amrigad, -1, -2, -3,K mTeli

uaryofiTi ricxvebia. n da – n ricxvebs mopirdapire

ricxvebi ewodeba. e. i. 1 da –1, 2 da –2, 3 da –3 da a. S.

mopirdapire ricxvebia. miRebulia, rom Tu Nm∈ , maSin

( ) mm =−− . hbotbSwsfcb/ naturalur ricxvebs, maT mopirdapire

ricxvebs da nuls mTeli ricxvebi ewodeba.

mTel ricxvTa simravle Z asoTi aRiniSneba. cxadia,

rom ZN ⊂ . CavTvaloT, rom nebismieri arauaryofiTi

mTeli ricxvi metia nebismier mTel uaryofiT ricxvze,

xolo -m>-n ( Nnm ∈, ), Tu m<n. magaliTad, 3>-5, 0>-2, -3>-7.

SemoviRoT ZiriTadi moqmedebebi mTel ricxvebze.

1. Tflsfcb/ Tu orive Sesakrebi arauaryofiTi mTeli

ricxvia, maTi jami gansazRvrulia §1-Si. Tu Sesakrebi

ricxvebidan erTi mainc uaryofiTia, maSin Sekrebis

operacia ganisazRvreba Semdegnairad:

a) )()()( nmnm +−=−+− ;

b) mmm −=−+=+− )(00)( ;

Page 20: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

20

g)

⎪⎩

⎪⎨

=

<−−

>−

=+−=−+

, ,0;),(

; ,)(

nmnmmn

nmnmmnnm

roca

roca

roca

sadac Nnm ∈, .

magaliTad, (-7)+(-3)=-(7+3)=-10; 4+(-9)=-(9-4)=-5.

imisaTvis, rom SevkriboT ramdenime mTeli ricxvi,

saWiroa jer SevkriboT pirveli ori ricxvi, miRebul jams

davumatoT Semdegi ricxvi da a. S.

2. hbnplmfcb/ a da b mTeli ricxvebis sxvaoba ewodeba

iseT x ricxvs, romelic akmayofilebs pirobas axb =+ da

ba − simboloTi aRiniSneba. SeiZleba vaCvenoT, rom

)( baba −+=− ; saidanac cxadia, rom mTel ricxvTa

simravleSi gamoklebis operacia yovelTvis sruldeba.

magaliTad, 2-5=2+(-5)=-(5-2)=-3.

3. hbnsbwmfcb/ arauaryofiT mTel ricxvTa gamravleba

gansazRvrulia §1-Si. Tu gadasamravlebeli ricxvebidan

erTi mainc uaryofiTia, maSin gamravlebis operacia

gansazRvrulia Semdegnairad:

a) )()()( mnnmnm −=−=− ;

b) mnnm =−− ))(( ;

g) ,0)(00)( =−⋅=⋅− mm

sadac Nnm ∈, .

magaliTad, ;6)23(2)3( −=⋅−=⋅− 2054)5)(4( =⋅=−− .

imisaTvis, rom gadavamravloT ramdenime mTeli ricxvi,

saWiroa jer gadavamravloT pirveli ori ricxvi,

miRebuli namravli gavamravloT Semdeg ricxvze da a. S.

4. hbzpgb/ a da 0≠b mTeli ricxvebis ganayofi

(fardoba) ewodeba iseT x ricxvs, romelic akmayofilebs

pirobas axb =⋅ da a:b simboloTi aRiniSneba.

0-ze gayofa ar ganisazRvreba.

SeiZleba vaCvenoT, rom Tu Nnm ∈, , maSin:

a) ):()(::)( nmnmnm −=−=− ;

b) nmnm :)(:)( =−− ;

g) 0)(:0 =−m .

magaliTad, 4)3:12(3:)12( −=−=− ; 5)2:10()2(:10 −=−=− ;

37:21)7(:)21( ==−− .

Page 21: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

21

§5. Dwfvmfcsjwj!xjmbefcj/!sbdjpobmvsj!sjdywfcj

naturalur ricxvTa N simarvleSi yovelTvis

SesaZlebelia gamravlebis operaciis Sesruleba. e. i.

nebismieri ori naturaluri ricxvis namravli kvlav

naturaluri ricxvia. rac Seexeba gayofas_es operacia

naturalur ricxvTa simravleSi yovelTvios ar sruldeba.

magaliTad, ar arsebobs naturaluri ricxvi, romelic 3:7

operaciis Sedegia.

gayofis operacia rom yovelTvis SesaZlebeli iyos,

SemoviRoT e. w. wiladi ricxvebi. ricxvi, romelic

warmoadgens ricxvi 1-is n-ur nawils ( 1, ≠∈ nNn )

aRiniSneba n1 simboloTi. Tu aseTi nawili aRebulia m-

jer, maSin miRebuli ricxvi aRiniSneba nm

simboloTi.

miRebulia, rom nebismieri Nm∈ ricxvi SeiZleba Caiweros

1m

saxiTac. nm

saxis ricxvs, sadac Nnm ∈, , wiladi

ricxvi ewodeba. m-s wiladis mricxveli ewodeba, xolo n-s mniSvneli. Tu nm < , wilads wesieri ewodeba, xolo Tu

nm ≥ _arawesieri.

magaliTad, 52 wesieri wiladia, xolo

317

, 5

15 da

66

arawesieri.

Tu arawesieri wiladis mricxveli unaSTod iyofa

mniSvnelze, maSin wiladi naturalur ricxvs warmoadgens.

magaliTad, 5

15=3,

66=1.

Tu arawesieri wiladis mricxveli unaSTod ar iyofa

mniSvnelze, maSin igi SeiZleba warmovadginoT e. w. Sereuli

wiladis saxiT, romelic Sedgeba mTeli da wiladi

nawilisagan. mTeli nawili warmoadgens mricxvelis

mniSvnelze gayofis Sedegad miRebul ganayofs, wiladi

nawilis mricxvelia naSTi, xolo mniSvneli ucvlelia.

magaliTad, 532

513

= .

imisaTvis, rom Sereuli wiladi gadavaqcioT arawesier

wiladad, saWiroa mTeli gavamravloT mniSvnelze,

Page 22: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

22

davumatoT mricxveli da davweroT mricxvelad, xolo

mniSvneli ucvlelad davtovoT. magaliTad,

725

7473

743 =

+⋅= .

nm

da mn wiladebs ewodeba urTierTSebrunebuli.

amboben, rom nm

da qp wiladebi tolia, Tu pnmq = .

magaliTad, 96

64= , radgan 6694 ⋅=⋅ . aqedan gamomdinareobs

wiladis ZiriTadi Tviseba: Tu wiladis mricxvelsa da

mniSvnels gavamravlebT an gavyofT nulisagan

gansxvavebul erTsa da imave ricxvze, amiT wiladis

sidide ar Seicvleba. magaliTad,

2418

21229

129

=⋅⋅

= ; 43

3:123:9

129

== .

xjmbefcjt!Tfebsfcb/ tolmniSvnelian wiladebs Soris is

aris meti, romlis mricxvelic metia, xolo

tolmricxvelian wiladebs Soris is, romlis mniSvnelic

naklebia. magaliTad,

97

94< ;

1310

1710

< .

sazogadod, wiladebi rom SevadaroT, saWiroa wiladis

ZiriTad Tvisebaze dayrdnobiT isini jer

gavaerTmniSvnelianoT. gaerTmniSvnelianebisaTvis saWiroa

movZebnoT mniSvnelebis umciresi saerTo jeradi, romelic

miviRoT saerTo mniSvnelad; TiToeuli wiladisaTvis

vipovoT e. w. damatebiTi mamravli, romelic miiReba

saerTo mniSvnelis gayofiT am wiladis mniSvnelze da

mricxvelebi gavamravloT Sesabamis damatebiT

mamravlebze. magaliTad, SevadaroT 154

da 185

; K(15, 18)=90.

pirveli wiladis damatebiTi mamravlia 90:15=6, xolo

meoris_90:18=5, amitom 9024

9064

154

=⋅

= da 9025

9055

185

=⋅

= . radgan

9025

9024

< , amitom 185

154< .

nprnfefcboj! xjmbefcf/ tolmniSvneliani wiladebi rom

SevkriboT, saWiroa SevkriboT maTi mricxvelebi da

Page 23: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

23

davweroT mricxvelad, xolo mniSvneli ucvlelad

davtovoT. sxvadasxvamniSvneliani wiladebi rom

SevkriboT, saWiroa isini jer gavaerTmniSvnelianoT da

Semdeg SevkriboT. magaliTad,

1311

1374

137

134

=+

=+ ;

2419

242533

125

83

=⋅+⋅

=+ .

Sereuli wiladebi rom SevkriboT, saWiroa cal-calke

SevkriboT maTi mTeli da wiladi nawilebi. magaliTad,

857

8237

415

832 =

+=+ ;

1255

12174

121074

651

1273 ==

+=+ .

tolmniSvneliani wiladebi rom gamovakloT, saWiroa

gamovakloT maTi mricxvelebi da davweroT mricxvelad,

xolo mniSvneli ucvlelad davtovoT.

sxvadasxvamniSvneliani wiladebi rom gamovakloT, saWiroa

isini jer gavaerTmniSvnelianoT da Semdeg gamovakloT.

magaliTad,

115

1138

113

118

=−

=− ;

3613

364237

92

127

=⋅−⋅

=− .

SevniSnoT, rom wilad ricxvTa simravleSi gamoklebis

operacia yovelTvis ar sruldeba. imisaTvis, rom

gamokleba yovelTvis SesaZlebeli iyos, SemoviRoT e. w.

uaryofiTi wiladi ricxvebi. uaryofiTi wiladi

warmoadgens “_” niSniT aRebul Cveulebriv wilads, e. i.

_nm

saxis ricxvs, sadac Nnm ∈, . miRebulia, rom

nm

nm

nm

−=−

=−

.

magaliTad, 65

41− warmoadgens uaryofiT wilads.

marTlac:

127

127

12103

122531

65

41

−=−

=−

=⋅−⋅

=− .

Page 24: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

24

Sereuli wiladebi rom gamovakloT, saWiroa cal-

calke gamovakloT maTi mTeli da wiladi nawilebi. Tu

maklebis wiladi nawili metia saklebis wilad nawilze,

maSin saklebis erTi erTeuli unda vaqcioT arawesier

wiladad. magaliTad,

1411

14671

732

213 =

−=− ;

1072

107142

107

1043

1072

525 =

−=−=− .

wiladebi rom gadavamravloT, saWiroa maTi

mricxvelebis namravli davweroT mricxvelad, xolo

mniSvnelebis namravli mniSvnelad. magaliTad,

3512

5743

54

73

=⋅⋅

=⋅ .

Sereuli wiladebi rom gadavamravloT, saWiroa isini

jer gadavaqcioT arawesier wiladebad da Semdeg

gadavamravloT. magaliTad,

81372826

1328

726

1322

753 =

⋅⋅

=⋅=⋅ .

wiladi rom wiladze gavyoT, saWiroa pirveli wiladi

gavamravloT meoris Sebrunebulze. magaliTad,

5524

56

114

65:

114

=⋅= .

Sereuli wiladebi rom gavyoT, saWiroa isini jer

gadavaqcioT arawesier wiladebad da Semdeg gavyoT.

magaliTad,

85

115

811

511:

811

512:

831 =⋅== .

SevniSnoT, rom wiladebze moqmedebani im SemTxvevaSi,

rodesac erTi wiladi mainc uaryofiTia, SeiZleba

Seicvalos moqmedebebiT dadebiT wiladebze, iseve,

rogorc mTel ricxvebze moqmedebani SeiZleba Seicvalos

moqmedebebiT naturalur ricxvebze. magaliTad,

32

96

92

94

92

94

−=−=⎟⎠⎞

⎜⎝⎛ +−=−− ;

74

71

73

71

73

=+=⎟⎠⎞

⎜⎝⎛−− ;

Page 25: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

25

73

75

53

75

53

=⋅=⎟⎠⎞

⎜⎝⎛−⎟⎠⎞

⎜⎝⎛− ;

65

32:

95

32:

95

−=⎟⎠⎞

⎜⎝⎛−=⎟

⎠⎞

⎜⎝⎛− .

hbotbSwsfcb/ nm

saxis ricxvebs, sadac Zm∈ da Nn∈ ,

racionaluri ricxvebi ewodeba.

racionalur ricxvTa simravle Q asoTi aRiniSneba.

cxadia, rom QZ ⊂ .

§6. bUxjmbefcj!

hbotbSwsfcb/ wilads, romlis mniSvnelia n10 , sadac

Nn∈ , aTwiladi ewodeba.

magaliTad, 100361

, 1000

7,

10105

− aTwiladebia, radgan

210100 = , 3101000 = da

11010 = .

aTwilads Cveulebriv mniSvnelis gareSe gamosaxaven.

weren mxolod mricxvels da marjvnidan mZimiT gamoyofen

imden cifrs, ramdeni nulicaa mniSvnelSi; amasTan, zogjer

saWiro xdeba win nulebis Cawera. magaliTad,

;61,3100361

= 007,01000

7= ; 5,10

10105

−=− .

aTwiladSi mZimis marjvniv mdgom cifrebs aTwiladi

niSnebi ewodeba.

wiladis ZiriTadi Tvisebidan gamomdinareobs, rom

aTwiladis sidide ar Seicvleba, Tu mas marjvniv

mivuwerT erT an ramdenime nuls. magaliTad,

12,7=12,70=12,7000.

Tu aTwiladSi mZimes gadavitanT erTi aTwiladi

niSniT marjvniv, aTwiladi gaizrdeba 10-jer, xolo mZimis

erTi aTwiladi niSniT marcxniv gadataniT aTwiladi 10-

jer Semcirdeba.

nprnfefcboj! bUxjmbefcf/ aTwiladebis Sekreba-gamokleba

sruldeba mTel ricxvebze moqmedebebis msgavsad, e. i.

sruldeba Sesabamisi Tanrigebis Sekreba-gamokleba.

magaliTad,

Page 26: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

26

319,540 25,19069,521

+

862,68 308,93 17,162

aTwiladi rom aTwiladze gavamravloT, saWiroa

gadavamravloT isini, rogorc mTeli ricxvebi, ise rom

mZimes yuradReba ar mivaqcioT da miRebul namravlSi

marjvnidan mZimiT gamovyoT imdeni cifri, ramdeni

aTwiladi niSanicaa orive TanamamravlSi erTad.

magaliTad,

aTwiladi rom gavyoT mTelze, saWiroa jer aTwiladis

mTeli nawili gavyoT mTelze rac mogvcems ganayofis

mTel nawils (igi SeiZleba nulic aRmoCndes), Semdeg

vwerT mZimes, naSTs mivuwerT pirvel aTwilad niSans,

miRebul ricxvs vyofT gamyofze, rac mogvcems ganayofis

pirvel aTwilad niSans da yoveli Semdegi aTwiladi

niSnis misaRebad viqceviT analogiurad.

magaliTad,

aTwiladi rom gavyoT aTwiladze, saWiroa gamyofSi

mZime ukuvagdoT, xolo gasayofSi igi gadavitanoT

marjvniv imdeni aTwiladi niSniT, ramdeni aTwiladi

niSanic iyo gamyofSi (SesaZlebelia gasayofSi marjvniv

dagvWirdes nulebis miwera) da Semdeg SevasruloT gayofa.

magaliTad,

512,55 46269252

+

6,342,15

×

0 1818

10 63

12,79:08,64 =_

_9

_

1,08:8=0,1358

_

28 _24 40 _ 40

0

Page 27: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

27

!!!!bUxjmbejt! hbebrdfwb! Dwfvmfcsjw! xjmbebe/ aTwiladi rom

gadavaqcioT Cveulebriv wiladad, saWiroa mZime

ukuvagdoT da miRebuli ricxvi davweroT mricxvelad,

xolo mniSvnelad aviRoT ricxvi gamosaxuli 1-iT da

marjvniv miwerili imdeni nuliT, ramdeni aTwiladi

niSanic iyo aTwiladSi.

magaliTad,

411

100251

10012525,1 === ;

100019019,0 = .

Dwfvmfcsjwj! xjmbejt! hbebrdfwb! bUxjmbebe/ imisaTvis, rom

Cveulebrivi wiladi gadavaqcioT aTwiladad, saWiroa

mricxveli gavyoT mniSvnelze.

SevniSnoT, rom gayofis procesi zogjer SeiZleba

usasrulod gagrZeldes. magaliTad, K777,097= ,

K545454,31163 = , K4166,4

1254 = .

amrigad, gayofis Sedegad SeiZleba miviRoT aTwiladi,

romlis aTwilad niSanTa raodenoba ragind didia. aseT

aTwilads usasrulo aTwiladi ewodeba. rogorc zemoT

moyvanili magaliTebidan Cans, usasrulo aTwiladSi

SeiZleba meordebodes erTi an ramdenime aTwiladi niSani.

hbotbSwsfcb/ usasrulo aTwilads, romlis erTi an

ramdenime cifri dawyebuli garkveuli adgilidan,

ucvlelad meordeba erTi da imave mimdevrobiT,

perioduli aTwiladi ewodeba, xolo cifrs an cifrTa

erTobliobas, romelic meordeba_periodi.

usasrulo perioduli aTwiladis Cawerisas, xSirad

periods frCxilebSi svamen. magaliTad, 0,777... =0,(7);

3,545454...=3,(54); 4,41666...=4,41(6). Tu periodul aTwiladSi

periodi iwyeba uSualod mZimis Semdeg, maSin aTwilads

0

256

153

_ 8,1432:6,4732,3:36,47 ==32

_128

_256

0

1300

_ 4,6325:208025,3:8,20 ==1950

1300_

Page 28: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

28

wminda perioduli ewodeba, xolo winaaRmdeg

SemTxvevaSi_Sereuli perioduli.

vtbtsvmp! qfsjpevmj! bUxjmbejt! hbebrdfwb! Dwfvmfcsjw!xjmbebe/ yoveli usasrulo perioduli aTwiladi SeiZleba

gadavaqcioT Cveulebriv wiladad.

wminda perioduli aTwiladi Cveulebriv wiladad rom

gadavaqcioT, saWiroa periodi davweroT mricxvelad,

xolo mniSvnelad aviRoT imdeni cxrianiT gamosaxuli

ricxvi, ramdeni cifricaa periodSi. magaliTad,

1153

99453)45(,3 == .

Sereuli perioduli aTwiladi rom gadavaqcioT

Cveulebriv wiladad, saWiroa ricxvs mZimidan periodis

bolomde, gamovakloT ricxvi mZimidan periodamde da

miRebuli sxvaoba davweroT mricxvelad, xolo mniSvnelad

aviRoT ricxvi, romelic gamosaxulia imdeni cxrianiT,

ramdeni cifricaa periodSi da marjvniv miwerili imdeni

nuliT, ramdeni cifricaa mZimidan periodamde.

magaliTad,

55146

9902526

99022546)54(2,6 ==

−= .

amrigad, yoveli usasrulo perioduli aTwiladi

SeiZleba gadavaqcioT Cveulebriv wiladad. SeiZleba

vaCvenoT, rom yoveli Cveulebrivi wiladi gadaiqceva an

sasrul aTwiladad an usasrulo periodul aTwiladad.

kerZod:

a) Tu ukveci wiladis mniSvnels ar gaaCnia 2-isa da 5-

isagan gansxvavebuli martivi mamravli, maSin wiladi

gadaiqceva sasrul aTwiladad;

b) Tu ukveci wiladis mniSvnelis martiv mamravlebad

daSla ar Seicavs 2-sa da 5-s, maSin wiladi gadaiqceva

wminda periodul aTwiladad;

g) Tu ukveci wiladis mniSvnelis daSla sxva

mamravlebTan erTad Seicavs Tanamamravlad 2-s an 5-s,

maSin wiladi gadaiqceva Sereul periodul aTwiladad.

Tu gaviTvaliswinebT, rom yoveli sasruli aTwiladi

SeiZleba warmovadginoT, rogorc usasrulo perioduli,

periodiT nuli an periodiT 9, SeiZleba davaskvnaT, rom

nebismieri wiladi gamoisaxeba usasrulo perioduli

aTwiladis saSualebiT.

Page 29: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

29

amrigad, racionaluri ricxvi Semdegnairadac SeiZleba

ganisazRvros: usasrulo periodul aTwilads

racionaluri ricxvi ewodeba.

§7. jsbdjpobmvsj!sjdywfcj/!obnewjmj!sjdywfcj!

zogierTi sidideebis gasazomad sakmarisi ar aris

racionaluri ricxvebi. kerZod, arseboben monakveTebi,

romelTa sigrZe racionaluri ricxviT ar gamoisaxeba.

aseTia magaliTad, im kvadratis diagonali, romlis

gverdis sigrZe erTeulis tolia. marTlac, Tu davuSvebT,

rom am kvadratis diagonalis sigrZe racionaluri

ricxviT gamoisaxeba, maSin igi warmoidgineba qp ukveci

wiladis saxiT da marTebulia toloba: 22

=⎟⎟⎠

⎞⎜⎜⎝

⎛qp

.

aqedan, 22 2qp = , amitom

2p luwi ricxvia da maSasadame,

luwi iqneba p-c (radgan kenti ricxvis kvadrati

yovelTvis kentia). e. i. p=2k, sadac Nk ∈ da 22 2qp =

tolobidan miviRebT 2222 224 kqqk =⇒= ,

e. i. 2q luwi ricxvia da luwi iqneba q-c.

miviReT, rom p da q luwi ricxvebia, es ki

ewinaaRmdegeba daSvebas, rom qp ukveci wiladia.

amrigad, zemoTaRniSnuli kvadratis diagonalis sigr-

Zis gamosaxva racionaluri ricxviT SeuZlebelia. rogorc

vnaxeT racionalur ricxvTa simravleSi ar arsebobs

iseTi ricxvi, romlis kvadrati 2-is tolia. analogiurad

SegviZlia vaCvenoT, rom ar arsebobs racionaluri

ricxvebi, romelTa kvadratebia 3, 5, 6, 7 da a. S. aseTi

ricxvebi ekuTvnian e. w. iracionalur ricxvTa simravles.

radgan aseTi ricxvebi ar arian racionaluri, amitom

maTi warmodgena usasrulo perioduli aTwiladis saxiT

SeuZlebelia.

hbotbSwsfcb/ usasrulo araperiodul aTwilads

iracionaluri ricxvi ewodeba. iracionalur ricxvTa

simravle I asoTi aRiniSneba.

Page 30: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

30

magaliTad, iracionaluria usasrulo aTwiladi

0,101001000100001...,

romlis CanawerSi pirveli 1-ianis Semdeg aris erTi nuli,

meore 1-ianis Semdeg_ori nuli da a. S.

hbotbSwsfcb/ racionalur da iracionalur ricxvTa

simravleebis gaerTianebas namdvil ricxvTa simravle

ewodeba da R asoTi aRiniSneba.

cxadia, rom zemoT ganxilul N, 0Z , Z, Q da R ricxvTa

simravleebs Soris arsebobs Semdegi damokidebule-

ba: RQZZN ⊂⊂⊂⊂ 0 .

obnewjm! sjdywUb! Tfebsfcb/ namdvil ricxvTa simravlis

gansazRvrebidan gamomdinareobs, rom yoveli namdvili

ricxvi an racionaluria an iracionaluri. radgan yoveli

racionaluri ricxvi SeiZleba warmovadginoT usasrulo

perioduli aTwiladis saxiT, xolo iracionaluri_

usasrulo araperioduli aTwiladis saxiT, amitom

SeiZleba davaskvnaT, rom yoveli namdvili ricxvi

SeiZleba warmovadginoT usasrulo aTwiladis saxiT

Semdegnairad:

K3210 , aaaaa = ,

sadac Za ∈0 , xolo yoveli ),3,2,1( L=kak warmoadgens erT-

erTs Semdegi cifrebidan 0, 1, 2, 3, 5, 6, 7, 8 da 9.

or K3210 , aaaaa = da K3210 , bbbbb = namdvil ricxvs toli

ewodeba, Tu kk ba = nebismieri 0Zk ∈ -isaTvis.

vTqvaT, a da b arauaryofiTi namdvili ricxvebia.

amboben, rom a<b, Tu yoveli ki <≤0 -saTvis ii ba = da

kk ba < . Tu 0≥a , xolo b<0, maSin a>b. Tu a<0 da b<0, maSin a>b, roca ba −<− .

nprnfefcboj! obnewjm! sjdywfcf/ arauaryofiTi KK naaaax 210 ,=

ricxvis aTwiladi miaxloeba naklebobiT, sizustiT n101

ewodeba

naaaa K210 ,

ricxvs, xolo aTwiladi miaxloeba metobiT sizustiT n101

nnaaaa10

1 , 210 +K

ricxvs.

Page 31: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

31

uaryofiTi KK naaaax 210 ,= ricxvis aTwiladi

miaxloeba naklebobiT (metobiT) sizustiT n101

-mde,

ewodeba naaaa K210 ,− ricxvis n101

sizustiT metobiT

(naklebobiT) miaxloebis mopirdapire ricxvs.

namdvili x ricxvis aTwiladi miaxloeba naklebobiT

sizustiT n101

-mde aRvniSnoT nx -iT, xolo metobiT nx′ -iT.

magaliTad, K24174,3=x ricxvis aTwiladi miaxloeba

sizustiT 4101

naklebobiT aris 2417,34 =x , xolo

metobiT_ 2418,34 =′x ; K7138,5−=x ricxvis aTwiladi

miaxloeba sizustiT 3101

naklebobiT aris 714,53 −=x ,

xolo metobiT_ 713,53 −=′x .

namdvil ricxvTa Sedarebis wesidan gamomdinareobs,

rom yoveli namdvili x ricxvisaTvis nn xxx ′≤≤ .

mtkicdeba, rom nebismieri x da y namdvili

ricxvebisaTvis arsebobs erTaderTi z namdvili ricxvi,

iseTi, rom yoveli 0Zn∈ ricxvisaTvis sruldeba

utoloba:

nnnn yxzyx ′+′≤≤+ .

aseT z ricxvs ewodeba x da y ricxvebis jami da

yx + simboloTi aRiniSneba.

mtkicdeba, rom nebismieri x da y arauaryofiTi

namdvili ricxvebisaTvis arsebobs erTaderTi z namdvili

ricxvi, iseTi, rom yoveli Nn∈ ricxvisaTvis sruldeba

utoloba:

nnnn yxzyx ′′≤≤ .

aseT z ricxvs ewodeba x da y ricxvebis namravli da

xy simboloTi aRiniSneba.

Tu ori namdvili ricxvidan erTi mainc uaryofiTia,

maSin maTi namravli ganimarteba Semdegnairad:

)()( xyyx −=− ,

xyyx =−− ))(( ,

Page 32: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

32

sadac 0>x , 0>y .

ramdenime namdvili ricxvis jami da namravli

ganisazRvreba Sesabamisad ori namdvili ricxvis jamisa

da namravlis saSualebiT, iseve rogorc mTeli

ricxvebisaTvis.

namdvili ricxvebis gamokleba da gayofa

ganisazRvreba, rogorc Sesabamisad Sekrebisa da

gamravlebis Sebrunebuli moqmedebebi.

CamovayaliboT namdvil ricxvTa ZiriTadi Tvisebebi:

I. ebmbhfcjt!Uwjtfcfcj 1 . nebismieri ori a da b namdvili ricxvisaTvis

sruldeba erTi da mxolod erTi Semdegi

Tanafardobebidan:

a=b, a>b, a<b. 2. Tu a<b, moiZebneba iseTi c ricxvi, rom a<c<b. II. Tflsfcjt!Uwjtfcfcj! 1 . a+b=b+a (Sekrebis komutaciuroba) ; 2. (a+b)+c=a+(b+c) (Sekrebis asociaciuroba); 3. a+0=a; 4. a+(-a)=0 (a da –a mopirdapire ricxvebia); 5. Tu a=b, maSin a+c=b+c, sadac c nebismieria. III. hbnsbwmfcjt!Uwjtfcfcj/! 1 . ab=ba (gamravlebis komutaciuroba) ;

2. (ab )c=a(bc) (gamravlebis asociaciuroba); 3. aa =⋅1 ; 4. 00 =⋅a ; 5. Tu a=b, maSin ac=bc;

6. 11=⋅

aa , ( )0≠a , ( a da

a1 urTierTSebrunebuli

ricxvebia);

7. (a+b)c=ac+bc (Sekrebis distribuciuloba gamravle-

bis mimarT).

§8. sjdywjUj!xsgf/!sjdywjUj!Tvbmfefcj/!nbsUlvUyb!lppsejobuUb!tjtufnb!

wrfes, romelzedac fiqsirebulia raime O wertili

(saTave), arCeulia dadebiTi mimarTuleba da sigrZis

erTeuli (masStabi), ricxviTi RerZi anu ricxviTi wrfe

ewodeba (nax. 1).

Page 33: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

33

ricxviTi RerZis yovel M wertils SeiZleba

SevusabamoT erTaderTi namdvili x ricxvi da piriqiT. es

urTierTcalsaxa Sesabamisoba SeiZleba damyardes Semdegi

wesiT: OMx = (OM monakveTis sigrZes), Tu O-dan M-saken mimarTuleba emTxveva RerZis mimarTulebas da

OMx −= _winaaRmdeg SemTxvevaSi. am x ricxvs M wertilis koordinati ewodeba. is faqti, rom x ricxvi M wertilis koordinatia, ase Caiwereba: )(xM . cxadia, rom O saTavis koordinatia nuli. mocemulia wertili RerZze

niSnavs, rom mocemulia wertilis koordinati.

SemdgomSi namdvil ricxvsa da mis Sesabamis wertils

RerZze gavaigivebT.

ganvixiloT namdvil ricxvTa simravlis zogierTi

qvesimravle, romelTac ricxviTi Sualedebi ewodebaT.

vTqvaT, a da b ori namdvili ricxvia da a<b. hbotbSwsfcb/ yvela im namdvil x ricxvTa simravles,

romlebic akmayofileben utolobas bxa ≤≤ , Caketili

Sualedi (segmenti) ewodeba da [a;b] simboloTi aRiniSneba,

e. i.

bxaRxxba ≤≤∈= ,:];[ .

analogiurad

] [ bxaRxxba <<∈= ,:;

simravles Ria Sualedi (intervali) ewodeba, xolo

[ [ bxaRxxba <≤∈= ,:; ,

] ] bxaRxxba ≤<∈= ,:;

simravleebs naxevrad Ria Sualedebi ewodeba.

a da b ricxvebs ganxiluli Sualedebis sazRvrebi an

boloebi ewodeba, xolo b-a ricxvs_Sualedis sigrZe.

hbotbSwsfcb/ yvela im namdvil x ricxvTa simravles,

romlebic akmayofileben utolobas ax ≥ , usasrulo

Sualedi ewodeba da [ [+∞,a simboloTi aRiniSneba, e. i.

[ [ axRxxa ≥∈=+∞ ,:; .

0 1 )(xM

1

nax. 1

Page 34: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

34

usasrulo Sualedebs warmoadgenen agreTve Semdegi

simravleebi:

] [ axRxxa >∈=+∞ ,:; ,

] ] bxRxxb ≤∈=∞− ,:; ,

] [ bxRxxb <∈=∞− ,:; .

namdvil ricxvTa R simravlec usasrulo Sualeds

warmoadgens da igi ase aRiniSneba:

] [+∞∞−= ;R .

saerTo saTavisa da erTnairi masStabis mqone ori

urTierTperpendikularuli RerZi qmnis dekartis

marTkuTxa koordinatTa sistemas sibrtyeze. saerTo O saTaves koordinatTa saTave ewodeba, xolo

RerZebs_sakoordinato RerZebi. maT uwodeben agreTve

abscisTa Ox da ordinatTa Oy RerZebs. ganvixiloT sibrtyis nebismieri M wertili. misi

gegmilebi Ox da Oy RerZebze (nax. 2) Sesabamisad aRvni-SnoT xM -iT da yM -iT.

wertilis dekartis marTkuTxa x da y koordinatebi

ewodeba Sesabamisad xM da yM wertilis koordinatebs

saTanado RerZebze. x koordinats wertilis abscisa

ewodeba, xolo y-s ordinati. is faqti, rom M wertilis

koordinatebia x da y ase Caiwereba: M(x;y). zemoTqmulidan

Cans, rom sibrtyis yovel wertils Seesabameba namdvil

ricxvTa erTaderTi dalagebuli wyvili da piriqiT,

namdvil ricxvTa dalagebul wyvils Seesabameba sibrtyis

erTaderTi wertili. amrigad, sibrtyis wertilTa

simravlesa da namdvil ricxvTa dalagebuli wyvilebis

simravles Soris arsebobs urTierTcalsaxa Sesabamisoba.

sakoordinato RerZebi

sibrtyes oTx nawilad yofs,

am nawilebs meoTxedebs anu

kvadratebs uwodeben.

namdvil ricxvTa yvela

wyvilebis simravles ricxviTi

sibrtye ewodeba da 2R -iT

aRiniSneba. sibrtyes, romelze-

dac arCeulia koordinatTa

sistema, sakoordinato sibr-

tye ewodeba.

0 xM

yM

y

x

M I II

III IV

nax. 2

Page 35: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

35

§9. obnewjmj!sjdywjt!npevmj!)bctpmvuvsj!nojTwofmpcb*!eb!njtj!Uwjtfcfcj

hbotbSwsfcb/ namdvili a ricxvis moduli (absoluturi

mniSvneloba) ewodeba TviT am ricxvs, Tu igi arauaryofi-

Tia, mis mopirdapire ricxvs, Tu igi uaryofiTia da

a simboloTi aRiniSneba, e. i.

⎩⎨⎧

<−

≥=

.0 ,;0 ,

aaaa

a Tu

Tu

magaliTad, 12 =12; 3− =3; 0 =0.

geometriulad namdvili ricxvis moduli warmoadgens

manZils ricxviTi wrfis saTavidan am ricxvis Sesabamis

wertilamde.

namdvili ricxvis modulis gansazRvrebidan uSualod

gamomdinareobs, rom aa =− ; aaa ≤≤− .

moviyvanoT modulis zogierTi Tviseba:

Ufpsfnb! 2/ ori ricxvis jamis moduli ar aRemateba am

ricxvebis modulebis jams, e. i.

baba +≤+ .

ebnuljdfcb/ ganvixiloT ori SemTxveva:

a) vTqvaT, 0≥+ ba , maSin bababa +≤+=+ .

b) vTqvaT, 0<+ ba , maSin ( ) =+−=+ baba

bababa +=−+−≤−+−= )()( .

SevniSnoT, rom es Teorema marTebulia SesakrebTa

nebismieri sasruli raodenobisaTvis.

Ufpsfnb!3/ Tu a da b namdvili ricxvebia, maSin:

baba −≤− .

ebnuljdfcb; gvaqvs bbaa +−= )( .

aqedan

bbaa +−≤ ,

anu

baba −≤− . (1)

Tu a -sa da b -s adgilebs SevucvliT, maSin (1)

utolobidan miviRebT:

abab −≤− , (2)

Page 36: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

36

xolo, radgan abba −=− , (1) da (2)-dan gveqneba

baba −≤− .

Ufpsfnb! 4/ ori ricxvis namravlis moduli udris am

ricxvebis modulebis namravls, e. i.

baba ⋅=⋅ .

ebnuljdfcb/!!

a) Tu 0≥a da 0≥b , maSin bababa ⋅=⋅=⋅ .

b) Tu 0≥a da 0<b , maSin babababa ⋅=−⋅=⋅−=⋅ )()( .

g) Tu 0<a da 0≥b , maSin babababa ⋅=⋅−=⋅−=⋅ )()( .

d) Tu 0<a da 0<b , maSin babaabab ⋅=−−== ))(( .

SevniSnoT, rom es Teorema marTebulia TanamamravlTa

nebismieri sasruli raodenobisaTvis.

analogiurad mtkicdeba Semdegi Teorema:

Ufpsfnb!5/ a da b ricxvebis ( 0≠b ) fardobis moduli

am ricxvebis modulebis fardobis tolia, e. i. ba

ba= ,

sadac 0≠b .

§10. qspqpsdjfcj/!qspdfoufcj

hbotbSwsfcb/ ori fardobis tolobas dc

ba=

( 0≠b , 0≠d ), proporcia ewodeba. a -sa da d -s proporciis

kidura wevrebi, xolo b -sa da c -s Sua wevrebi ewodeba.

Tu dc

ba= proporciis orive mxares gavamravlebT bd –

ze, miviRebT bcad = . es toloba gamosaxavs proporciis

ZiriTad Tvisebas: proporciis kidura wevrebis namravli

udris Sua wevrebis namravls.

proporciis ZiriTadi Tvisebidan gamomdinareobs, rom

proporciis Sua wevri udris kidura wevrebis namravls

gayofils meore Sua wevrze, xolo kidura wevri ki_Sua

wevrebis namravls gayofils meore kidura wevrze. igive

Tvisebidan gamomdinareobs, rom proporciaSi SesaZlebe-

lia gadavanacvloT misi Sua an kidura wevrebi. magali-

Tad, proporciidan dc

ba= , miiReba Semdegi proporciebi:

Page 37: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

37

ab

cd

db

ca

ac

bd

=== ; ; .

yoveli proporciidan, garkveuli gardaqmnebiT, SeiZle-

ba miviRoT e. w. warmoebuli proporciebi. magaliTad, Tu

dc

ba= proporciis orive mxares davumatebT 1-s, miviRebT:

ddc

bba

dc

ba +

=+

⇒+=+ 11 ; (1)

analogiurad, 1-is gamoklebiT miiReba Semdegi proporcia:

ddc

bba −=

−; (2)

Tu (1) tolobas wevr-wevrad gavyofT (2)-ze, gveqneba

dcdc

baba

−+

=−+

.

analogiurad miiReba Semdegi warmoebuli proporciebi:

dcdc

baba

dcc

baa

dcc

baa

+−

=+−

−=

−+=

+ ; ; .

upm!gbsepcbUb!Uwjtfcb/ vTqvaT, mocemulia ramdenime to-

li fardoba:

n

n

ba

ba

ba

=== L2

2

1

1 ,

maSin

n

n

n

n

bbbaaa

ba

ba

ba

++++++

====L

LL

21

21

2

2

1

1 .

ebnuljdfcb/ SemoviRoT aRniSvna kba

=1

1 , miviRebT

kbak

ba

n

n == ,,2

2 K ,

aqedan gvaqvs: kba 11 = , kbakba nn == ,,22 K .

am tolobebis wevr-wevrad SekrebiT miiReba

kbbbaaa nn )( 2121 +++=+++ LL .

aqedan

n

n

bbbaaak

++++++

=L

L

21

21 .

e. i.

Page 38: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

38

n

n

n

n

bbbaaa

ba

ba

ba

++++++

====L

LL

21

21

2

2

1

1 .

qspqpsdjvmj!ebzpgb/ davyoT raime a ricxvi kmmm ,,, 21 K

dadebiTi ricxvebis proporciul nawilebad, niSnavs, vipo-

voT iseTi kaaa ,,, 21 K ricxvebi, romelTa jami a –s tolia

da Sesrulebulia piroba:

k

k

ma

ma

ma

=== L2

2

1

1 .

raime ricxvi rom davyoT mocemuli ricxvebis propor-

ciul nawilebad, saWiroa igi gavyoT mocemuli ricxvebis

jamze da ganayofi gavamravloT TiToeulze am ricxvebi-

dan.

nbhbmjUj/ ricxvi 72 davyoT 2-is, 3-isa da 7-is propor-

ciul nawilebad.

bnpytob/ vTqvaT, saZiebeli ricxvebia 21,aa da 3a , maSin

4212

772 ;1812

372 ;12732

272321 =

⋅==

⋅==

++⋅

= aaa .

qspdfoufcj/ ricxvis meased nawils misi procenti

ewodeba. ricxvis erTi procenti 1% simboloTi aRiniSneba,

xolo k procenti_ k % simboloTi.

procentebze ganixileba Semdegi sami tipis amocana:

1. sjdywjt! sbjnf! qspdfoujt! qpwob/ imisaTvis, rom vipovoT

ricxvis k %, saWiroa es ricxvi gavamravloT 100

k–ze.

magaliTad, 150-is 12% udris 18-s, radganac 1810012150 =⋅ .

2. sjdywjt! qpwob! qspdfoujt! tbTvbmfcjU/ imisaTvis, rom

vipovoT romeli ricxvis k %-s warmoadgens mocemuli ric-

xvi, saWiroa igi gavamravloT k

100–ze. magaliTad, ricxvi,

romlis 12% aris 18, udris 150-s, radgan 15012

10018 =⋅ .

3. psj!sjdywjt!qspdfouvmj!gbsepcjt!qpwob/ imisaTvis, rom

davadginoT erTi ricxvi meoris ramden procents Seadgens,

saWiroa maTi fardoba gavamravloT 100-ze. magaliTad 18

warmoadgens 150-is 12%-s, radgan 1210015018

=⋅ .

Page 39: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

39

§11. ybsjtyj!nUfmj!nbDwfofcmjU!

ybsjtyj!obuvsbmvsj!nbDwfofcmjU/ Cven gansazRvruli gvaqvs

naturalurmaCvenebliani xarisxi, rodesac fuZe naturalu-

ri ricxvia. ganvazogadoT es cneba.

hbotbSwsfcb/ a ricxvis n –uri xarisxi, sadac Ra∈ ,

Nn∈ , 1≠n ewodeba n TanamamravlTa namravls, romelTa-

gan TiToeuli a –s tolia da na simboloTi aRiniSneba, e.i.

2 ; ≥⋅=−

naaaan

n43421 K

jer

.

a -s xarisxis fuZe ewodeba, n -s ki_xarisxis maCvenebeli.

miRebulia, rom aa =1.

SevniSnoT, rom dadebiTi ricxvis nebismieri natura-

lurmaCvenebliani xarisxi dadebiTia; uaryofiTi ricxvis

luwmaCvenebliani xarisxi dadebiTia, xolo kentmaCvenebli-

ani xarisxi_uaryofiTi.

davamtkicoT naturalurmaCvenebliani xarisxis zogier-

Ti Tviseba.

Ufpsfnb!2/ namravlis xarisxi udris TanamamravlTa xa-

risxebis namravls, e. i. nnn baab ⋅=)( .

ebnuljdfcb/! xarisxis gansazRvrebisa da namravlis Tvi-

sebebis safuZvelze gvaqvs nn

nnn

n babbbaaababababa =⋅⋅⋅=⋅⋅⋅⋅=⋅−−−43421 K43421 K

444 3444 21K

jerjerjer

)()()()(

am Teoremidan gamomdinareobs, rom nnn baba )( ⋅=⋅ .

e. i. tolmaCvenebliani xarisxebi rom gadavamravloT, sak-

marisia gadavamravloT am xarisxebis fuZeebi, xolo maCve-

nebeli ucvlelad davtovoT.

Ufpsfnb!3/ wiladis xarisxi mricxvelisa da mniSvnelis

xarisxebis fardobis tolia, e. i.

0 , ≠=⎟⎠⎞

⎜⎝⎛ b

ba

ba

n

nn

.

ebnuljdfcb/ xarisxis gansazRvrebis Tanaxmad:

Page 40: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

40

n

n

n

n

n

n

ba

bbbaaa

ba

ba

ba

ba

=⋅⋅

=⋅=⎟⎠⎞

⎜⎝⎛

−43421 K

48476K

43421L

jer

jer

jer

.

am Teoremidan gamomdinareobs, rom: n

n

n

ba

ba

⎟⎠⎞

⎜⎝⎛= .

e. i. tolmaCvenebliani xarisxebi rom gavyoT, sakmarisia

gasayofis fuZe gavyoT gamyofis fuZeze, xolo maCvenebeli

ucvlelad davtovoT.

Ufpsfnb! 4/ tolfuZiani xarisxebis namravli udris

imave fuZian xarisxs, romlis maCvenebelic am xarisxebis

maCvenebelTa jamis tolia, e. i. nmnm aaa +=⋅ .

ebnuljdfcb/!xarisxis gansazRvrebis Tanaxmad: nm

nmnm

nm aaaaaaaaaaaa +

−+−−

=⋅=⋅⋅⋅=⋅ 43421 K43421K

43421K

jerjerjer

)()( .

Ufpsfnb!5/ xarisxi rom avaxarisxoT, saWiroa xarisxis

maCveneblebi gadavamravloT, xolo fuZe ucvlelad

davtovoT, e. i. mnnm aa =)( .

ebnuljdfcb/! xarisxis gansazRvrebisa da me-3 Teoremis

Tanaxmad:

mn

n

mmm

n

mmmnm aaaaaa ==⋅=

+++

4484476L

4434421 K

jer

jer

)( .

Ufpsfnb!6/ tolfuZiani xarisxebis ganayofi, roca fuZe

gansxvavdeba nulisagan da gasayofis maCvenebeli metia

gamyofisaze, udris imave fuZian xarisxs, romlis

maCvenebelic gasayofisa da gamyofis xarisxis

maCvenebelTa sxvaobis tolia, e. i.

) ,0( , nmaaaa nm

n

m>≠= −

.

ebnuljdfcb/ radgan nm > , amitom arsebobs iseTi

naturaluri k ricxvi, rom knm += . maSasadame,

nmkn

kn

n

kn

n

maa

aaa

aa

aa −

+

==⋅

== .

Page 41: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

41

ybsjtyj! ovmpwboj!eb!vbszpgjUj! nUfmj! nbDwfofcmjU/ rogorc me-5 Teoremidan Cans, toloba:

nmn

ma

aa −= (1)

marTebulia maSin, roca nm > . im SemTxvevaSi, roca nm =

an nm < , (1) tolobis marjvena mxare gansazRvruli ar

aris, marcxena mxares ki azri aqvs. es garemoeba

gvkarnaxobs ganvsazRvroT xarisxi nulovani da

uaryofiTi mTeli maCvenebliT Semdegnairad:

hbotbSwsfcb/! nebismieri nulisagan gansxvavebuli

namdvili ricxvis nulovani xarisxi 1-is tolia, e. i.

)0( ,10 ≠= aa .

hbotbSwsfcb/!Tu Nn∈ da 0≠a , maSin n

n

aa 1

=−.

am gansazRvrebis Tanaxmad (1) toloba marTebulia maSinac,

roca nm ≤ . marTlac, Tu nm ≤ , maSin moiZebneba iseTi

0Zk ∈ ricxvi, rom kmn += da

nmkkkm

m

km

m

n

maa

aaaa

aa

aa −−

+ ===⋅

==1

.

advili Sesamowmebelia, rom naturalurmaCvenebliani

xarisxebisaTvis zemoT damtkicebuli Teoremebi

marTebulia nebismieri mTeli maCveneblisaTvis. magaliTad,

Tu Nn∈ da 0,0 ≠≠ ba , maSin

nnnnnnn

n bababaab

ab −−− ⋅=⋅===111

)(1)( ;

n

n

n

n

n

nn

n

ba

ab

ba

bab

a−

−−

===

⎟⎠⎞

⎜⎝⎛

=⎟⎠⎞

⎜⎝⎛ 11

da a. S.

§12. sjdywjUj!hbnptbyvmfcboj/!dwmbejt!Tfndwfmj!hbnptbyvmfcboj!

bunebaSi vxvdebiT sxvadasxva tipis sidideebs, zogi

maTgani mocemul pirobebSi inarCunebs erTidaigive

ricxviT mniSvnelobas, zogi ki icvleba.

sidides ewodeba mudmivi, Tu igi mocemul pirobebSi

mxolod erT mniSvnelobas Rebulobs. magaliTad,

Page 42: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

42

Tanamedrove kalendariT kviraSi dReebis ricxvi mudmivia

da udris 7-s, mudmivia agreTve samkuTxedis Siga kuTxeebis

jami da a. S.

sidides ewodeba cvladi, Tu igi mocemul pirobebSi

sxvadasxva ricxviT mniSvnelobebs Rebulobs. magaliTad

haeris temperatura, uhaero sivrceSi Tavisufali vardnis

siCqare, da a. S. cvladi sidideebia.

hbotbSwsfcb/ ricxvTa da im niSanTa erTobliobas,

romlebic gviCveneben, Tu ra moqmedebebi da ra

mimdevrobiT unda iqnas Sesrulebuli am ricxvebze,

ricxviTi gamosaxuleba ewodeba.

magaliTad, ricxviTi gamosaxulebebia:

1243417,0 ;2)5,11125(

2

−⋅+

⋅− da a. S.

miTiTebuli moqmedebebis SesrulebiT miviRebT ricxvs,

romelsac ricxviTi gamosaxulebis mniSvneloba ewodeba.

moyvanili ricxviTi gamosaxulebebidan meores azri ara

aqvs, radgan moqmedebaTa Sesrulebis procesSi gvxvdeba

nulze gayofa. sazogadod, yovel ricxviT gamosaxulebas

aqvs erTaderTi ricxviTi mniSvneloba an ara aqvs azri.

hbotbSwsfcb/ gamosaxulebas, romelic cvlads Seicavs,

cvladis Semcveli gamosaxuleba ewodeba.

cvladis Semcveli gamosaxulebis mniSvneloba

damokidebulia masSi Semavali cvladebis ricxviT

mniSvnelobebze.

magaliTad, yxyx

23

−+

gamosaxulebis mniSvneloba, roca

3=x da 1=y , aris 6, xolo roca 4=x da 2=y ,

gamosaxulebas azri ara aqvs. imisda mixedviT, Tu ramden

cvlads Seicavs gamosaxuleba, mas SeiZleba azri hqondes

(gansazRvruli iyos) ricxvTa raime simravleze, ricxvTa

wyvilebis, sameulebis da a. S. simravleze. zemoT

ganxiluli gamosaxuleba gansazRvrulia yvela im ),( yx

wyvilTa simravleze, sadac yx 2≠ .

erTidaimave cvladebis Semcveli gamosaxulebebis

mniSvnelobebs, gamoTvlils am cvladebis erTidaigive

ricxviTi mniSvnelobebisaTvis, Sesabamisi mniSvnelobebi

ewodeba. magaliTad, xy da yx − gamosaxulebaTa

Sesabamisi mniSvnelobebi roca 2 3 == yx aris 6 da 1.

Page 43: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

43

hbotbSwsfcb/ or gamosaxulebas igivurad toli

ewodeba raime simravleze, Tu am simravleze orives azri

aqvs da maTi Sesabamisi mniSvnelobebi tolia.

magaliTad, 22 ba − da ( )( )baba +− igivurad toli

gamosaxulebebia, radgan maTi Sesabamisi mniSvnelobebi

tolia. or igivurad tol gamosaxulebas, SeerTebuls

tolobis niSniT, igiveoba ewodeba. amrigad, 22 ba − = ( )( )baba +− igiveobas warmoadgens. igiveobas

warmoadgens agreTve yoveli WeSmariti ricxviTi toloba.

gamosaxulebis Secvlas misi igivurad toli

gamosaxulebiT igivuri gardaqmna ewodeba.

§13. fsUxfwsj!eb!nsbwbmxfwsj

hbotbSwsfcb/ ramdenime Tanamamravlis namravls,

romelTagan TiToeuli aris ricxvi, an cvladis xarisxi

naturaluri maCvenebliT, erTwevri ewodeba.

magaliTad, erTwevrebia: 4232

83 ,75 ,6 caayxcb − .

hbotbSwsfcb/! erTwevrs, romlis pirveli mamravli

warmoadgens ricxvs, xolo yvela sxva Tanamamravli

gansxvavebuli cvladebis xarisxebia, standartuli saxis

erTwevri ewodeba.

zemoT moyvanili erTwevrebidan pirveli Cawerilia

standartuli saxiT, xolo meorisa da mesamis

standartuli saxe iqneba Sesabamisad yx335 da 43

83 ca− .

standartuli saxis erTwevris ricxviT mamravls

erTwevris koeficienti ewodeba. erTwevrebs ewodeba

msgavsi, Tu isini erTidaigivea an mxolod koeficientebiT

gansxvavdebian. magaliTad, yx2, yx28,0 da yx25− msgavsi

erTwevrebia. msgavsi erTwevrebis jami aris mocemul

erTwevrTa msgavsi erTwevri, romlis koeficienti udris

Sesakreb erTwevrTa koeficientebis jams.

erTwevris xarisxi ewodeba masSi Semavali cvladebis

xarisxis maCvenebelTa jams. magaliTad, 329 xab erTwevris

xarisxi aris 1+2+3=6.

hbotbSwsfcb/ ramdenime erTwevris jams mravalwevri ewodeba.

Page 44: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

44

magaliTad, abxy 1,07 3 + da aabbaacba 235 22 −+− mraval-

wevrebia.

hbotbSwsfcb/ mravalwevrs, romlis TiToeuli wevri

Cawerilia standartuli saxiT da msgavsi wevrebi

Sekrebilia, standartuli saxis mravalwevri ewodeba.

zemoT moyvanili mravalwevrebidan pirveli

standartuli saxiT aris Cawerili, xolo meoris

standartuli saxea acba 34 2 − .

mravalwevris xarisxi, anu rigi ewodeba masSi Semavali

erTwevrebis xarisxebs Soris udidess. magaliTad,

122 32 ++− xyxxyz mravalwevris rigia 4.

ramdenime mravalwevri rom SevkriboT, saWiroa

SevkriboT maTSi Semavali yvela erTwevri.

mravalwevrs rom mravalwevri gamovakloT, saWiroa

saklebis wevrebs mivumatoT maklebis yvela wevri,

aRebuli mopirdapire niSniT.

mravalwevri rom erTwevrze gavamravloT, saWiroa

mravalwevris yoveli wevri gavamravloT erTwevrze da

miRebuli Sedegebi SevkriboT.

mravalwevri rom mravalwevrze gavamravloT, saWiroa

erT-erTi mravalwevri gavamravloT meoris yvela wevrze

da miRebuli Sedegebi SevkriboT.

mravalwevris mravalwevrze gayofa niSnavs iseTi mesame

mravalwevris (erTwevris) moZebnas, romelic gamravlebuli

gamyofze mogvcems gasayofs. SevniSnoT, rom es yovelTvis

ar aris SesaZlebeli.

imisaTvis, rom mravalwevri gavyoT mravalwevrze,

saWiroa moviqceT Semdegnairad: davalagoT orive

mravalwevri erTidaimave cvladis klebad xarisxebad;

ganayofis pirveli wevris misaRebad gasayofis pirveli

wevri gavyoT gamyofis pirvel wevrze; gasayofs

gamovakloT gamyofis da ganayofis pirveli wevris

namravli, rac mogvcems naSTs; miRebuli naSTi davalagoT

igive cvladis klebad xarisxebad; ganayofis meore wevris

misaRebad naSTis pirveli wevri gavyoT gamyofis pirvel

wevrze, pirvel naSTs gamovakloT gamyofisa da ganayofis

meore wevris namravli, rac mogvcems meore naSTs da a. S.

gayofis procesi SevwyvitoT, rogorc ki naSTis xarisxi

arCeuli cvladis mimarT naklebi gaxdeba gamyofis

xarisxze. kerZod, Tu naSTSi miviRebT nuls, maSin gayofa

sruldeba unaSTod.

Page 45: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

45

nbhbmjUj/ 22243523 321284 yxyxyyxxyyx ++−+−

mravalwevri gavyoT yx +4 mravalwevrze.

bnpytob/ zemoT Camoyalibebuli wesis Tanaxmad

miviRebT:

amrigad,

( ) ( ) .234:321284 22422243523 yyxyxyxyxyxyyxxyyx −+=+++−+−

hbotbSwsfcb/ mravalwevrs, romelic mxolod erT

cvlads Seicavs, erTi cvladis Semcveli mravalwevri

ewodeba.

erTi cvladis Semcveli n –uri rigis mravalwevris

zogadi saxea:

nnnn

n axaxaxaxP ++++= −−

11

10)( L ,

sadac nn aaaa ,,,, 110 −K koeficientebi nebismieri namdvili

ricxvebia ( 00 ≠a ). nxa0 –s mravalwevris ufrosi wevri,

xolo na –s Tavisufali wevri ewodeba. Tu

mravalwevris ufrosi wevris koeficienti 1-is tolia,

maSin mas dayvanili saxis mravalwevri ewodeba.

hbotbSwsfcb/! erTi cvladis Semcveli mravalwevris

fesvi ewodeba cvladis im mniSvnelobas, romlisTvisac

mravalwevris mniSvneloba nulis tolia.

amgvarad, 0x aris )(xPn mravalwevris fesvi, Tu

0)( 0 =xPn . SeiZleba Cveneba, rom nebismieri )(xp da )(xt

mravalwevrebisaTvis moiZebneba iseTi )(xq da )(xr

mravalwevrebi, rom

)()()()( xrxtxqxp +⋅= , (1)

sadac )(xr mravalwevris xarisxi naklebia )(xt –is

xarisxze, an 0)( =xr . am SemTxvevaSi amboben, rom )(xp

223

223

44

yxyxyxyx

++

0

2828

32

32

yxyyxy

−−−−

32 28 yxy −−

245 312 yxyx +−

32223245 284312 yxyyxyxyxyx −−+++224 23

4

yyxyx

yx

−+

+

Page 46: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

46

mravalwevri iyofa )(xt –ze naSTiT )(xr da ganayofi aris

)(xq . Tu 0)( =xr , maSin gayofa xdeba unaSTod.

Ufpsfnb! )cfv*/ )(xp mravalwevris ( )ax − orwevrze

gayofiT miRebuli r naSTi tolia )(xp mravalwevris

mniSvnelobisa, roca ax = , e. i. )(apr = .

ebnuljdfcb/ radgan ( )ax − warmoadgens pirveli xaris-

xis mravalwevrs, amitom gayofis Sedegad miRebuli naSTi

iqneba nulovani xarisxis mravalwevri, anu ricxvi da (1)

tolobis Tanaxmad gveqneba:

( ) raxxqxp +−⋅= )()( .

Tu am tolobaSi x –is nacvlad aviRebT a –s, miviRebT:

)())(()( aprraaaqap =⇒+−= .

Tfefhj/! imisaTvis, rom )(xp mravalwevri unaSTod

gaiyos )( ax − -ze aucilebeli da sakmarisia, rom a ricxvi

iyos )(xp –is fesvi.

ebnuljdfcb/ aucilebloba. vTqvaT, )(xp mravalwevri

unaSTod iyofa ( )ax − orwevrze. es imas niSnavs, rom

miRebuli naSTi 0=r . bezus Teoremis Tanaxmad ki )(apr = .

e. i. 0)( =ap .

sakmarisoba. vTqvaT 0)( =ap . bezus Teoremis Tanaxmad

)(apr = , amitom 0=r , e. i. )(xp unaSTod iyofa )( ax − –ze.

nbhbmjUj/ gayofis Seusruleblad vipovoT

1245)( 346 ++−+= xxxxxp mravalwevris ( 1+x ) orwevrze

gayofis Sedegad miRebuli naSTi.

bnpytob/!bezus Teoremis Tanaxmad

91)1(2)1()1(4)1(5)1( 346 =+−+−−−+−=−= pr .

§14. Tfnplmfcvmj!hbnsbwmfcjt!gpsnvmfcj/!nsbwbmxfwsjt!ebTmb!nbnsbwmfcbe

SemdgomSi dagvWirdeba ramdenime tipiuri igiveoba.

davamtkicoT zogierTi maTgani, romelTac Semoklebuli

gamravlebis formulebi ewodeba.

1. ( ) ( )( ) 22222 2 babababababababa ++=+++=++=+ .

e. i.

( ) 222 2 bababa ++=+ .

Page 47: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

47

amrigad, ori gamosaxulebis jamis kvadrati udris

pirvelis kvadrats, plius gaorkecebuli namravli

pirvelisa meoreze, plius meore gamosaxulebis kvadrati.

2. ( ) ( )( ) 22222 2 babababababababa +−=+−−=−−=− , e. i.

( ) 222 2 bababa +−=− . amrigad, ori gamosaxulebis sxvaobis kvadrati udris

pirvelis kvadrats, minus gaorkecebuli namravli

pirvelisa meoreze, plius meore gamosaxulebis kvadrati.

3. ( ) ( ) ( ) ))(2( 2223 =+++=++=+ babababababa

=+++++= 322223 22 bababbabaa 3223 33 babbaa +++= ,

e. i.

( ) .33 32233 babbaaba +++=+

amrigad, ori gamosaxulebis jamis kubi udris

pirvelis kubs, plius gasamkecebuli namravli pirvelis

kvadratisa meoreze, plius gasamkecebuli namravli

pirvelisa meoris kvadratze, plius meore gamosaxulebis

kubi.

4. ( ) ( ) ( ) ))(2( 2223 =−+−=−−=− babababababa

=−++−−= 322223 22 bababbabaa 3223 33 babbaa −+−= ,

e. i.

( ) .33 32233 babbaaba −+−=−

amrigad, ori gamosaxulebis sxvaobis kubi udris

pirvelis kubs, minus gasamkecebuli namravli pirvelis

kvadratisa meoreze, plius gasamkecebuli namravli

pirvelisa meoris kvadratze, minus meore gamosaxulebis

kubi.

5. ( )( ) 2222 babababababa −=−+−=−+ ,

e. i.

( )( )bababa −+=− 22.

amrigad, ori gamosaxulebis kvadratebis sxvaoba udris

amave gamosaxulebebis jamis namravls maTsave sxvaobaze.

6. ( )( ) =+−++−=+−+ 32222322 babbaabbaabababa

33 ba += ,

Page 48: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

48

e. i.

( ) )( 2233 babababa +−+=+ .

amrigad, ori gamosaxulebis kubebis jami udris maT

jams, gamravlebuls maTi sxvaobis arasrul kvadratze.

7. ( )( ) =−−−++=++− 32222322 babbaabbaabababa

33 ba −= ,

e. i.

( )2233 )( babababa ++−=− .

amrigad, ori gamosaxulebis kubebis sxvaoba udris maT

sxvaobas, gamravlebuls maTi jamis arasrul kvadratze.

mravalwevrze moqmedebebis Catarebisas xSirad

mosaxerxebelia maTi warmodgena ara standartuli saxiT,

aramed namravlis saxiT.

mravalwevris mamravlebad daSla niSnavs, am

mravalwevris warmodgenas misi igivurad toli namravliT.

Semoklebuli gamravlebis formulebi faqtiurad

warmoadgenen mravalwevris daSlas mamravlebad.

Semoklebuli gamravlebis formulebis garda

arseboben mravalwevris mamravlebad daSlis sxva

xerxebic. moviyvanoT zogierTi maTgani:

1. Tu mravalwevris yvela wevri Seicavs saerTo

mamravls, igi SeiZleba frCxilebs gareT gavitanoT.

magaliTad,

)25(36315 22223 xyyxxyyxxyyx −+=−+ .

am xerxs frCxilebs gareT gatanis xerxi ewodeba.

2. SeiZleba aRmoCndes, rom mravalwevris yvela wevrs

ar hqondes saerTo mamravli, magram isini gaaCndes

mravalwevris wevrTa calkeul jgufebs. Tu am mamravle-

bis frCxilebs gareT gatanis Semdeg frCxilebSi darCeba

erTnairi gamosaxuleba da mas frCxilebs gareT gavitanT,

mravalwevri daiSleba mamravlebad. magaliTad,

).32)(5()5(3 )5(2315210 22

babcabcabbcaacbababca

+−=−++−=−+−

am xerxs dajgufebis xerxi ewodeba.

3. zogjer mizanSewonilia mravalwevris zogierTi

wevris ramdenime Sesakrebis jamis saxiT warmodgena, an

mravalwevrisadmi axali wevris mimateba da gamokleba.

magaliTad,

Page 49: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

49

),4)(3( )3(4)3(1243127 22

−−==−−−=+−−=+−

xxxxxxxxxx

).22)(22()2()2(

444422222222

22422444

xyyxxyyxxyyx

yxyyxxyx

−+++=−+=

=−++=+

4. erTi cvladis Semcveli mravalwevris mamravlebad

daSlisas, zogjer mosaxerxebelia gamoviyenoT Semdegi

Teorema: Tu erTi cvladis Semcvel mTelkoeficientebian

dayvanili saxis mravalwevrs gaaCnia mTeli fesvi, maSin

igi Tavisufali wevris gamyofs warmoadgens.

gavarCioT magaliTze mravalwevris mamravlebad

daSlis xerxi, romelic am Teoremas eyrdnoba.

nbhbmjUj/! davSaloT mamravlebad 562)( 235 −+−= xxxxp

mravalwevri.

pirvel rigSi SevamowmoT Tavisufali wevris –5, -1, 1, 5

gamyofebidan romeli warmoadgens )(xp mravalwevris

fesvs. e. i. mravalwevris erTaderTi mTeli fesvia 1=x .

bezus Teoremis Tanaxmad )(xp mravalwevri unaSTod

gaiyofa ( )1−x –ze. SevasruloT aRniSnuli gayofa

e. i. )55)(1(562 234235 ++−+−=−+− xxxxxxxx .

55

1234 ++−+

xxxx

x

xxx

5555

2

2

−−

34

34 2xxxx

−−

45

35 2xxxx

−−

−56 2 −+ x

56 2 −+ x

23

23 6xxxx

+−+− 5−

0 5555

−−

−xx

Page 50: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

50

§15. n–vsj!ybsjtyjt!gftwj/!n .vsj!ybsjtyjt!bsjUnfujlvmj!gftwj

hbotbSwsfcb/ n –uri xarisxis fesvi a namdvili

ricxvidan, 1 , >∈ nNn , ewodeba iseT x ricxvs, romlis n –

uri xarisxi a –s tolia, e. i.

axn = . (1)

imis mixedviT, Tu rogori ricxvia n , gvaqvs Semdegi

SemTxvevebi.

1. vTqvaT, n kenti ricxvia, maSin (1) tolobas

akmayofilebs x –is erTaderTi namdvili mniSvneloba.

amrigad, kenti xarisxis fesvi arsebobs nebismieri a

namdvili ricxvidan da igi erTaderTia. mis aRsaniSnavad

gvaqvs n a _simbolo. n –s ewodeba fesvis maCvenebeli,

xolo a –s_fesvqveSa gamosaxuleba.

magaliTad, 283 = da 2325 −=− , radgan 823 = da

( ) 322 5 −=− .

2. vTqvaT, n luwi ricxvia.

Tu 0>a , maSin (1) tolobas akmayofilebs x –is mxolod ori namdvili mniSvneloba da isini

urTierTmopirdapire ricxvebs warmoadgenen. maT Soris

dadebiTi n a simboloTi aRiniSneba, xolo misi mopirda-

pire ricxvi Caiwereba - n a saxiT.

Tu 0=a , arsebobs erTaderTi n –uri xarisxis fesvi

a –dan, romelic n a simboloTi aRiniSneba. cxadia, rom

00 =n , radgan 00 =n.

Tu 0<a , maSin ar arsebobs iseTi namdvili x ricxvi, romelic (1) tolobas daakmayofilebs, e. i. luwi xarisxis

fesvi uaryofiTi ricxvidan namdvil ricxvTa simravleSi

ar arsebobs. sxvanairad rom vTqvaT, gamosaxulebas n a ,

roca n luwia da 0<a , azri ara aqvs.

n a gamosaxulebaSi n –s fesvis maCvenebeli, xolo a –s

fesvqveSa gamosaxuleba ewodeba. mesame xarisxis fesvs

kubur fesvs uwodeben, xolo meore xarisxisas_

kvadratuls. kvadratuli fesvis aRmniSvnel simboloSi

Page 51: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

51

fesvis maCvenebeli ar iwereba. magaliTad, 552 = . xSirad

“fesvis” nacvlad xmaroben termins “radikali”.

fesvis gansazRvrebidan gamomdinareobs, rom

Nkaak k ∈=+ + ,12 12,

xolo

⎩⎨⎧

∈<−

≥=

. ,0 ,,0 ,2 2

Nkaaaa

ak k

roca

roca

e. i. aak k =2 2, kerZod aa =2

.

cxadia, rom Tu gamosaxulebas n a azri aqvs,

marTebulia toloba ( ) aann = .

amrigad, rodesac 0≥a gamosaxulebas n a yovelTvis

aqvs azri da misi mniSvneloba arauaryofiTia.

hbotbSwsfcb/ n –uri xarisxis ariTmetikuli fesvi

arauaryofiTi a ricxvidan ( )1 , ≠∈ nNn , ewodeba iseT

arauaryofiT ricxvs, romlis n –uri xarisxi a –s tolia.

SevniSnoT, rom kenti xarisxis fesvi uaryofiTi

ricxvidan ariTmetikuli fesvis saSualebiT Semdegnairad

Caiwereba: Nkaaa kk ∈>−=− ++ ,0 ,1212 .

lwbesbuvmj! gftwjt! bnpSfcb! obuvsbmvsj! sjdywjebo/ CamovayaliboT naturaluri ricxvidan kvadratuli fesvis

amoRebis wesi:

1. davyoT mocemuli ricxvi marjvnidan marcxniv ise,

rom TiToeul danayofSi aRmoCndes or-ori cifri, garda

SesaZlebelia marcxnidan pirvelisa (masSi SeiZleba

aRmoCndes erTi cifric).

2. vipovoT udidesi cifri, romlis kvadrati ar

aRemateba marcxnidan pirvel danayofSi mdgom ricxvs.

napovni cifri warmoadgens fesvis pirvel cifrs.

3. vipovoT ricxvi, romelic miiReba Tu sxvaobas

pirvel danayofSi mdgom ricxvsa da fesvis pirveli

cifris kvadrats Soris mivuwerT meore danayofs.

4. fesvis meore cifrs warmoadgens is udidesi cifri,

romelic akmayofilebs pirobas: am cifris namravli

ricxvze, romelic miiReba gaorkecebuli pirveli

cifrisadmi saZiebeli cifris miweriT, ar unda

aRematebodes wina etapze napovn ricxvs. vipovoT sxvaoba

Page 52: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

52

aRniSnul ricxvebs Soris, mivuweroT mas Semdegi danayofi

da procesi gavagrZeloT analogiurad.

Tu ukanasknel etapze napovni sxvaoba aRmoCnda nuli,

maSin napovni cifrebisagan Sedgenili ricxvi warmoadgens

kvadratul fesvs mocemuli ricxvidan. winaaRmdeg

SemTxvevaSi kvadratuli fesvi mocemuli ricxvidan ar

aris naturaluri ricxvi.

praqtikulad kvadratuli fesvis amoRebis procesi

mosaxerxebelia Caiweros ise, rogorc naCvenebia Semdeg

magaliTze:

§16. bsjUnfujlvmj!gftwjt!Uwjtfcfcj!

Ufpsfnb!2/ Tu 0≥a da 0≥b , maSin

nnn baab ⋅= .

ebnuljdfcb/ radgan

( ) ( ) ( ) abbabannnnnnn =⋅= ,

amitom ariTmetikuli fesvis gansazRvrebis Tanaxmad

nnn baab ⋅= .

Ufpsfnb!3/ Tu 0≥a da 0>b , maSin

n

nn

ba

ba= .

ebnuljdfcb/ radgan

( )( ) b

a

b

aba

nn

nnn

n

n==⎟

⎟⎠

⎞⎜⎜⎝

⎛,

amitom ariTmetikuli fesvis gansazRvrebis Tanaxmad

n

nn

ba

ba=

27052570317 ,,,, =

293313

747

0

2527025270

5

5405

4−

Page 53: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

53

Ufpsfnb!4/ Tu 0≥a da Nk ∈ , maSin

( ) n kkn aa = .

ebnuljdfcb/ xarisxis gansazRvrebidan da 1-li

Teoremidan gvaqvs:

( ) n k

k

n

k

nnnkn aaaaaaaa =⋅=⋅=−−43421 K4434421 K

jerjer

.

Ufpsfnb!5/ Tu 0≥a , maSin

nkn k aa = .

ebnuljdfcb/ radgan

( ) aaaakk

knn k

nkn k ==⎟

⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞⎜

⎝⎛=⎟

⎠⎞⎜

⎝⎛

,

amitom ariTmetikuli fesvis gansazRvrebis Tanaxmad

nkn k aa = .

Ufpsfnb!6/ Tu 0≥a da Nkm ∈, , maSin

n mnk mk aa = .

ebnuljdfcb/ Teorema 4-dan gvaqvs:

( ) n mn k kmn k mknk mk aaaa === .

ariTmetikuli fesvis Tvisebebidan gamomdinareobs, rom Tu

0≥a da 0≥b , maSin

nnn nn n bababa == ,

e. i.

nn n baba = .

n nba saxis gamosaxulebis Secvlas misi igivurad

toli n ba gamosaxulebiT fesvidan mamravlis gamotana

ewodeba.

nbhbmjUfcj!

1 . 44 444 323231648 =⋅=⋅= .

2. )0 ,0( ,2318 243 ≥≥= yxxyxzyzx .

3 . ( ) ( )33 4525252 −−=− .

Page 54: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

54

4 . ( )( )⎪⎩

⎪⎨⎧

<−

≥−=−=−

. ,5

; ,55)(5 2

baab

babababa

Tu

Tu

n ba saxis gamosaxulebis Secvlas misi igivurad toli

n n ba ⋅ gamosaxulebiT mamravlis fesvSi Setana ewodeba.

nbhbmjUfcj!

1 . 33 33 542323 =⋅= .

2 . ( ) ( ) 0 ,7373 4 544 ≥⋅−=− aaaa .

3 . ( ) ( )5 55 33 yxyx −=− .

erTnairmaCvenebliani radikalebis gamravleba da

gayofa xdeba pirveli da meore Teoremebis safuZvelze,

xolo sxvadasxvamaCvenebliani radikalebi saWiroa

winaswar daviyvanoT erTnair maCvenebelze mexuTe

Teoremis gamoyenebiT.

nbhbmjUfcj!

1. 5 45 465 45 32 62192448 ababababa ==⋅ .

2. .0 ,224 3

3

3 2≠= aba

abba

3. ,4442 6 56 576 246 333 2 xyxyxyxyxyxxy ==⋅=⋅ 0 ,0 ≥≥ yx .

4. 0 ,0 ,81813 12 25

12 63

12 88

4 2

3 22

≠>== yxyxyx

yx

xy

yx.

radikalebze moqmedebis Catarebisas zogjer

mosaxerxebelia e. w. rTuli radikalebis formulebis

gamoyeneba, romelTac Semdegi saxe aqvT:

22

22 baabaaba −−+

−+=+ ,

22

22 baabaaba −−−

−+=− ,

sadac 0 ,0 >> ba da ba ≥2.

Page 55: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

55

§17. sbdjpobmvsnbDwfofcmjboj!ybsjtyj!

ariTmetikuli fesvis gansazRvrebidan da Tvisebebidan

gamomdinareobs, rom n ma , rodesac m unaSTod iyofa n –

ze ( Nnm ∈, ) da knm= , SeiZleba warmovadginoT

ka

naturalurmaCvenebliani xarisxis saxiT, e. i. am

SemTxvevaSi n mn

m

aa = . ganvazogadoT xarisxis cneba

nebismieri racionaluri maCveneblisaTvis.

hbotbSwsfcb/ Tu 0>a da nmr = racionaluri ricxvia

( 1 , , ≠∈∈ nNnZm ), maSin

n mnm

r aaa == .

hbotbSwsfcb/ Tu 0=a da r dadebiTi racionaluri

ricxvia, maSin 0=ra .

cxadia, rom Tu Nnm ∈, , maSin

nm

nm

a

a 1=

−.

marTlac, roca 1=n , es toloba gamomdinareobs

mTelmaCvenebliani xarisxis gansazRvrebidan, xolo roca

1≠n , maSin

nmn m

nm

n mnm

aaaaa 111

==== −−.

racionalurmaCveneblian xarisxs gaaCnia mTelmaCveneb-

liani xarisxis analogiuri Tvisebebi

1. ( ) rrr baba ⋅=⋅ 2. r

rr

ba

ba

=⎟⎠⎞

⎜⎝⎛

;

3. 2121 rrrr aaa +=⋅ ; 4. ( ) 2121 rrrr aa ⋅= ,

5. 21

2

1rr

r

ra

aa −= ;

sadac 0>a , 0>b da Qrrr ∈,, 21 .

Page 56: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

56

davamtkicoT pirveli Tviseba. vTqvaT, nmr = , maSin Tu

1=n

( ) ( ) rrmmmr babababa =⋅=⋅=⋅ ,

xolo, rodesac 1≠n

( ) ( ) ( ) rrnm

nm

n mn mn mmn mnmr babababaababab ====== .

analogiuri msjelobiT mtkicdeba danarCeni

Tvisebebic.

§18. xjmbevs!hbnptbyvmfcbUb!hbsebrnob!

cvladebis Semcvel gamosaxulebebs, romlebSic

cvladebis mimarT gamoyenebulia Sekrebis, gamoklebis,

gamravlebisa da naturalur xarisxSi axarisxebis

operaciebi mTeli gamosaxulebebi ewodeba. magaliTad,

52 ,

323

23 yxbca +−

mTeli gamosaxulebebia.

cvladebis Semcvel gamosaxulebebs, romlebSic

cvladebis mimarT gamoyenebulia Sekrebis, gamoklebis,

gamravlebis, gayofisa da mTel xarisxSi axarisxebis

operaciebi, racionaluri gamosaxulebebi ewodeba. Tu

gamosaxulebaSi garda aRniSnuli moqmedebebisa cvladebis

mimarT gamoyenebulia amofesvis an wilad xarisxSi

axarisxebis operaciebi, maSin gamosaxulebas

iracionalurs ewodeben. magaliTad,

yxyxxycba

+−

−+−−

−22

412

32 ,

gamosaxulebebi racionaluria, xolo

( )3

13

1

2 ,1

yx

yyxxba

−−+

gamosaxulebebi_iracionaluri.

BA saxis gamosaxulebas, sadac A da B asoebiT

aRniSnulia ricxviTi an cvladis Semcveli

gamosaxulebebi, algebrul wilads uwodeben.

Page 57: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

57

A gamosaxulebas wiladis mricxveli ewodeba, xolo

B gamosaxulebas_mniSvneli.

algebrul wiladebze vrceldeba yvela is Tviseba da

moqmedebaTa Sesrulebis wesi, rac Cveulebriv wiladebs

gaaCniaT.

nbhbmjUfcj!

1. SekveceT wiladebi:

a) ( )( ) 222)2(

42

2 −=

−++

=−+

xa

xxxa

xaax

;

b) ( ) ( )

( )( )( )( )

=−

+−=

−+−=

+−−+−

2222

2

2 bacaba

babacbaa

bababcacaba

baca

−+

= ;

g) ( )( )

( )( )( ) =

++−=

−=

2422

22

2

8 33

21 ab

aaaab

a

bba

aa

baa 42 ++

= .

2. mospeT iracionaloba wiladis mniSvnelSi:

a) aa

aa

a

a

5 2

5 25 3

5 2

5 3

1== ;

b) ( )( ) baba

bababa

ba −−

=−+

−=

+

1;

g)

( )=

⎟⎠⎞⎜

⎝⎛ +−+

+−=

+ 3 233 233

3 233 2

331

bababa

bababa

ba

baba+

+−=

3 233 2;

d)

( )=

⎟⎠⎞⎜

⎝⎛ ++−

++=

− 3 233 233

3 233 2

331

bababa

bababa

ba

baba−

++=

3 233 2.

3. SeasruleT moqmedebani:

Page 58: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

58

a) ( ) ( ) =+

−−

+−

=+

−−

+− ab

babab

abaa

bab

babab

aaba

b22

( ) ( )baab

baabbaab

−=

−+−+

=22222

;

b) ( )( )

( )( )( ) =−+−

⋅−

−=

−−

⎟⎠⎞

⎜⎝⎛

−−

aabb

ba

baa

ba

233

32

92:

32

2

2

2

22

( )( )( )ba

ba−+−

=3

32;

g) =⎟⎟⎠

⎞⎜⎜⎝

⎛−⋅⎟

⎟⎠

⎞⎜⎜⎝

−−

−−

+ 21

843

21

22

2

2

22 xy

xyy

yxyx

( )( ) =−

⋅⎟⎟⎠

⎞⎜⎜⎝

⎛−+

+−

−+

= 2

22

84

223

21

22

xxy

yxyxy

yxyx

( )( )( )( )

xxxyxy

yxyxyyxyx

41

822

223224

2 −=+−

⋅−++−−−

= ;

d) =−

⋅⎟⎟⎟

⎜⎜⎜

−−

++−

+2

3

2

3 21

21

21

21

yxyx

yx

yyxx

yx

( ) ( )( ) =−

⋅⎟⎟⎟

⎜⎜⎜

+−

−+

+=

233

2

yxyxyx

yx

yx

yx

( )( ) ( )( )( ) ( ) =

−⋅

+−

−−+++=

233

2

yx

yxyx

yxyxyxyx

( )( ) ( ) =−+

=+−

+−−++++=

yxyx

yxyxyxyxyxyxyxyx

262

23333

yxyx

−+

=3

;

e) ( )( ) ++−

+=

+−

++

− 353535

372

571

351

( )( )( )

( )( ) ++

=−+

−−

−+

−+

235

3737372

575757

( ).3

2375735

4372

257

=+−−++

=−

−−

+

Page 59: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

59

§19. gvordjb/!hbotbSwsjt!bsf/!nojTwofmpcbUb!tjnsbwmf/!Tfrdfvmj!gvordjb

vTqvaT mocemulia ori simravle X da Y . maT

elementebs Soris SeiZleba damyardes sxvadasxva saxis

Sesabamisoba, romlebsac aRniSnaven K,,, hgf asoebiT.

hbotbSwsfcb/ X da Y simravleebs Soris Sesabamisobas,

roca X simravlis yovel elements Y simravlis

erTaderTi elementi Seesabameba, funqcia ewodeba.

funqciis Casawerad, romelic amyarebs Sesabamisobas X da Y simravleebs Soris raime f wesiT, miRebulia

aRniSvnebi:

YX f⎯→⎯ , an YXf →: , an )(xfy = , sadac ,Xx∈ Yy∈ .

x -s uwodeben damoukidebel cvlads anu arguments,

xolo )(xf –s funqciis mniSvnelobas, romelic Seesabameba

argumentis x mniSvnelobas. SemdgomSi xSirad

visargeblebT agreTve gamoTqmebiT:

“ f funqcia”, “ )(xf funqcia”, an “ y funqcia”.

X simravles f funqciis gansazRvris are ewodeba da

)( fD simboloTi AaRiniSneba. Y simravlis yvela im

elementTa qvesimravles, romlebic X simravlis erT

elements mainc Seesabamebian, f funqciis mniSvnelobaTa

simravle an cvlilebis are ewodeba da )( fE simboloTi

aRiniSneba.

f funqcias, romlisTvisac XfD =)( , xolo yfE ⊂)(

uwodeben agreTve X simravlis asaxvas Y simravleSi.

kerZod Tu YfE =)( , maSin vityviT, rom f aris X

simravlis asaxva Y –ze.

vTqvaT, mocemulia f funqcia, romelic X simravles

asaxavs Y simravleze. Tu am funqciis Seqceuli g

Sesabamisoba warmoadgens funqcias, maSin f –s ewodeba

Seqcevadi, xolo g –s misi Seqceuli funqcia da igi 1−f

simboloTi aRiniSneba.

1−f funqciis gansazRvris area )( fE , xolo

mniSvnelobaTa simravle )( fD , e. i. )()( 1 fEfD =− da

Page 60: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

60

)()( 1 fDfE =−. f –s da

1−f –s urTierTSeqceul funqciebs

uwodeben.

SevniSnoT, rom Seqcevadia mxolod is funqcia,

romelic Tavis yovel mniSvnelobas Rebulobs mxolod

erTxel.

§20. sjdywjUj!gvordjb!eb!njtj!hsbgjlj/!Tfrdfvmj!gvordjjt!hsbgjlj

vTqvaT mocemulia funqciebi YXf →: da ZYg →: . am

funqciaTa kompozicia (rTuli funqcia) ewodeba iseT

ZXF →: funqcias, romelic gansazRvrulia tolobiT:

( )( ) XxxfgxF ∈= ,)( .

analogiurad SeiZleba

ganvixiloT rTuli funqcia,

romelic miiReba ramodenime

funqciis kompoziciiT

( )( )( )KK xfffy n21= .

funqcias, romlis gansazRvris

are da mniSvnelobaTa simravle

ricxviTi simravleebia, ricxviTi

funqcia ewodeba. e. i. ricxviTi funqcia aris R simravlis

raime D qvesimravlis asaxva R simravlis meore E qvesim-

ravleze, sadac D warmoadgens funqciis gansazRvris

ares, xolo E mniSvnelobaTa simravles.

SemdgomSi Cven mxolod ricxviT funqciebs

ganvixilavT, Tu ar iqna specialuri miTiTeba.

hbotbSwsfcb/! f funqciis grafiki ewodeba xOy

sibrtyis yvela im ( )yx; wertilTa A simravles,

romelTaTvisac ),(xfy = sadac )( fDx∈ , e. i.

( ) )(),(:; xfyfDxyxA =∈= .

im kerZo SemTxvevaSi, rodesac )(xfy = funqciis

gansazRvris area Ox RerZis raime Sualedi, funqciis

grafiki sazogadod warmoadgens raRac wirs. (nax. 3)

Tu )(xfy = funqcia Seqcevadia, maSin )(1 yfx −= .

miRebulia, rom f da 1−f funqciebis argumentad erTi da

igive cvladi vigulisxmoT da amitom )(xfy = funqciis

Seqceuli funqcia Caiwereba )(1 xfy −= saxiT. magaliTad,

x0 0x

0y)( 00 xfy =

0M

nax. 3

y

Page 61: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

61

12 += xy funqciis Seqceulia 2

1−=

xy funqcia. cxadia, rom

[ ] xxff =− )(1 da [ ] xxff =− )(1

. amasTan, imisaTvis, rom f

funqcia iyos TavisTavis Seqceuli, aucilebelia, rom

)()( fEfD = .

daumtkiceblad moviyvanoT Teorema urTierTSeqceuli

funqciebis grafikebis urTierTmdebareobis Sesaxeb.

Ufpsfnb/ urTierTSeqceuli funqciebis grafikebi

simetriulia im wrfis mimarT, romelsac pirveli da mesame

sakoordinato kuTxis biseqtrisebi Seadgenen.

§21. gvordjjt!npdfnjt!yfsyfcj

gansazRvris Tanaxmad funqcia iTvleba mocemulad, Tu

cnobilia funqciis gansazRvris are da Sesabamisobis wesi.

amasTan, am wesis mocemis xerxi SezRuduli ar aris.

ganvixiloT funqciis mocemis sami yvelaze ufro

gavrcelebuli xerxi: cxriluri, grafikuli da

analizuri.

dysjmvsj! yfsyj/ bunebis movlenaTa Seswavlis dros

xSirad saqme gvaqvs iseT cvladebTan, romelTa Soris

arsebul damokidebulebas adgenen cdis safuZvelze. aseT

SemTxvevaSi cdaTa Sedegebis mixedviT adgenen cxrils,

romelSic mocemulia argumentis sxvadasxva

mniSvnelobebis Sesabamisi funqciis mniSvnelobebi.

funqciis mocemis aseT xerxs cxriluri xerxi ewodeba.

hsbgjlvmj!yfsyj/ vTqvaT sibrtyeze aRebulia marTkuTxa

koordinatTa sistema da am sistemaSi mocemulia iseTi

);( yxM wertilTa simravle, romelTagan arc erTi ori

wertili ar Zevs Oy RerZis paralelur erTsadaimave

wrfeze. wertilTa aseTi simravle gansazRvravs funqcias,

romlis gansazRvris are da mniSvnelobaTa simravlea

Sesabamisad mocemul wertilTa

simravlis abscisTa da ordinatTa

simravleebi. marTlac, nebismier x ricxvs gansazRvris aredan Seesa-

bameba erTaderTi y ricxvi, iseTi,

rom );( yxM wertili mocemul sim-

ravles ekuTvnis (nax. 4).

funqciis mocemis aseT xerxs

x0

);( yxM

x

y

y)(xfy =

nax. 4.

Page 62: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

62

grafikuli xerxi ewodeba.

bobmjvsj! yfsyj/ umetes SemTxvevaSi funqcia mocemulia

furmulis saSualebiT, romelic gviCvenebs, Tu ra

moqmedebebi unda CavataroT argumentze, rom miviRoT

funqciis Sesabamisi mniSvneloba. aseT formulas funqciis

analizuri gamosaxuleba ewodeba, xolo xerxs_funqciis

mocemis analizuri xerxi. magaliTad,

13 2 −= xy ; 792

+−

=xxy ;

⎪⎩

⎪⎨⎧

>+

≤=

0 ,1,0 ,

)(2

xxxx

xf roca

roca

funqciebi mocemulia analizurad.

Tu funqcia mocemulia formuliT da ar aris

miTiTebuli gansazRvris are, maSin igulisxmeba, rom am

funqciis gansazRvris area argumentis yvela im

mniSvnelobaTa simravle, romlisTvisac formulas azri

aqvs.

ganvixiloT ramodenime magaliTi.

1. 12 += xy formuliT mocemulia funqcia, romlis

gansazRvris area namdvil ricxvTa simravle, xolo

mniSvnelobaTa simravlea [ [+∞;1 Sualedi.

2. 216 xy −= formula gansazRvravs funqcias, romlis

gansazRvris area [ ]4;4− , xolo mniSvnelobaTa simravle ki

[ ]4;0 Sualedi.

§22. sebej!eb!lmfcbej-!TfnptbSwsvmj!eb!!TfnpvtbSwsfmj!gvordjfcj!

hbotbSwsfcb/ f funqcias ewodeba zrdadi raime sim-

ravleze, Tu am simravlis nebismieri 21 xx < ricxvebisaTvis

marTebulia utoloba ( ) ( )21 xfxf < .

hbotbSwsfcb/! f funqcias ewodeba klebadi raime sim-

ravleze, Tu am simravlis nebismieri 21 xx < ricxvebisaTvis

marTebulia utoloba ( ) ( )21 xfxf > .

magaliTad, 2xy = funqcia klebadia ] ]0;∞− SualedSi

da zrdadia [ [+∞;0 SualedSi.

hbotbSwsfcb/! f funqcias ewodeba araklebadi raime

simravleze, Tu am simravlis nebismieri 21 xx < ricxvebi-

Page 63: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

63

sTvis marTebulia utoloba ( ) ( )21 xfxf ≤ , xolo arazrdadi,

Tu ( ) ( )21 xfxf ≥ .

me-5 naxazze gamosaxuli grafikiT mocemuli funqcia

araklebadia [ ]da;

SualedSi, zrdadia

[ ]cb; –Si, arazrdadia

[ ]ba; da [ ]ec; Suale-

debSi da klebadia

[ ]ed; –Si.

funqcias ewodeba monotonuri raime simravleze, Tu is

am simravleze aris arazrdadi an araklebadi. Tu funqcia

zrdadia an klebadi, maSin igi Tavis yovel mniSvnelobas

mxolod erTxel Rebulobs, amitom igi Seqcevadia da misi

Seqceuli funqcia Sesabamisad zrdadia an klebadia.

hbotbSwsfcb/ f funqcias ewodeba zemodan SemosazR-

vruli raime simravleze, Tu arsebobs iseTi M ricxvi,

rom am simravlis nebismieri x ricxvisaTvis Mxf ≤)( .

hbotbSwsfcb/ f funqcias ewodeba qvemodan Semosaz-

Rvruli raime simravleze, Tu arsebobs iseTi m ricxvi,

rom am simravlis nebismieri x ricxvisaTvis mxf ≥)( .

hbotbSwsfcb/ funqcias ewodeba SemosazRvruli raime

simravleze, Tu am simravleze igi SemosazRvrulia

rogorc zemodan, aseve qvemodan.

Tu funqcia ar aris SemosazRvruli raime simravleze,

maSin mas SemousazRvreli funqcia ewodeba am simravleze.

magaliTad, 211x

y+

= SemosazRvrulia mTel RerZze,

radgan 11

10 2 ≤+

<x

, xolo x

y 1= funqcia SemousazRvrelia

gansazRvris areSi, Tumca igi zemodan SemosazRvrulia

] [0;∞− SualedSi da qvemodan SemosazRvrulia ] [+∞;0

SualedSi.

y

x0 edcba

nax. 5

Page 64: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

64

%23.!mvxj-!lfouj!eb!qfsjpevmj!gvordjfcj!

vTqvaT, A ricxvTa raime simravlea. am simravles

ewodeba simetriuli nulis mimarT, Tu Ax∈ pirobidan,

gamomdinareobs, rom Ax∈− .

magaliTad, [ ] QZRaa , , , ;− nulis mimarT simetriuli

simravleebia.

hbotbSwsfcb/ f funqcias ewodeba luwi, Tu misi

gansazRvris are simetriulia nulis mimarT da nebismieri

)( fDx∈ –saTvis

)()( xfxf =− .

magaliTad, 2xy = da xy = luwi funqciebia.

hbotbSwsfcb/ f funqcias ewodeba kenti, Tu misi

gansazRvris are simetriulia nulis mimarT da nebismieri

)( fDx∈ –isaTvis

)()( xfxf −=− .

magaliTad, xy = da 3xy = kenti funqciebia.

advili saCvenebelia, rom luwi funqciis grafiki

simetriulia Oy RerZis mimarT, xolo kenti funqciis

grafiki simetriulia koordinatTa saTavis mimarT.

SevniSnoT, rom funqcia SeiZleba arc luwi iyos da arc

kenti. magaliTad, xxy += 2 funqcia arc luwia da arc

kenti.

hbotbSwsfcb/! f funqcias ewodeba perioduli, perio-

diT 0≠l , Tu nebismieri Dx∈ –saTvis ricxvebi lx − da

lx + agreTve ekuTvnian )( fD –s da marTebulia toloba:

)()( xflxf =+ .

gansazRvrebidan gamomdinareobs, rom Tu f funqciis

periodi aris l da )( fDx∈ , maSin

)())(()( lxfllxfxf −=+−= .

aseve SeiZleba vaCvenoT, rom

)()( xfklxf =+ , sadac Zk∈ .

amrigad, yovel periodul funqcias gaaCnia periodTa

usasrulo simravle. SemdgomSi funqciis periodis qveS

Page 65: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

65

vigulisxmebT umcires dadebiT periods, Tu igi arsebobs

da mas ZiriTad periods vuwodebT.

nbhbmjUfcj!

1. funqcia [ ]xxy −= , sadac [ ]x warmoadgens udides

mTel ricxvs, romelic ar aRemateba x ricxvs,

periodulia periodiT 1 (nax. 6).

2. dirixles funqcia

⎩⎨⎧

=riairacionalu roca

ia,racionalur roca

,1 ,0

)(xx

xf

periodulia da misi periodia nebismieri racionaluri r ricxvi. marTlac, Tu x racionaluria, maSin rx + agreTve

racionaluria, xolo, Tu x iracionaluria, maSin rx +

ricxvic iracionaluria, amitom dirixles funqciis

gansazRvridan gamomdinareobs, rom )()( xfrxf =+ , e.i. )(xf

periodulia periodiT r . amrigad, dirixles funqcia aris

magaliTi iseTi funqciisa, romelsac umciresi dadebiTi

periodi ar gaaCnia.

$24. gvordjjt!hsbgjljt!phjfsUj!hbsebrnob!

am paragrafSi CamovayalibebT wesebs, romelTa

saSualebiT SeiZleba aigos )( axfy += , axfy += )( , ( )Ra∈ ,

)( xfy −= , )(xfy −= , )(xfy = da ( )xfy = funqciaTa grafikebi,

Tu mocemulia )(xfy = funqciis grafiki.

1. )( axfy += funqciis grafiki miiReba )(xfy = funqciis grafikisagan paraleluri gadataniT a manZilze,

Ox RerZis mimarTulebiT, Tu 0<a da sawinaaRmdego mimarTu-

lebiT, Tu 0>a (nax.7).

x

y

10nax. 6

Page 66: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

66

2. axfy += )( funqciis grafiki miiReba )(xfy = funqci-is grafikisagan paraleluri gadataniT a manZilze Oy

RerZis mimarTulebiT, Tu 0>a da sawinaaRmdego mimarTu-

lebiT, Tu 0<a (nax. 8).

3. )( xfy −= funqciis grafiki simetriulia )(xfy = funqciis grafikisa Oy

RerZis mimarT (nax. 9).

)(xfy =

0 x

y

a

0 ),(

>+=

aaxfy

0 ),(

<+=

aaxfy

a−

nax. 7

0 ,)(

<+=

aaxfy

)(xfy =

0 ,)(

>+=

aaxfy

y

x0

nax. 8

y=f(x

)

y=f(-

x)

x

y

0

nax. 9

Page 67: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

67

4. )(xfy −= funqciis grafiki simetriulia )(xfy = funqciis grafikisa Ox RerZis mimarT (nax.10).

5. )(xfy = funqciis grafikis asagebad saWiroa )(xfy = funqciis grafikis is nawili, romelic Ox RerZis qvemoT

mdebareobs, simetriulad aisaxos Ox RerZis mimarT, xolo

danarCeni nawili ucvlelad davtovoT (nax.11).

6. ( )xfy = funqciis grafiki argumentis arauaryofiTi

mniSvnelobebisaTvis emTxveva )(xfy = funqciis grafiks.

radgan ( )xfy = funqcia luwia, amitom misi grafiki

simetriulia Oy RerZis mimarT (nax.12).

y=-f(

x)

y=f(x

)

0 x

y

nax. 10

y=)f׀

x) ׀

y=f(x

)

x

y

00 x

y

nax. 11

Page 68: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

68

$25. xsgjwj!gvordjb!

bkxy += saxis funqcias, sadac k da b nebismieri

namdvili ricxvebia, wrfivi funqcia ewodeba. am funqciis

gansazRvris area namdvil ricxvTa R simravle.

Tu 0=k , maSin wrfivi funqcia miiRebs saxes by = , e. i.

am SemTxvevaSi is mudmivi funqciaa.

roca 0>k , maSin bkxy += funqcia zrdadia. marTlac,

Tu 1x da 2x argumentis ori nebismieri mniSvnelobaa, amasTan, 21 xx < ,

maSin funqciis Sesabamisi mniSvnelobebisaTvis gvaqvs:

( ) ( ) ( ) 0212121 <−=+−+=− xxkbkxbkxyy , e.i. 21 yy < .

analogiurad mtkicdeba, rom rodesac 0<k , bkxy += funqcia klebadia.

amrigad, bkxy += funqcia monotonuria. vaCvenoT, rom bkxy += funqciis grafiki warmoadgens wrfes.

Tu 0=k , maSin argumentis nebismieri mniSvnelobisaTvis

funqcia Rebulobs erTi da igive b mniSvnelobas. cxadia,

am SemTxvevaSi funqciis grafiki warmoadgens Ox RerZis paralelur wrfes, romelic hkveTs Oy RerZs ( )b;0

wertilSi (nax.13). kerZod, roca 0=b , maSin grafiki

emTxveva Ox RerZs, amitom amboben, rom 0=y warmoadgens

Ox RerZis gantolebas.

y=f(|

x|)

y=f(x

)

0

y

xx

y

0

nax. 12

Page 69: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

69

roca 0=b da 0≠k , maSin kxy = . am funqciis grafiki

gadis koordinatTa saTaveze, radgan (0;0) wertilis

koordinatebi akmayofileben kxy = gantolebas.

ganvixiloT saTavisagan gansxvavebuli ( )000 ; yxM

wertili, romelic saZebn grafikze Zevs. )0;0(O da

( )000 ; yxM wertilebze gavataroT wrfe da vaCvenoT, rom

igi warmoadgens mocemuli funqciis grafiks. radgan 0M

wertili grafikze Zevs, amitom 00 kxy = , anu αtgkxy

==0

0 ,

sadac α aris 0OM wrfis mier Ox RerZis dadebiT

mimarTulebasTan Sedgenili kuTxe (nax. 14). grafikis

nebismieri sxva );( yxM

wertilisaTvis αtgkxy

== .

amitom M wertili Zevs

0OM wrfeze. piriqiT,

0OM wrfis nebismieri

);( yxM wertilisaTvis

ktgxy

== α , anu kxy = .

amrigad, kxy =

funqciis grafiki warmoadgens koordinatTa saTaveze

gamaval wrfes, romlis daxris kuTxes gansazRvravs k

koeficienti, romelsac wrfis kuTxuri koeficienti

ewodeba. Tu 1=k , funqcia miiRebs saxes xy = . am funqciis

grafiki aris wrfe, romelic I da III sakoordinato

x

y

b

0

nax. 13

α

kxy =

b

y

x0

),( 000 yxM

bkxy +=

nax. 14

Page 70: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

70

kuTxeebis biseqtrisaTa gaerTianebas warmoadgens da mas

xSirad I da III sakoordinato kuTxeebis biseqtrisas

uwodeben.

roca 0≠b da 0≠k , maSin bkxy += funqciis grafiki

miiReba kxy = funqciis grafikisagan b manZilze

paraleluri gadataniT Oy RerZis mimarTulebiT, Tu 0>b

da sawinaaRmdego mimarTulebiT, Tu 0<b (nax.14).

bkxy += funqciis grafikis asagebad sakmarisia avagoT

am grafikis ori wertili (magaliTad, RerZebTan

gadakveTis wertilebi) da maTze gavavloT wrfe.

SevniSnoT, rom Oy RerZis araparaleluri nebismieri

wrfis gantoleba SeiZleba Caiweros bkxy += saxiT, xolo

Oy RerZis paraleluri nebismieri wrfis gantolebas aqvs

saxe ax = , sadac a mocemuli wrfis Ox RerZTan

gadakveTis wertilis abscisaa (nax.15). kerZod, 0=x

warmoadgens Oy RerZis gantolebas.

$26. xky = gvordjjt!Uwjtfcfcj!eb!hsbgjlj!

ganvixiloT xky = ( )0≠k funqcia. am funqciis gansazRvris area

] [ ] [+∞∞−= ;00;)( UyD . es funqcia kentia, radgan

)()( xfxk

xkxf −=−=−

=− , amitom misi grafiki simetriulia

koordinatTa saTavis mimarT.

x

y

x=a

0a

nax. 15

Page 71: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

71

Tu 0>k , funqcia klebadia rogorc ] [0;∞− aseve

] [+∞;0 SualedSi. marTlac, Tu ] [0;, 21 ∞−∈xx da 21 xx < ,

maSin ( ) )()(0)()( 21

21

12

2121 xfxf

xxxxk

xk

xkxfxf >⇒>

−=−=− . amasTan,

am SualedSi funqciis cvlilebis area ] [0;∞− .

aseve, Tu ] [+∞∈ ;0 , 21 xx da 21 xx < , maSin )()( 21 xfxf > da

am SualedSi funqciis cvlilebis area ] [+∞;0 .

analogiurad mtkicdeba, rom Tu 0<k , maSin aRniSnul

SualedebSi funqcia zrdadia, amasTan ] [0;∞− SualedSi

funqciis cvlilebis area ] [+∞;0 , xolo ] [+∞;0 SualedSi

ki_ ] [0;∞− .

SevniSnoT, rom funqcia xky = mTel gansazRvris areSi

monotonuri ar aris.

zemoT moyvanili Tvisebebidan

gamomdinare xky = funqciis grafiki

Sedgeba ori Stosagan, romlebic

moTavsebulia I da III sakoordi-

nato meoTxedebSi, roca 0>k

(nax.16), xolo II da IV

meoTxedebSi, roca 0<k (nax.17).

xky = funqciis grafiks hi-

perbola ewodeba.

imisaTvis, rom k –s konkretuli mniSvnelobisaTvis

hiperbola aigos ufro zustad, mizanSewonilia winaswar

avagoT grafikis zogierTi wertili.

x

y

0

0>k

nax. 16

Page 72: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

72

$27. xjmbe.xsgjwj!gvordjb!

dcxbaxy

++

= funqcias, sadac cba , , da d mocemuli

ricxvebia, amasTan 0≠c da bcad ≠ , wilad-wrfivi funqcia

ewodeba. am funqciis gansazRvris area yvela namdvil

ricxvTa simravle, garda ricxvisa cdx −= . martivi

gardaqmnebiT wilad-wrfiv funqcias SeiZleba mieces saxe

dcxc

adb

cay

+

−+= .

aqedan gamomdinareobs, rom wilad-wrfivi funqciis

grafiki aris hiperbola.

nbhbmjUj/!avagoT 372

++

=xxy funqciis grafiki.

bnpytob/ am funqciis gansazRvris area

] [ ] [+∞−−∞−= ;33;)( UyD . CavweroT mocemuli funqcia aseTi

saxiT

312+

+=x

y

Tu gaviTvaliswinebT $24-is pirvel da meore punqtebs,

cxadia, rom am funqciis grafiki miiReba x

y 1= funqciis

y

x0

0<k

nax. 17

Page 73: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

73

grafikisagan paraleluri gadataniT Ox RerZis

sawinaaRmdego mimarTulebiT 3 erTeuliT da Oy RerZis

mimarTulebiT 2 erTeuliT (nax. 18).

$28. lwbesbuvmj!gvordjjt!Uwjtfcfcj!eb!hsbgjlj!

cbxaxy ++= 2 funqcias, sadac 0≠a kvadratuli

funqcia ewodeba. am funqciis gansazRvris area namdvil

ricxvTa simravle.

roca 0== cb , maSin 2axy = . es funqcia luwia, radgan

)()()( 22 xfaxxaxf ==−=− . amitom misi grafiki simetriulia

Oy RerZis mimarT.

Tu 0>a , maSin [ [+∞= ;0)(yE . es funqcia klebadia ] ]0;∞−

SualedSi, xolo [ [+∞;0 SualedSi zrdadia. marTlac, Tu

] ]0;, 21 ∞−∈xx da 21 xx < , maSin

( ) ( )( )).(

)(0)()(

2

1212122

21

22

2121

xfxfxxxxaxxaaxaxxfxf

>>⇒>+−=−=−=−

aseve, Tu [ [+∞∈ ;0, 21 xx da

21 xx < , maSin )()( 21 xfxf < .

Tu 0<a , maSin ] ]0;)( ∞−=yE .

am SemTxvevaSi funqcia zrdadia

] ]0;∞− SualedSi, xolo [ [+∞;0

SualedSi klebadia.

zemoT moyvanili Tvisebebi saSua-

lebas gvaZlevs avagoT 2axy =

2

-3

y

x0

nax. 18

y=ax

2 (a

<0)

y=ax

2 (a

>0) y

x0

nax. 19

Page 74: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

74

funqciis grafiki, romelsac parabola ewodeba (nax. 19).

zogad SemTxvevaSi cbxaxy ++= 2 funqciis grafikis asagebad

misi marjvena mxare Semdegnairad gardavqmnaT:

=⎟⎟⎠

⎞⎜⎜⎝

⎛+−++=⎟

⎠⎞

⎜⎝⎛ ++=++

ac

ab

abx

abxa

acx

abxacbxax 2

2

2

2222

4422

.4

424

42

22

2

22

abac

abxa

abac

abxa −

+⎟⎠⎞

⎜⎝⎛ +=

⎥⎥⎦

⎢⎢⎣

⎡ −+⎟

⎠⎞

⎜⎝⎛ +=

Catarebul gardaqmnebs kvadratuli samwevridan

sruli kvadratis gamoyofa ewodeba. amrigad

abac

abxay

44

2

22 −+⎟

⎠⎞

⎜⎝⎛ += .

Tu gaviTvaliswinebT $24-is 1-el da me-2 punqtebs,

cxadia, rom kvadratuli funqciis grafiki warmoadgens

parabolas, romelic miiReba 2axy = funqciis grafikis

paraleluri gadataniT a

b2

manZiliT Ox RerZis mimarTulebiT,

Tu 02

<a

b, xolo sawinaaRmdego mimarTulebiT, Tu 0

2>

ab

da a

bac4

4 2− manZiliT Oy RerZis mimarTulebiT, Tu 0

44 2

>−a

bac,

xolo sawinaaRmdego mimarTulebiT, Tu 04

4 2<

−a

bac.

⎟⎟⎠

⎞⎜⎜⎝

⎛ −−

abac

ab

44;

2

2 wertils parabolas wvero ewodeba,

xolo a

bx2

−= wrfes, romelic parabolis simetriis RerZs

warmoadgens parabolis RerZi ewodeba.

acb 42 − gamosaxulebas kvadratuli samwevris diskri-

minanti ewodeba da D asoTi aRiniSneba.

abscisTa RerZis mimarT kvadratuli funqciis

grafikis mdebareobis eqvsi SesaZlo SemTxveva

gamosaxulia me-20 naxazze.

rogorc naxazidan Cans, roca 0>a , parabolis Stoebi

mimarTulia zeviT, xolo, roca 0<a _qveviT.

Page 75: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

75

0>a 0<a

0>D

0=D

0<D

$29. ybsjtypwboj!gvordjb!obuvsbmvsj!nbDwfofcmjU!

naxy = saxis funqcias, sadac 0≠a , Nn∈ , ewodeba

xarisxovani funqcia naturaluri maCvenebliT. am funqciis

gansazRvris area namdvil ricxvTa R simravle.

a -sa da n –is nebismieri mniSvnelobebisaTvis

xarisxovani funqciis grafiki gadis koordinatTa

saTaveze da ( )a;1 wertilze, radgan am wertilebis

koordinatebi akmayofileben naxy = gantolebas.

Tu kn 2= , Nk ∈ , xarisxovani funqcia luwia, radgan

)()()( 22 xfaxxaxf kk ==−=− ,

xolo, roca 12 −= kn , Nk ∈ , _kentia, radgan

)()()( 1212 xfaxxaxf kk −=−=−=− −−.

1=n da 2=n mniSvnelobebisaTvis xarisxovani funqcia

warmoadgens Sesabamisad wrfiv da kvadratul funqciebs.

roca 3=n , maSin 3axy = . Tu 0>a es funqcia zrdadia,

xolo Tu 0<a _klebadi; misi grafiki warmoadgens e. w.

kubur parabolas (nax. 21).

roca 3>n , maSin naxy = funqciis grafiks n –uri

rigis parabola ewodeba. formiT igi waagavs parabolas an

kubur parabolas Sesabamisad luwi da kenti

maCveneblebisaTvis.

nax. 20

Page 76: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

76

$30. n xy = gvordjb!

vTqvaT, mocemulia n xy = ( )1 , ≠∈ nNn funqcia. ganvixi-

loT Semdegi ori SemTxveva.

1. n erTisagan gansxvavebuli kenti ricxvia, e. i.

12 += kn , Nk ∈ , maSin 12 += k xy funqciis gansazRvris are

RyD =)( . es funqcia zrdadia R –ze, rogorc zrdadi

12 += kxy funqciis Seqceuli funqcia. radgan

urTierTSeqceuli funqciebis grafikebi simetriulia xy =

wrfis mimarT, amitom 12 += k xy funqciis grafiks eqneba

Semdegi saxe (nax. 22).

y

a

0

)0(3 <= aaxy)0(3 >= aaxy

0 x

y

a

11 x

nax. 21

12 +=

kxy

12 += kxy

0 x

yxy =

nax. 22

Page 77: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

77

2. n luwi ricxvia, e. i. kn 2= , Nk ∈ , maSin k xy 2=

funqciis gansazRvris are [ [+∞= ;0)(yD . es funqcia

zrdadia, rogorc [ [+∞;0 Sualedze zrdadi kxy 2=

funqciis Seqceuli funqcia. radgan urTierTSeqceuli

funqciebis grafikebi simetriulia xy = wrfis mimarT,

amitom k xy 2= funqciis grafiks eqneba Semdegi saxe

(nax.23).

$31. hboupmfcb!

hbotbSwsfcb/ tolobas, romelic cvlads Seicavs

gantoleba ewodeba.

imis mixedviT, Tu ramden cvlads Seicavs gantoleba,

igi SeiZleba iyos erTcvladiani, orcvladiani da a.S.

erTcvladiani gantolebis amonaxsni (fesvi) ewodeba

cvladis mniSvnelobas, romelic gantolebas WeSmarit

tolobad aqcevs. Tu gantoleba Seicavs erTze met

cvlads, maSin misi amonaxsni iqneba Sesabamisad, cvladebis

mniSvnelobaTa dalagebuli wyvili, sameuli da a. S.,

romelic gantolebas WeSmarit tolobad aqcevs.

magaliTad, 5213 +=− xx gantolebis amonaxsnia ricxvi 6,

radgan 562163 +⋅=−⋅ , xolo 53 =− yx gantolebis erT-

erTi amonaxsnia (2;1) wyvili, radgan 5123 =−⋅ .

TfojTwob/ ukanasknel magaliTSi x cvlads vTvliT

pirvel cvladad, y cvlads ki_meored, amitom (2;1)

wyvilisagan gansxvavebiT (1;2) wyvili ar warmoadgens

x0

yxy =

kxy 2=

kxy

2=

nax. 23

Page 78: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

78

ganxiluli gantolebis amonaxsns arCeuli dalagebis

mimarT.

gantolebis yvela amonaxsnTa erTobliobas

gantolebis amonaxsnTa simravle ewodeba. gantolebis

amonaxsnTa simravle SeiZleba iyos, rogorc sasruli

(kerZod, carieli), aseve usasrulo. magaliTad, xx 535 =+

gantolebis amonaxsnTa simravle carielia; ( )( ) 03 2 =−+ xx

gantolebis amonaxsnTa simravlea 3;2− , xolo xx =

gantolebis amonaxsnTa simravlea [ [+∞;0 .

gantolebis amoxsna niSnavs, misi amonaxsnTa simravlis

povnas.

erTi da imave cvladebis Semcvel gantolebebs

ewodeba tolfasi, Tu maTi amonaxsnTa simravleebi

erTmaneTis tolia, roca TiToeuli amonaxsni

dalagebulia erTi da imave mimdevrobiT.

gantolebis amoxsnis procesSi mizanSewonilia

SevcvaloT igi misi tolfasi, ufro martivi gantolebiT,

risTvisac sargebloben gantolebaTa Semdegi TvisebebiT:

1. Tu gantolebis orive mxares davumatebT erTsa da

imave ricxvs, miviRebT mocemuli gantolebis tolfas

gantolebas.

2. Tu gantolebis erTi mxaridan meoreSi gadavitanT

romelime Sesakrebs mopirdapire niSniT, miviRebT

mocemuli gantolebis tolfas gantolebas.

3. Tu gantolebis orive mxares gavamravlebT

nulisagan gansxvavebul erTsa da imave ricxvze, miviRebT

mocemuli gantolebis tolfas gantolebas.

TfojTwob! 2/ gantolebis amoxsnis procesSi zogjer

saWiroa iseTi gardaqmnis Catareba, romlis Sedegadac

sazogadod ar miiReba mocemuli gantolebis tolfasi

gantoleba. kerZod, gantolebis orive mxaris axarisxebiT

an cvladis Semcvel mTel gamosaxulebaze gamravlebiT

SeiZleba gaCndes gareSe amonaxsnebi, amitom unda

Semowmdes, akmayofileben Tu ara miRebuli amonaxsnebi

mocemul gantolebas.

magaliTad, Tu xx =+2 gantolebis orive mxares

avaxarisxebT kvadratSi, miviRebT gantolebas 22 xx =+ ,

romlis amonaxsnebia –1 da 2, magram –1 ar warmoadgens

mocemuli gantolebis amonaxsns.

Page 79: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

79

TfojTwob! 3/! Tu gantolebis orive mxares gavyofT

cvladis Semcvel mTel gamosaxulebaze, SeiZleba

zogierTi amonaxsni daikargos.

magaliTad, xx =2 gantolebis amonaxsnebia 0 da 1. am

gantolebis orive mxaris x –ze gayofiT 0=x amonaxsni

ikargeba.

Tu gantoleba mocemulia

0)()( =⋅ xxg ϕ (1)

saxiT, maSin misi amonaxsnTa simravle warmoadgens

0)( =xg (2)

da

0)( =xϕ (3)

gantolebebis yvela im amonaxsnebis gaerTianebas,

romlebic erTdroulad ekuTvnian )(xg da )(xϕ funqciebis

gansazRvris areebs.

nbhbmjUj/!amovxsnaT gantoleba

( ) 012 =−− xx . (4)

bnpytob/ 01 =− x gantolebis amonaxsnia 1=x , xolo

02 =−x gantolebisa ki 2=x . ricxvi 1 erTdroulad

ekuTvnis x−1 da 2−x funqciaTa gansazRvris areebs,

xolo 2 ar ekuTvnis x−1 funqciis gansazRvris ares,

amitom (4) gantolebis amonaxsnia 1=x .

im kerZo SemTxvevaSi, roca )(xg da )(xϕ

mravalwevrebia, maSin (1) gantolebis amonaxsnTa simravle

warmoadgens (2) da (3) gantolebebis amonaxsnTa

simravleebis gaerTianebas.

magaliTad, ( ) ( ) 04 3 2 =−− xx gantolebis amonaxsnTa

simravlea 3 ,2 ,2− , radgan 03 =−x gantolebis amonaxsnia

3, xolo 042 =−x gantolebisa ki –2 da 2.

me-2 Tvisebis gamoyenebiT nebismier erTcvladian

gantolebas SeiZleba mivceT saxe

0)( =xf . (5)

(5) gantolebis amonaxsnTa simravle warmoadgens

)(xfy = funqciis grafikis Ox RerZTan gadakveTis

wertilebis abscisTa simravles (nax. 24).

Page 80: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

80

Tu )(xfy = ganvixilavT, rogorc orcvladian gantolebas,

maSin mas daakmayofileben 24-e naxazze agebuli grafikis

nebismieri wertilis koordinatebi.

! !hbotbSwsfcb/!orcvladiani gantolebis grafiki ewode-

ba sibrtyis yvela im wertilTa simravles, romelTa koor-

dinatebi akmayofileben mocemul gantolebas.

SevniSnoT, rom orcvladiani gan-

tolebis grafiki sazogadod ar war-

moadgens raime funqciis grafiks. maga-

liTad, 122 =+ yx gantolebis grafikia

wrewiri (nax. 25), romelic ar warmoad-

gens funqciis grafiks, radgan absci-

sis yovel mniSvnelobas ] [1;1− Suale-

didan Seesabameba ordinatis ori mniS-

vneloba.

$32. fsUdwmbejboj!xsgjwj!eb!lwbesbuvmj!!hboupmfcfcj!

0=+ bax saxis gantolebas, sadac x cvladia, xolo

a da b nebismieri namdvili ricxvebia, wrfivi

erTcvladiani gantoleba ewodeba, Tu 0≠a . mas aqvs

erTaderTi amonaxsni

abx −= .

wrfivi gantoleba SeiZleba grafikuladac amoixsnas.

0=+ bax gantolebis amonaxsni warmoadgens baxy +=

wrfis Ox RerZTan gadakveTis wertilis abscisas.

02 =++ cbxax saxis gantolebas, sadac x cvladia,

xolo a , b da c nebismieri namdvili ricxvebia, 0≠a ,

x

y

00x

nax. 25

x

y

5x4x3x2x1x 0

nax. 24

Page 81: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

81

kvadratuli gantoleba ewodeba. a –s ewodeba kvadratuli

gantolebis pirveli koeficienti, b -s meore koeficienti,

xolo c –s Tavisufali wevri. Tu 1=a , gantolebas

dayvanili saxis kvadratuli gantoleba ewodeba.

gamoviyvanoT kvadratuli gantolebis amonaxsnTa

formula. amisaTvis gantolebis orive mxare gavamravloT

a4 –ze da SevasruloT martivi igivuri gardaqmnebi.

miviRebT:

⇔=++⇔=++ 04440 222 acabxxacbxax

( ) acbbaxbacbabxxa 42444 222222 −=+⇔=+++⇔ .

Tu diskriminanti 042 <−= acbD , maSin ( ) acbbx 42 22 −=+

toloba ar aris WeSmariti x –is arcerTi namdvili

mniSvnelobisaTvis, amitom kvadratul gantolebas namdvil

ricxvTa simravleSi amonaxsni ar gaaCnia.

Tu 0=D , maSin gantolebas aqvs saxe:

( )a

bxbaxbax2

0202 2 −=⇔=+⇔=+ ,

e. i. am SemTxvevaSi gantolebas aqvs erTaderTi amonaxsni,

romelic a

b2

− –s tolia.

Tu 0>D , gveqneba:

( ) acbbaxacbbax 4242 222 −±=+⇔−=+ .

aqedan

aacbbx

242 −±−

= , (1)

e. i. am SemTxvevaSi gantolebas aqvs ori amonaxsni:

aacbbx

242

1−+−

= , a

acbbx2

42

2−−−

= .

amgvarad, kvadratuli gantolebis amonaxsnTa arseboba

da maTi raodenoba damokidebulia diskriminantze.

Tu davuSvebT, rom kb 2= , maSin (1) formulas SeiZleba

mivceT saxe:

aackkx −±−

=2

.

am formuliT sargebloba mosaxerxebelia, rodesac b

luwi ricxvia.

Page 82: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

82

rodesac b da c ricxvebidan erTi mainc nulia, maSin

gantolebas ewodeba arasruli saxis kvadratuli

gantoleba. arasruli kvadratuli gantolebis amoxsna

mizanSewonilia (1) formulis gamoyenebis gareSe.

ganvixiloT Semdegi SemTxvevebi:

1. Tu 0≠b da 0=c , gveqneba

( ) 002 =+⇔=+ baxxbxax ,

saidanac 01 =x , abx −=2 .

2. Tu 0=b da 0≠c , gveqneba

acxcax −=⇔=+ 22 0 .

aqedan Cans, rom gantolebas amonaxsni ar gaaCnia,

rodesac a –sa da c –s aqvT erTnairi niSani, xolo

rodesac maT mopirdapire niSnebi aqvT, maSin gantolebis

amonaxsnebia:

acx −=1 da

acx −−=2 .

3. Tu 0== cb , maSin 02 =ax da misi amonaxsnia 0.

$33. wjfujt!Ufpsfnb!!

Ufpsfnb/! Tu 02 =++ cbxax kvadratuli gantolebis

diskriminanti 0>D , maSin gantolebis amonaxsnTa jami

udris ab

− –s, xolo namravli ac–s.

ebnuljdfcb/ roca 0>D , maSin kvadratul gantolebas

aqvs ori amonaxsni

aacbbx

242

1−+−

= , a

acbbx2

42

2−−−

= .

aqedan

ab

aacbb

aacbbxx −=

−−−+

−+−=+

24

24 22

21 ;

=−−−

⋅−+−

=⋅a

acbba

acbbxx2

42

4 22

21

Page 83: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

83

( ) ( )ac

aacbb

a

acbb=

−−=

⎟⎠⎞⎜

⎝⎛ −−−

= 2

22

2

222

44

4

4.

e. i.

abxx −=+ 21 da

acxx =⋅ 21 .

am Teoremas ewodeba vietis Teorema. igi amyarebs

kavSirs kvadratuli gantolebis amonaxsnebsa da

koeficientebs Soris.

TfojTwob/! vietis Teorema marTebulia im SemTxvevaSic,

rodesac 0=D , Tu CavTvliT, rom a

bxx221 −== .

Tfefhj/ Tu 02 =++ qpxx dayvanili kvadratuli ganto-

lebis amonaxsnebia 1x da 2x , maSin

pxx −=+ 21 , qxx =⋅ 21 .

e. i. dayvanili kvadratuli gantolebis amonaxsnTa jami

udris meore koeficients mopirdapire niSniT, xolo

namravli_Tavisufal wevrs.

im SemTxvevaSi, rodesac saWiroa kvadratuli

gantolebis Sedgena misi amonaxsnebis mixedviT, gamoiyeneba

vietis Teoremis Sebrunebuli Teorema.

Ufpsfnb/ Tu m da n ricxvebis jami tolia ( )p− –si,

xolo namravli q –si, maSin m da n

02 =++ qpxx (1)

gantolebis amonaxsnebia.

ebnuljdfcb/ pirobis Tanaxmad pnm −=+ , xolo qnm =⋅ ,

amitom (1) gantoleba SeiZleba Semdegnairad CavweroT:

( ) 02 =++− mnxnmx . (2)

gardavqmnaT am gantolebis marcxena mxare

( ) ( ) ( ) =−−−=+−−=++− mxnmxxmnnxmxxmnxnmx 22

( )( )nxmx −−= .

cxadia, rom ( ) ( )nxmx −− gantoleba (2) gantolebis

tolfasia da mas, m -isa da n –is garda sxva amonaxsni ara

aqvs.

amrigad, m da n ricxvebi 02 =++ qpxx gantolebis

amonaxsnebia.

Page 84: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

84

$34. lwbesbuvmj!tbnxfwsjt!ebTmb!nbnsbwmfcbe!!

vTqvaT, mocemulia kvadratuli samwevri cbxax ++2,

sadac a , b da c namdvili ricxvebia, 0≠a , xolo x cvladia. Tu 1x da 2x kvadratuli samwevris fesvebia,

maSin isini warmoadgenen 02 =++ cbxax gantolebis

amonaxsnebs da vietis Teoremis Tanaxmad

abxx −=+ 21 ,

acxx =21 . (1)

(1) tolobebis safuZvelze kvadratuli samwevri

Semdegnairad gardavqmnaT

( )( )=++−=⎟⎠⎞

⎜⎝⎛ ++=++ 2121

222 xxxxxxaacx

abxacbxax

( ) ( ) ( )( )2112121212 )()( xxxxaxxxxxxaxxxxxxxa −−=−−−=+−−= .

amrigad

( )( )212 xxxxacbxax −−=++ ,

sadac 1x da 2x mocemuli kvadratuli samwevris fesvebia.

miRebul tolobas kvadratuli samwevris mamravlebad

daSlis formula ewodeba.

SevniSnoT, rom Tu 0=D , maSin ( )202 xxacbxax −=++ ,

sadac 0x kvadratuli samwevris fesvia, xolo, Tu 0<D

kvadratuli samwevri wrfiv mamravlebad ar daiSleba.

$35. cjlwbesbuvmj!hboupmfcb!

! 024 =++ cbxax saxis gantolebas, sadac x cvladia,

xolo a , b da c nebismieri namdvili ricxvebia, 0≠a ,

bikvadratuli gantoleba ewodeba.

Tu SemoviRebT aRniSvnas yx =2, miviRebT kvadratul

gantolebas y cvladis mimarT

02 =++ cbyay . (1) ganvixiloT Semdegi SemTxvevebi:

1. Tu 042 <−= acbD , maSin bikvadratul gantolebas

namdvil ricxvTa simravleSi amonaxsni ar gaaCnia.

Page 85: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

85

2. Tu 0=D , maSin (1) gantolebis amonaxsnia a

by2

−= ,

amitom aRniSvnis Tanaxmad, bikvadratuli gantolebis

amoxsna daiyvaneba a

bx2

2 −= gantolebis amoxsnaze.

3. Tu 0>D , maSin (1) gantolebis amonaxsnebia

aDby

21+−

= , a

Dby22−−

= da bikvadratuli gantolebis

amoxsna daiyvaneba

aDbx

22 +−= ,

aDbx

22 −−=

gantolebebis amoxsnaze.

TfojTwob/!bikvadratuli gantolebis amoxsnis procesSi

gamoyenebuli axali cvladis Semotanis xerxi gamoiyeneba

zogierTi sxva tipis gantolebebis amoxsnis drosac.

nbhbmjUj/ amovxsnaT gantoleba

5,26

1212

6 2

2 =+

++ x

xx

x. (2)

bnpytob/ Tu SemoviRebT aRniSvnas yx

x=

+1262 , miviRebT

gantolebas

5,21=+

yy . (3)

aqedan 0252015,2 22 =+−⇔=+− yyyy , saidanac

435

416255 ±

=−±

=y ,

e. i. 21 =y , 21

2 =y . Tu gaviTvaliswinebT aRniSvnas, mivi-

RebT Semdeg gantolebebs

212

62 =+x

x da

21

1262 =+x

x.

amovxsnaT TiToeuli maTgani:

Page 86: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

86

0132212

6 22 =+−⇔=+

xxx

x ∗

aqedan

21 ,1

413

4893

21 ==⇒±

=−±

= xxx .

0112221

126 22 =+−⇔=+

xxx

x.

aqedan

2346 ,

2346

22366

43−

=+

=⇒−±

= xxx .

amrigad (2) gantolebis amonaxsnTa simravlea

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧ −+

2346 ,

2346 ,

21 ,1 .

$36.!jsbdjpobmvsj!hboupmfcfcj!

gantolebas, romelic cvlads Seicavs radikalis

niSnis qveS, iracionaluri gantoleba ewodeba. iracionaluri gantolebis amosaxsnelad mosaxerxebe-

lia is Seicvalos sxva gantolebiT, romelSic cvladi

radikalis niSnis qveS aRar imyofeba. es xSirad miiRweva

gantolebis orive mxaris garkveul xarisxSi axarisxebiT.

zogjer saWiroa am operaciis ramdenimejer Catareba. axa-

risxebis Sedegad miRebuli gantoleba sazogadod ar iq-

neba mocemuli gantolebis tolfasi (SeiZleba gaCndes

e. w. gareSe fesvi). amitom miRebuli gantolebis TiToeuli

fesvi unda Semowmdes mocemul gantolebaSi CasmiT.

amovxsnaT gantoleba

45123 +=−++ xxx .

gantolebis orive mxaris kvadratSi axarisxebiT gveqneba:

451212323 +=−+−+++ xxxxx .

aqedan

( )( ) 1352221232 2 +=−+⇔+=−+ xxxxxx .

∗ es ori gantoleba tolfasia, radgan x -is nebismieri mniSvnelobisaTvis

012 2 ≠+x .

Page 87: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

87

miRebuli gantolebis kvadratSi axarisxeba gvaZlevs:

04312352 222 =−+⇔++=−+ xxxxxx .

aqedan

11 =x , 42 −=x .

SemowmebiT advilad davrwmundebiT, rom 1 warmoadgens

mocemuli gantolebis fesvs, xolo _4 gareSe fesvia.

$37. hboupmfcbUb!tjtufnfcj!

! hbotbSwsfcb/! erTidaimave cvladebis Semcvel

gantolebaTa sasrul simravles gantolebaTa sistema

ewodeba.

vityviT, rom mocemulia n cvladiani m gantolebis

sistema, Tu igi Seicavs n cvlads da m gantolebas.

magaliTad, 052 ,6322 =−=−+ yxzyx gantolebaTa simravle

warmoadgens 3-cvladian 2 gantolebis sistemas da mas

Semdegi saxiT CavwerT

⎪⎩

⎪⎨⎧

=−=−+

.0526322

yxzyx

gantolebaTa sistemis amonaxsni ewodeba am sistemaSi

Semavali yvela gantolebis saerTo amonaxsns.

sistemis yvela amonaxsnTa erTobliobas gantolebaTa

sistemis amonaxsnTa simravle ewodeba. gantolebaTa

sistemis amonaxsnTa simravle SeiZleba iyos, rogorc

sasruli (kerZod carieli), aseve usasrulo.

magaliTad,

⎩⎨⎧

=+=+

6353

yxyx

sistemis amonaxsnTa simravle carielia,

⎪⎩

⎪⎨⎧

=+

=−

0

02 yx

yx

sistemis amonaxsnTa simravlea )1;1( ),0;0( −− , xolo

⎪⎩

⎪⎨⎧

=−=−0

022

yxyx

sistemis amonaxsnTa simravlea Raaa ∈:);( , romelic

usasruloa.

Page 88: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

88

Tu gantolebaTa sistemis amonaxsnTa simravle

carielia, maSin sistemas araTavsebadi ewodeba, winaaRmdeg

SemTxvevaSi ki_Tavsebadi.

gantolebaTa sistemis amoxsna niSnavs, misi amonaxsnTa

simravlis povnas.

erTidaimave cvladebis Semcvel gantolebaTa

sistemebs ewodeba tolfasi, Tu maTi amonaxsnTa

simravleebi erTmaneTis tolia, roca TiToeuli amonaxsni

dalagebulia erTidaimave mimdevrobiT.

sistemis amoxsnis procesSi mizanSewonilia,

SevcvaloT igi misi tolfasi ufro martivi sistemiT,

risTvisac sargebloben gantolebaTa sistemis Semdegi

TvisebebiT:

1. Tu sistemis erT-erT gantolebas SevcvliT misi

tolfasi gantolebiT, miviRebT mocemuli sistemis

tolfas sistemas.

2. Tu sistemis erT-erT gantolebas mivcemT Fx =

saxes ( F sazogadod cvladis Semcveli gamosaxulebaa),

xolo danarCen gantolebebSi x cvlads SevcvliT F

gamosaxulebiT, miviRebT mocemuli sistemis tolfas

sistemas.

3. Tu sistemis nebismier gantolebas SevcvliT

gantolebiT, romelic miiReba misi mimatebiT nebismier

sxva gantolebasTan, miviRebT mocemuli sistemis tolfas

sistemas.

zogjer mosaxerxebelia orcvladian gantolebaTa

sistemis amonaxsni movZebnoT grafikuli xerxiT.

imisaTvis, rom amovxsnaT orcvladiani ori

gantolebis sistema grafikuli xerxiT, saWiroa avagoT

TiToeuli gantolebis grafiki. am grafikebis gadakveTis

yoveli wertilis koordinatTa wyvili warmoadgens

mocemuli sistemis amonaxsns, magaliTad,

⎪⎩

⎪⎨⎧

=−=−02842

yxyx

sistemis amonaxsnTa simravlea )2;4( ),1;2( −− , radgan

sistemis gantolebaTa grafikebi (-2;-1) da (4;2) wertilebSi

ikveTeba (nax.26).

Page 89: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

89

$38. xsgjw!hboupmfcbUb!tjtufnb!

! bxaxaxa nn =+++ L2211 saxis gantolebas, sadac

nxxx ,,, 21 K cvladebia, xolo baaa n ,,,, 21 K nebismieri

namdvili ricxvebia, n cvladiani wrfivi gantoleba

ewodeba. naaa ,,, 21 K ricxvebs cvladebis koeficientebi

ewodeba, xolo b –s Tavisufali wevri.

n cvladian m wrfiv gantolebaTa sistemas aqvs saxe

⎪⎪⎩

⎪⎪⎨

=+++

=+++=+++

.2211

22222121

11212111

mnmnmm

nn

nn

bxaxaxa

bxaxaxabxaxaxa

L

LLLLLLLLLL

L

L

SemdgomSi vigulisxmebT, rom wrfiv gantolebaTa

sistemaSi cvladTa da gantolebaTa raodenoba erTmaneTis

tolia, e. i. nm = .

gavecnoT orcvladian wrfiv gantolebaTa sistemis

amoxsnis zogierT xerxs.

vTqvaT, mocemulia sistema:

⎩⎨⎧

=+=−

.952423

yxyx

(1)

sistemis pirveli gantolebidan gvaqvs

243 −

=xy . (2)

y

x41−

2− 0

842 =− yx02 =− yx

nax. 26

Page 90: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

90

CavsvaT sistemis meore gantolebaSi y –is es

gamosaxuleba da amovxsnaT miRebuli gantoleba

23819182015492

4352 =⇔=⇔=−+⇔=−

⋅+ xxxxxx ,

x -is am mniSvnelobis (2) tolobaSi SetaniT miviRebT

12

423=

−⋅=y .

amrigad (2;1) wyvili warmoadgens (1) sistemis amonaxsns.

gantolebaTa sistemis amoxsnis am xerxs Casmis xerxi

ewodeba.

(1) sistema SeiZleba Semdegnairadac amovxsnaT:

gavamravloT sistemis pirveli gantolebis orive mxare

5-ze, meorisa ki 2-ze, miviRebT

⎩⎨⎧

=+=−

.18104201015

yxyx

am sistemis gantolebaTa Sekreba mogvcems

erTcvladian gantolebas

3819 =x ,

romlis amonaxsnia 2=x .

analogiurad SeiZleba moiZebnos y cvladis mniSvne-

lobac.∗

gantolebaTa sistemis amoxsnis aseT xerxs Sekrebis

xerxi ewodeba.

vTqvaT, mocemulia orcvladian gantolebaTa sistema

⎩⎨⎧

=+=+

.222

111

cybxacybxa

(3)

am sistemis pirveli da meore gantolebebis orive

mxareebi gavamravloT Sesabamisad 2b –ze da 1b− –ze.

miviRebT

⎩⎨⎧

−=−−=+

.122112

212121

bcybbxbabcybbxba

am sistemis gantolebaTa SekrebiT gveqneba

( ) 12211221 bcbcxbaba −=− . (4)

analogiurad miviRebT

∗ praqtikulad Sekrebis xerxiT gansazRvruli erT-erTi cvladis mniS-

vneloba SeaqvT sistemis romelime gantolebaSi da pouloben meore

cvlads.

Page 91: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

91

( ) 12211221 cacaybaba −=− . (5)

Tu 01221 ≠− baba , (4) da (5) gantolebidan gvaqvs:

1221

1221bababcbcx

−−

= , 1221

1221babacacay

−−

= . (6)

vaCvenoT, rom (6) formulebiT mocemul ricxvTa ( )yx;

wyvili warmoadgens (3) sistemis amonaxsns. marTlac, Tu

x –isa da y –is mniSvnelobebs SevitanT (3) sistemis

pirveli gantolebis marcxena mxareSi, miviRebT:

=−

−+−=

−−

+−−

1221

121211121211

1221

12211

1221

12211 baba

cabcabbcabcababacacab

bababcbca

( )1

1221

12211 cbabababac

=−−

= .

e. i. ganxiluli ( )yx; wyvili akmayofilebs (3) sistemis

pirvel gantolebas. analogiurad Semowmdeba, rom igive

wyvili akmayofilebs (3) sistemis meore gantolebasac.

radgan (4) da (5) gantolebebi (3) sistemidan miRebulia

iseTi gardaqmnebiT, romlis Sedegadac ar SeiZleba

daikargos romelime amonaxsni, SegviZlia davaskvnaT:

1. Tu 01221 ≠− baba , maSin (3) sistemas aqvs erTaderTi

amonaxsni, romelic moicema (6) formulebiT.

2. Tu 01221 =− baba , xolo 1221 bcbc − da 1221 caca −

sxvaobebidan erTi mainc gansxvavdeba nulisagan, maSin (3)

sistema araTavsebadia, vinaidan (4) da (5) gantolebebidan

erT-erTs mainc ara aqvs amonaxsni.

3. Tu

01221 =− baba , 01221 =− bcbc , 01221 =− caca

da cvladebis koeficientebidan erTi mainc gansxvavdeba

nulisagan, magaliTad 01 ≠a , maSin pirveli da mesame

tolobebidan gvaqvs:

1

212 a

abb ⋅= , 1

212 a

acc ⋅= . (7)

SemoviRoT aRniSvna:

kaa

=1

2 , (8)

maSin (7) da (8) tolobebidan gveqneba:

12 kaa = , 12 kbb = , 12 kcc = ,

da (3) sistema miiRebs saxes:

Page 92: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

92

⎩⎨⎧

=+=+

,111

111

kcykbxkacybxa

romelic

111 cybxa =+

gantolebis tolfasia. e. i. am SemTxvevaSi sistemis

amonaxsnTa simravle usasruloa.

rogorc viciT, (4) sistemis ( )00; yx amonaxsni

warmoadgens masSi Semaval gantolebaTa grafikebis, e. i.

wrfeebis gadakveTis wertilis koordinatTa wyvils.

Tu sistemas gaaCnia erTaderTi amonaxsni, maSin

aRniSnuli wrfeebi ikveTebian erT wertilSi; Tu sistema

araTavsebadia, maSin wrfeebi ar gadaikveTebian, xolo, Tu

sistemas aqvs uamravi amonaxsni, maSin wrfeebi erTmaneTs

emTxvevian.

SevniSnoT, rom Casmisa da Sekrebis xerxebi agreTve

gamoiyeneba sami da metcvladian wrfiv gantolebaTa

sistemis amosaxsnelad.

$39. vupmpcfcj!

hbotbSwsfcb/ or gamosaxulebas, romlebic SeiZleba

cvladebsac Seicavdnen, SeerTebuls niSniT “>” an “<”

utoloba ewodeba.

utolobebs ewodeba erTnairi azris, Tu yvela

maTganSi gamoyenebulia utolobis erTi da igive niSani.

or utolobas ewodeba mopirdapire azris, Tu erT-erT

maTganSi gamoyenebulia niSani “>”, meoreSi ki misi

mopirdapire — ”<”. magaliTad, 5>2 da 1>-3 erTnairi azris

utolobebia, xolo 3<6 da 4>0 utolobebi ki_mopirdapire

azris.

sjdywjUj! vupmpcjt! Uwjtfcfcj/ rogorc viciT, nebismieri

ori a da b namdvili ricxvisaTvis marTebulia erTi da

mxolod erTi Semdegi Tanafardobebidan:

ba = , ba > , ba < .

es Tanafardobebi marTebulia, Tu Sesabamisad

0=− ba , 0>− ba , 0<− ba .

sawinaaRmdegos daSvebiT SeiZleba vaCvenoT, rom

marTebulia agreTve Sebrunebuli debulebebi:

Tu ba = , maSin 0=− ba ;

Page 93: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

93

Tu ba > , maSin 0>− ba ;

Tu ba < , maSin 0<− ba .

utoloba ba > geometriulad niSnavs, rom a ricxvis

Sesabamisi wertili ricxviT wrfeze mdebareobs b –s

Sesabamisi wertilis marjvniv.

davamtkicoT ricxviTi utolobis zogierTi Tviseba:

1. Tu ba > , maSin ab < .

marTlac ababbaba <⇒<−⇒>−⇒> 00 .

2. Tu ba > da cb > , maSin ca > .

pirobis Tanaxmad ba − da cb − ricxvebi dadebiTia,

amitom dadebiTi iqneba maTi jamic, e. i.

( ) ( ) cacacbba >⇒>−⇒>−+− 00 .

am Tvisebas tranzitulobis Tviseba ewodeba.

3. Tu ba > da c nebismieri namdvili ricxvia, maSin

cbca +>+ . radgan ( ) ( ) bacbca −=+−+ , xolo pirobis

Tanaxmad ba − dadebiTia, amitom ( ) ( ) 0>+−+ cbca , e. i.

cbca +>+ .

Tfefhj/ Tu cba >+ , maSin bca −> .

4. Tu ba > da dc > , maSin dbca +>+ .

radgan ( ) ( ) ( ) ( )dcbadbca −+−=+−+ , xolo pirobis

Tanaxmad ba − da dc − dadebiTi ricxvebia, amitom

dadebiTi iqneba maTi jamic da ( ) ( ) 0>+−+ dbca , e. i.

dbca +>+ .

amrigad, erTnairi azris WeSmariti utolobebis

SekrebiT miiReba imave azris WeSmariti utoloba.

5. Tu ba > da dc < , maSin dbca −>− .

radgan ( ) ( ) ( ) ( )cdbadbca −+−=−−− , xolo pirobis

Tanaxmad ba − da cd − dadebiTebia, amitom dadebiTi iqneba maTi

jamic da ( ) ( ) 0>−−− dbca , e. i. dbca −>− .

amrigad, Tu erT WeSmarit utolobas gamovaklebT misi

sawinaaRmdego azris meore WeSmarit utolobas da

SevinarCunebT pirveli utolobis niSans, miviRebT

WeSmarit utolobas.

6. Tu ba > da 0≠c , maSin

bcac > , roca 0>c

da

bcac < , roca 0<c .

Page 94: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

94

radgan ( )bacbcac −=− da pirobis Tanaxmad 0>− ba ,

amitom ( )bac − namravls aqvs c –s niSani, e. i. roca 0>c ,

maSin bcacbcac >⇒>− 0 , xolo roca 0<c , maSin

bcacbcac <⇒<− 0 .

amrigad, Tu WeSmariti utolobis orive mxares

gavamravlebT mocemul dadebiT ricxvze da utolobis

niSans ar SevcvliT, miviRebT WeSmarit utolobas.

WeSmarit utolobas miviRebT agreTve, Tu WeSmariti

utolobis orive mxares gavamravlebT mocemul uaryofiT

ricxvze da utolobis niSans SevcvliT misi

mopirdapireTi.

7. Tu ba > da a da b ricxvebs erTnairi niSani aqvT,

maSin

ba11

< .

radgan ab

baab

−=−

11, xolo pirobis Tanaxmad ba − da

ab dadebiTebia, amitom dadebiTi iqneba maTi fardobac da

baabab1111011

<⇒>⇒>− .

8. Tu ba > , dc > da a , b , c , d dadebiTi ricxvebia,

maSin bdac > .

radgan ba > da 0>c , amitom bcac > . radgan dc > da

0>b , amitom bdbc > . tranzitulobis Tvisebis Tanaxmad,

bcac > da bdbc > utolobebidan gamomdinareobs bdac >

utoloba.

amrigad, erTidaimave azris dadebiTwevrebian WeSmarit

utolobaTa gadamravlebiT miiReba imave azris WeSmariti

utoloba.

Tfefhj/ Tu a da b dadebiTi ricxvebia da Nn∈ , maSin

ba > utolobidan gamomdinareobs nn ba > .

9. Tu a da b dadebiTi ricxvebia da Nn∈ , 1≠n maSin

ba > utolobidan gamomdinareobs nn ba > .

davuSvaT sawinaaRmdego. vTqvaT, nn ba ≤ , maSin me-8

Tvisebis Sedegis Tanaxmad gveqneba:

( ) ( ) babannnn ≤⇒≤ ,

rac pirobas ewinaaRmdegeba. maSasadame nn ba > .

Page 95: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

95

dwmbejt! Tfndwfmj! vupmpcb/ imis mixedviT, Tu ramden

cvlads Seicavs utoloba, igi SeiZleba iyos erTcvladia-

ni, orcvladiani da a. S.

erTcvladiani utolobis amonaxsni ewodeba cvladis

im mniSvnelobas, romelic utolobas WeSmarit ricxviT

utolobad aqcevs. Tu utoloba Seicavs erTze met

cvlads, maSin misi amonaxsni iqneba Sesabamisad, cvladebis

mniSvnelobaTa wyvili, sameuli da a. S., romelic utolo-

bas WeSmarit ricxviT utolobad aqcevs.

utolobis yvela amonaxsnTa erTobliobas utolobis

amonaxsnTa simravle ewodeba. utolobis amoxsna niSnavs

misi amonaxsnTa simravlis povnas.

erTidaimave cvladebis Semcvel utolobebs ewodeba

tolfasi, Tu maTi amonaxsnTa simravleebi erTmaneTis

tolia, roca TiToeuli amonaxsni dalagebulia erTi da

imave mimdevrobiT.

utolobis amoxsnis procesSi mizanSewonilia SevcvaloT igi

misi tolfasi ufro martivi utolobiT, risTvisac

sargebloben utolobaTa Semdegi TvisebebiT:

1. Tu utolobis orive mxares davumatebT erTsa da

imave ricxvs, miviRebT mocemuli utolobis tolfas

utolobas.

2. Tu utolobis erTi mxaridan meoreSi gadavitanT

romelime Sesakrebs mopirdapire niSniT, miviRebT

mocemuli utolobis tolfas utolobas.

3. Tu utolobis orive mxares gavamravlebT erTsa da

imave dadebiT ricxvze an utolobaSi Semavali cvladebis

Semcvel erTi da imave gamosaxulebaze, romelic

yovelTvis dadebiTia, miviRebT mocemuli utolobis

tolfas utolobas.

4. Tu utolobis orive mxares gavamravlebT erTsa da

imave uaryofiT ricxvze an utolobaSi Semavali

cvladebis Semcvel erTsa da imave gamosaxulebaze,

romelic yovelTvis uaryofiTia da utolobis niSans

SevcvliT mopirdapireTi, miviRebT mocemuli utolobis

tolfas utolobas.

am Tvisebebis gamoyenebiT nebismier erTcvladian

utolobas SeiZleba mivceT

0)( >xf (1)

an

0)( <xf (2)

Page 96: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

96

saxe.

(1) utolobis amonaxsnTa simravle warmoadgens Ox RerZis yvela im wertilebis abscisTa simravles,

romelTaTvisac )(xfy = funqciis grafikis wertilebi Ox RerZis zemoT mdebareoben (nax. 27), (2) utolobisaTvis ki

amonaxsnTa simravles warmoadgens yvela im wertilebis

abscisTa simravle, romelTaTvisac )(xfy = funqciis

grafikis wertilebi Ox RerZis qvemoT mdebareoben

(nax. 28).

! TfojTwob/!utolobisa da gantolebis

⎢⎣

⎡=>

0)(0)(

xfxf

da ⎢⎣

⎡=<

0)(0)(

xfxf

gaerTianebebi Sesabamisad 0)( ≥xf da 0)( ≤xf saxiT

Caiwereba da maT aramkacri utolobebi ewodeba. cxadia,

aramkacri utolobis amonaxsnia mkacri utolobis da

Sesabamisi gantolebis amonaxsnTa gaerTianeba.

$40. xsgjwj!fsUdwmbejboj!vupmpcb!!

0>+ bax da 0<+ bax saxis utolobebs, sadac x cvladia, xolo a da b nebismieri namdvili ricxvebia,

wrfivi erTcvladiani utolobebi ewodeba, Tu 0≠a .

0>+ bax utoloba Semdegnairad amoixsneba:

a) roca 0>a , maSin

03x2x1x

y

x

nax. 27

03x2x1x

y

x

nax. 28

Page 97: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

97

abxbaxbax −>⇔−>⇔>+ 0 ,

e. i. utolobis amonaxsnTa simravlea ⎢⎣⎡

⎥⎦⎤ +∞− ;

ab

. geometri-

ulad es simravle warmoadgens ricxviTi wrfis yvela im

wertilTa simravles, romlebic ab

− wertilis marjvniv

mdebareoben (nax. 29).

b) roca 0<a , maSin

abxbaxbax −<⇔−>⇔>+ 0 ,

e. i. utolobis amonaxsnTa simravlea ⎢⎣⎡

⎥⎦⎤ −∞−

ab; . geometri-

ulad es simravle warmoadgens ricxviTi wrfis yvela im

wertilTa simravles, romlebic ab

− wertilis marcxniv

mdebareoben (nax. 30).

analogiurad amoixsneba 0<+ bax wrfivi utoloba.

$41. lwbesbuvmj!vupmpcb!!!

02 >++ cbxax da 02 <++ cbxax saxis utolobebs, sadac

x cvladia, xolo a , b da c nebismieri namdvili

ricxvebia, 0≠a , kvadratuli utolobebi ewodeba.

amovxsnaT es utolobebi grafikuli xerxiT.

ab

nax. 29

ab

nax. 30

Page 98: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

98

vTqvaT, 0>a , maSin cbxaxy ++= 2 parabolis Stoebi

mimarTulia zemoT da diskriminantis niSnis mixedviT

gveqneba Semdegi SemTxvevebi:

1. Tu 042 <−= acbD , maSin parabola mTlianad

moTavsebulia Ox RerZis zemoT da amitom 02 >++ cbxax utolobis amonaxsnTa simravlea R (nax. 31), xolo

02 <++ cbxax utolobis amonaxsnTa simravle ki_carielia.

2. Tu 042 >−= acbD , maSin cbxaxy ++= 2 parabola Ox RerZs hkveTs or 1x da 2x wertilSi )( 21 xx < , romlebic

cbxax ++2 kvadratuli samwevris fesvebs warmoadgenen.

amitom 02 >++ cbxax utolobis amonaxsnTa simravle

Sedgeba Ox RerZis yvela im wertilebisagan, romlebic

mdebareoben 1x –is marcxniv an 2x –is marjvniv e. i. “fesvebs

gareT” (nax. 32), xolo 02 <++ cbxax utolobis amonaxsnTa

simravle Sedgeba Ox RerZis yvela im wertilebisagan,

romlebic mdebareoben 1x da 2x wertilebs Soris (e. i.

“fesvebs Soris”) (nax. 33).

y

x0

nax. 31

0 ,002

<>>++

Dacbxax

2x1x

0 ,002

>>>++

Dacbxax

0

y

x

nax. 32

2x1x

0 ,002

>><++

Dacbxax

0

y

x

nax. 33

Page 99: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

99

amrigad, Tu 0>a da 0>D , maSin 02 >++ cbxax utolobis amonaxsnTa simravlea ] [ ] [+∞∞− ;; 21 xx U , xolo

02 <++ cbxax utolobis amonaxsnTa simravle ki_ ] [21; xx .

3. Tu 042 =−= acbD , maSin cbxaxy ++= 2 parabola Ox

RerZs exeba abx

2−= wertilSi. amitom 02 >++ cbxax

utolobis amonaxsns warmoadgens Ox RerZis nebismieri

wertili garda abx

2−= wertilisa (nax. 34), e. i. amonaxsn-

Ta simravlea ⎢⎣⎡

⎥⎦⎤ +∞−⎢⎣

⎡⎥⎦⎤ −∞− ;

22;

ab

ab

U , xolo 02 <++ cbxax uto-

lobis amonaxsnTa simravle ki carielia.

im SemTxvevaSi, roca 0<a , utolobis orive mxaris –1-

ze gamravlebiT da utolobis niSnis mopirdapireTi

SecvliT kvadratuli utolobis amoxsna daiyvaneba

ganxilul SemTxvevebze.

$42. vupmpcbUb!tjtufnfcj!!

hbotbSwsfcb/ erTi da imave cvladebis Semcvel uto-

lobaTa sasrul simravles utolobaTa sistema ewodeba.

utolobaTa sistemis amonaxsni ewodeba am sistemaSi

Semavali yvela utolobis saerTo amonaxsns. sistemis

yvela amonaxsnTa erTobliobas utolobaTa sistemis

amonaxsnTa simravle ewodeba. utolobaTa sistemis amoxsna

niSnavs misi amonaxsnTa simravlis povnas.

erTi da imave cvladebis Semcvel utolobaTa siste-

mebs ewodebaT tolfasi, Tu maTi amonaxsnTa simravleebi

ab2

−0

0 ,002

=>>++

Dacbxax

y

x

nax. 34

Page 100: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

100

erTmaneTis tolia, roca TiToeuli amonaxsni

dalagebulia erTi da imave mimdevrobiT.

imisaTvis, rom amovxsnaT utolobaTa sistema, saWiroa

amovxsnaT am sistemaSi Semavali TiToeuli utoloba da

vipovoT maTi amonaxsnTa simravleebis TanakveTa.

magaliTad,

⇔⎩⎨⎧

−>+−−−<−

⎪⎪⎩

⎪⎪⎨

−>−

−−

−<−

6128233465

123

42

1

232

52

2

xxxxxx

xxx

xxx

⎩⎨⎧

<<<−

⇔⎪⎩

⎪⎨⎧

<<−−

⇔.1

321111

062

xx

xxx

amrigad, sistemis amonaxsnTa simravlea ] [3;2− Suale-

dis da ] [1;∞− Sualedis TanakveTa, e. i. ] [1;2− Sualedi (nax.

35).

rogorc cnobilia, namdvil ricxvTa yovel ( )yx;

wyvils sakoordinato sibrtyeze Seesabameba erTaderTi

wertili. es saSualebas gvaZlevs orcvladiani utolobisa

da orcvladian utolobaTa sistemis amonaxsnTa simravle

gamovsaxoT sakoordinato sibrtyis wertilTa simravliT.

ganvixiloT magaliTebi:

1. ⎩⎨⎧

+−>−>

⇔⎩⎨⎧

>+<−

.212

212

xyxy

yxyx

sistemis pirveli utolobis amonaxsnTa simravle

warmoadgens sibrtyis yvela im wertilTa simravles,

romlebic mdebareoben 12 −= xy wrfis zemoT, xolo meore

utolobis amonaxsnTa simravle ki_sibrtyis yvela im

wertilTa simravles, romlebic mdebareoben 2+−= xy

wrfis zemoT. cxadia, sistemis amonaxsnTa simravle iqneba

aRniSnuli simravleebis TanakveTa (nax. 36).

2. ⎩⎨⎧

>

<+2

22 4xyyx

3 -1 -2 nax. 35

Page 101: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

101

sistemis pirveli utolobis amonaxsnTa simravle warmoa-

dgens sibrtyis yvela im wertilTa simravles, romlebic

mdebareoben 422 =+ yx wrewiris SigniT, xolo meore uto-

lobis amonaxsnTa simravle ki_sibrtyis yvela im wertil-

Ta simravles, romlebic mdebareoben 2xy = parabolis ze-

moT. amrigad, sistemis amonaxsnTa simravles aqvs saxe

(nax.37).

$43. vupmpcbUb!bnpytob!joufswbmUb!nfUpejU!!

vTqvaT, mocemulia erTcvladiani utoloba 0)( >xf an

0)( <xf , sadac ( ) ( ) ( ) nkn

kk xxxxf α−α−α−= L22

11)( , amasTan

Rn ∈ααα ,,, 21 K , Zkkk n ∈,,, 21 K da ji α≠α , roca ji ≠

( )nji ,,2,1, K= .

magaliTebze ganvixiloT aseTi saxis utolobebis

amoxsnis e. w. intervalTa meTodi jer im SemTxvevisaTvis,

12 −= xy

x

y

2+−= xy

2

2

-1 21

nax. 36

y

x

x2 +y2 =4

y=x2

0

nax. 37

Page 102: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

102

rodesac utolobaSi Semavali TiToeuli mamravlis

xarisxis maCvenebeli tolia 1-is da –1-is, Semdeg ki im

SemTxvevisaTvis, rodesac xarisxis maCveneblebi nebismieri

mTeli ricxvebia.

nbhbmjUj!2/!amovxsnaT utoloba

( )( )0

37

2121

>⎟⎠⎞

⎜⎝⎛ −

⎟⎠⎞

⎜⎝⎛ ++−

xx

xxx. (1)

bnpytob/ davalagoT ricxviT wrfeze utolobaSi

Semavali wiladis mricxvelisa da mniSvnelis fesvebi: -2;

21

− ; 0; 1 da 37, romlebic ricxviT wrfes yofen 6

Sualedad (nax. 38).

cxadia, rom ukiduresi marjvena ⎢⎣⎡

⎥⎦⎤ +∞;

37

Sualedis nebi-

smieri ricxvisaTvis (1) utolobis marcxena mxareSi myofi

gamosaxulebis mricxvelisa da mniSvnelis TiToeuli Tana-

mamravli dadebiTia da amitom dadebiTi iqneba mocemuli

gamosaxulebac, rac ricxviTi wrfis Sesabamis Sualedze

“+” niSniT aRiniSneba. am Sualedis momdevno ⎢⎣⎡

⎥⎦⎤

37;1 Suale-

dis nebismieri ricxvisaTvis mniSvnelSi Semavali ⎟⎠⎞

⎜⎝⎛ −

37x

Tanamamravli uaryofiTia, xolo danarCeni Tanamamravlebi

dadebiTi, amitom utolobis marcxena mxare iqneba uaryo-

fiTi, rac ricxviTi wrfis Sesabamis Sualedze “_” niSniT

aRiniSneba. analogiuri msjelobiT yovel Semdeg Sualeds

rigrigobiT miekuTvneba niSani “+” an “_”, romlebic

gansazRvraven (1) utolobis marcxena mxaris niSans Sesaba-

mis SualedSi. amitom (1) utolobis amonaxsnTa simravle

yvela im Sualedis gaerTianebaa, romlebsac aqvT niSani

“+”, e. i.

+ -2

37

21

− 1 _ _ _ + +

0

nax. 38

Page 103: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

103

] [ ⎢⎣⎡

⎥⎦⎤ ∞+⎢⎣

⎡⎥⎦⎤ −− ;

37 1 ;0

21 ;2 UU .

TfojTwob/ ganxilul 1=ik ( )ni ,,2,1 K= SemTxvevaSi

sasurvelia visargebloT Semdegi wesiT: ukidures

marjvena Sualeds (romelSic )(xf yovelTvis dadebiTia)

davusvaT niSani “+”, xolo yovel momdevno Sualeds ki

wina Sualedis mopirdapire niSani.

nbhbmjUj!3/ amovxsnaT utoloba

( )( ) ( )( ) ( ) 0

85132

2

65

<−−

++−xx

xxx. (2)

bnpytob/ pirveli magaliTis msgavsad, aqac, ricxviT

wrfeze davalagoT utolobaSi Semavali mamravlebis

fesvebi: -3, -1, 2, 5, 8 da miRebul Sualedebs davusvaT “+”

an “_” niSnebi marjvnidan marcxniv dawyebuli “+” niSniT,

mxolod im gansxvavebiT, rom luw maCvenebliani mamravlis

fesvze gadasvlis dros SevinarCunoT wina Sualedis

niSani (nax. 39).

cxadia, rom (2) utolobis amonaxsnTa simravle iqneba

yvela im Sualedis gaerTianeba, romlebsac aqvT niSani

“_”, e. i.

] [ ] [ ] [ 8 ;5 5 ;2 3 ; UU−∞− .

imisaTvis, rom erTcvladiani utolobebi 0)( >ϕ x an

0)( <ϕ x daviyvanoTYiseT saxemde, rom SesaZlebeli iyos

intervalTa meTodis gamoyeneba, saWiroa: utolobis

marcxena mxare daiSalos mamravlebad; utolobaTa

Tvisebebis gaTvaliswinebiT is mamravlebi, romlebic mTel

RerZze inarCuneben erTi da imave niSans ukuvagdoT, xolo

danarCeni Tanamamravlebi CavweroT ise, rom cvladis

yoveli koeficienti iyos erTis toli; Tanamamravlebi,

romlebic erTnairfuZian xarisxebs warmoadgenen, CavweroT

erTi xarisxis saxiT.

! nbhbmjUj!4/!

+ -3 8 5 2

_ -1

_ _ _ + +

nax. 39

Page 104: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

104

( )( )( )( )( )( ) ⇔≤

−−+−+−+− 04822

12122

33

xxxxxxxx

( )( )( )( )( )( )( )( )( )

⇔≤+−−+−+−+−++−

⇔ 022822

1211112

2

xxxxxxxxxxxx

( )( )

( ) ( ) 022

2111

2

2

≤−+

⎟⎠⎞

⎜⎝⎛ −+−

⇔xx

xxxx.

me-40 naxazidan Cans, rom amonaxsnTa simravlea

[ [2 ;121 ;01 UU ⎥⎦⎤

⎢⎣⎡− .

$44. npevmjt!Tfndwfmj!vupmpcfcj!!

modulis gansazRvrebidan gamomdinareobs, rom rxf <)(

utoloba, sadac 0>r , utolobaTa Semdegi sistemis

tolfasia:

⎩⎨⎧

−><

,)()(

rxfrxf

romelic SeiZleba

rxfr <<− )(

ormagi utolobis saxiT Caiweros. amrigad rxf <)( utolobis amonaxsnTa simravle warmoadgens rxf <)( da

rxf −>)( utolobebis amonaxsnTa simravleebis TanakveTas.

analogiurad, rxf >)( utoloba, sadac 0>r , Semdeg

utolobaTa gaerTianebis tolfasia

⎢⎣

⎡−<

>.)(

)(rxf

rxf

21

+ + +

1 0 -1 _ _ _ + +

nax. 40

-2 2

Page 105: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

105

amrigad, rxf >)( utolobis amonaxsnTa simravle war-

moadgens rxf >)( da rxf −<)( utolobebis amonaxsnTa sim-

ravleebis gaerTianebas.

kerZod

raxraraxrrax +<<−⇔<−<−⇔<− ,

e. i. rax <− utolobis amonaxsnTa simravlea ] [rara +− ; .

analogiurad

⎢⎣

⎡−<+>

⇔⎢⎣

⎡−<−

>−⇔>−

,raxrax

raxrax

rax

e. i. rax >− utolobis amonaxsnTa simravlea

] [ ] [+∞+−∞− ;; rara U .

ganvixiloT magaliTebi:

1. amovxsnaT utoloba 3352 ≤+− xx .

bnpytob/!

⇔⎩⎨⎧

−≥+−

≤+−⇔≤+−

335335

3352

22

xxxx

xx

⎩⎨⎧

≥≤≤≤

⇔⎪⎩

⎪⎨⎧

≥+−

≤−⇔

.3,250

065

052

2

xxx

xx

xx

amrigad, miviReT utolobis amonaxsnTa simravle

[ ] [ ]5 ;32 ;0 U .

2. amovxsnaT utoloba: 253≥

−+

xx

.

bnpytob/!

⎢⎢⎢⎢

≤−

−++

≥−

+−+

⎢⎢⎢⎢

−≤−+

≥−+

⇔≥−+

05

1023

05

1023

253

253

253

xxx

xxx

xxxx

xx

⎢⎢⎢

<≤

≤<⇔

⎢⎢⎢⎢

≤−−

≤−−

⇔.5

37

135

0573

05

13

x

x

xxxx

amrigad, mocemuli utolobis amonaxsnTa simravlea

] ]13 ;5 5 ;37 U⎢⎣

⎡⎢⎣⎡

.

Page 106: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

106

3. davamtkicoT, rom Tu 0≥a , 0≥b , maSin

abba≥

+2

.

ganvixiloT WeSmariti utoloba ( ) 02≥− ba , saidanac

gveqneba

( ) ⇒≥+⇒≥+−⇒≥− abbabababa 20202

abba≥

+⇒

2.

SeiZleba vaCvenoT, rom Tu 01 ≥a , 02 ≥a ,K , 0≥na , maSin

2121 n

nn aaa

naaa

KL

≥+++ ∗

n

aaa n+++ L21 ricxvs ewodeba naaa ,,, 21 K ricxvebis

saSualo ariTmetikuli, xolo ricxvs nnaaa K21 amave

ricxvebis saSualo geometriuli.

amrigad, ramdenime arauaryofiTi ricxvis saSualo

ariTmetikuli metia an toli amave ricxvebis saSualo

geometriulze.

$45. sjdywjUj!njnefwspcb

Tu raime wesiT yovel naturalur n ricxvs

Seesabameba nx namdvili ricxvi, maSin vityviT, rom

mocemulia ricxviTi mimdevroba

KK ,,,, 21 nxxx .

1x -s ewodeba mimdevrobis pirveli wevri, 2x -s_

mimdevrobis meore wevri da a. S. nx –s mimdevrobis n –uri

an zogadi wevri ewodeba. Mmimdevrobas, romlis zogadi

wevria nx , mokled nx simboloTi aRniSnaven.∗

SevniSnoT, rom im SemTxvevaSic ki, rodesac mn xx = ,

mn ≠ es ricxvebi iTvlebian mimdevrobis gansxvavebul

wevrebad.

∗ toloba marTebulia maSin da mxolod maSin, roca naaa === L21 . ∗ zogjer gamoviyenebT gamoTqmas “ nx mimdevroba”.

Page 107: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

107

Mmimdevrobis mocemis bunebrivi wesia analizuri wesi,

romelic gviCvenebs Tu ra moqmedebebi unda CavataroT n –

ze, rom miviRoT mimdevrobis nx wevri. Mmimdevroba agreTve SeiZleba mocemuli iyos

rekurentuli damokidebulebiT. Ees wesi imaSi

mdgomareobs, rom mimdevrobis yoveli wevri, ramodenime

sawyisi wevris garda, romlebic Tavidanvea mocemuli,

miiReba mis win mdgom wevrebze garkveuli moqmedebebis

CatarebiT. GganvixiloT mimdevrobis ramodenime magaliTi.

1. mimdevroba, romlis zogadi wevria n

xn

1= , aris

Semdegi mimdevroba

KK ,1 ,,31 ,

21 ,1

n.

2. mimdevroba, romlis zogadi wevria 1+

=n

nxn , aris

Semdegi mimdevroba

K,43 ,

32 ,

21

.

3. ( )

nx

n

n

1−= toloba gansazRvravs Semdeg mimdevrobas:

( )KK ,1 ,,

41 ,

31 ,

21 ,1

n

n−−− .

4. davweroT mimdevroba, Tu misi zogadi wevria

1+=

nnxn . cxadia, rom

21

1 =x , 32

2 =x , K,43

3 =x

5. Tu mimdevrobis zogadi wevri mocemulia formuliT 1−= n

n aqx ( )0 ,0 ≠≠ qa , maSin

K, , , 2321 aqxaqxax === .

6. Tu ( )nnx 1−= , maSin gveqneba mimdevroba

( ) KK ,1 ,,1 ,1 ,1 n−−− .

7. vTqvaT 31 =a da 21 +=+ nn aa ; cxadia, rom

K,9 ,7 ,5 432 === aaa .

es mimdevroba mocemulia rekurentuli wesiT.

Tu ,axn = nebismieri Nn∈ , maSin mimdevrobas ewodeba

mudmivi mimdevroba.

geometriulad mimdevroba ricxviT wrfeze gamoisaxeba

wertilTa mimdevrobis saxiT, romelTa koordinatebi

Page 108: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

108

tolia mimdevrobis Sesabamisi elementebis. 41-e, 42-e da 43-e

naxazebze gamosaxulia Sesabamisad n

xn

1= , ( )

nx

n

n

1−= da

1+=

nnxn mimdevrobebi.

hbotbSwsfcb/! ricxvTa nx mimdevrobas ewodeba zemodan SemosazRvruli, Tu arsebobs iseTi M ricxvi, romelic

mimdevrobis yvela wevrze metia, xolo qvemodan

SemosazRvruli_Tu moiZebneba iseTi L ricxvi, romelic

naklebia mocemuli mimdevrobis yovel wevrze.

Tu mimdevroba SemosazRvrulia rogorc zemodan, ise

qvemodan, mas SemosazRvruli mimdevroba ewodeba.

Aadvili SesamCnevia, rom zemoT moyvanil magaliTebSi

1, 2, 3, 6 mimdevrobebi SemosazRvrulia. Mme-7 mimdevroba

SemosazRvrulia qvemodan. Mme-5 mimdevroba SemosazRvru-

lia, Tu 1≤q . Mme-5 mimdevroba qvemodan (zemodan) Semosaz-

Rvrulia, Tu 0>a ( )0<a da 1>q . Tu 1−<q , maSin mimdev-

roba ar aris SemosazRvruli.

hbotbSwsfcb/! nx mimdevrobas ewodeba araklebadi, Tu

LL ≤≤≤≤ nxxx 21 da arazrdadi, Tu LL ≥≥≥≥ nxxx 21 .

hbotbSwsfcb/ nx mimdevrobas ewodeba zrdadi, Tu

LL <<<< nxxx 21 da klebadi, Tu LL >>>> nxxx 21 .

cxadia zrdadi (klebadi) mimdevroba araklebadia (ara-

zrdadia).

Tu mimdevroba arazrdadia an araklebadi mas monoto-

nuri ewodeba.

4x 2x

121

31

41

1x3x4x0 2x

-1 21

31

− 41

1x 3x 0

nax. 41 nax. 42

••1

43

32

21

2x1x0 3x

nax. 43

Page 109: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

109

cxadia, rom zemoT moyvanil magaliTebSi 1, 2, 4, 5

( )0>q da 7 monotonuri mimdevrobebia, xolo 3, 5 ( )0<q da

6 mimdevrobebi ar arian monotonuri.

$46. bsjUnfujlvmj!qsphsftjb!!!

hbotbSwsfcb/ ricxviT mimdevrobas, romlis yoveli

wevri, dawyebuli meoredan, miiReba wina wevrisaTvis erTi

da imave ricxvis mimatebiT, ariTmetikuli progresia

ewodeba.

rogorc gansazRvrebidan Cans, ariTmetikuli progresi-

is nebismieri wevrisa da misi wina wevris sxvaoba erTi da

imave ricxvis tolia. e. i. Tu

KK ,,,, 21 naaa

ariTmetikuli progresiaa, maSin

LL =−==−=− −12312 nn aaaaaa .

am ricxvs ariTmetikuli progresiis sxvaoba ewodeba da d

asoTi aRiniSneba.

cxadia, rom Tu 0>d , maSin ariTmetikuli progresia

zrdadia, Tu 0<d _klebadi, xolo, Tu 0=d , maSin

progresia mudmiv mimdevrobas warmoadgens.

Tu na ariTmetikuli progresiis sxvaoba aris d , maSin

daa += 12 ,

daa += 23 ,

KKKK

daa nn += −− 21 ,

daa nn += −1 .

miRebuli ( )1−n tolobis SekrebiT gveqneba

( )dnaaaaaaaa nnnn 11221132 −+++++=++++ −−− LL ,

saidanac miviRebT

( )dnaan 11 −+= .

am formulas ariTmetikuli progresiis n –uri anu zogadi

wevris formula ewodeba.

ariTmetikuli progresiis nebismieri wevri, dawyebuli

meoredan, misi wina da momdevno wevrebis saSualo

ariTmetikulis tolia.

Page 110: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

110

marTlac, vTqvaT, 1−na , na da 1+na aris ariTmetikuli

progresiis nebismierad aRebuli sami momdevno wevri,

maSin ariTmetikuli progresiis gansazRvrebis Tanaxmad

nnnn aaaa −=− +− 11

e. i.

22 11

11+−

+−

+=⇔+= nn

nnnn

aaaaaa .

marTebulia Sebrunebuli debulebac: Tu ricxviTi

mimdevrobis yoveli wevri, dawyebuli meoredan, misi wina

da momdevno wevrebis saSualo ariTmetikulis tolia,

maSin es mimdevroba ariTmetikul progresias warmoadgens.

marTlac, Tu na mimdevrobis nebismieri sami momdevno

1−na , na da 1+na wevrebisaTvis WeSmaritia

211 +− +

= nnn

aaa

toloba, maSin

nnnnnnn aaaaaaa −=−⇔+= +−+− 11112 .

amrigad na mimdevrobis nebismieri wevrisa da misi wina

wevris sxvaoba erTi da igive ricxvia, rac imas niSnavs,

rom na ariTmetikuli progresiaa.

Tu ganvixilavT ariTmetikuli progresiis naaa ,,, 21 K

pirvel n wevrs, maSin boloebidan Tanabrad daSorebul

wevrTa jami mudmivi sididea da udris pirveli da bolo

wevrebis jams.

marTlac, ka da 1+−kna ( )nk ≤≤1 warmoadgenen

boloebidan Tanabrad daSorebul wevrebs da

( ) ( ) ( ) nknk aadnaadknadkaaa +=−++=−++−+=+ +− 111111 11 .

am Tvisebis gamoyenebiT gamoviyvanoT ariTmetikuli

progresiis pirveli n wevris jamis formula.

aRvniSnoT na ariTmetikuli progresiis pirveli n

wevris jami nS –iT da davweroT es jami orjer, amasTan

meoreSi SesakrebTa mimdevroba SevcvaloT:

nnnn aaaaaaS ++++++= −− 12321 L ,

12321 aaaaaaS nnnn ++++++= −− L .

am tolobebis SekrebiT gveqneba

( ) ( ) ( ) ( )+++++++++= −−− 32231212 aaaaaaaaS nnnnn L

( ) ( )121 aaaa nn ++++ − .

Page 111: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

111

miRebuli tolobis marjvena mxareSi ricxvTa TiToeuli

wyvilis jami ( )naa +1 –is tolia da aseT wyvilTa

raodenoba udris n –s, amitom

( )naaS nn += 12

saidanac

naaS nn 2

1 += .

ariTmetikuli progresiis n –uri wevris formulis

gaTvaliswinebiT, pirveli n wevris jamis formula

miiRebs saxes

( ) ndnaSn 2 12 1 −+

= .

$47. hfpnfusjvmj!qsphsftjb!!

hbotbSwsfcb/ ricxviT mimdevrobas, romlis pirveli

wevri gansxvavebulia nulisagan, xolo yoveli wevri,

dawyebuli meoredan, miiReba wina wevris erTsa da imave

nulisagan gansxvavebul ricxvze gamravlebiT, geometriu-

li progresia ewodeba.

rogorc gansazRvrebidan Cans, geometriuli progresiis

nebismieri wevris Sefardeba mis wina wevrTan erTi da

imave ricxvis tolia, e. i. Tu

KK ,,,, 21 nbbb

geometriuli progresiaa, maSin

LL ====−12

3

1

2

n

n

bb

bb

bb

.

am ricxvs geometriuli progresiis mniSvneli ewodeba da

q asoTi aRiniSneba.

Tu 0>q , maSin geometriuli progresia monotonuria,

xolo Tu 0<q _progresia arc zrdadia da arc klebadi.

Tu nb geometriuli progresiis mniSvnelia q , maSin

qbb 12 = ,

qbb 23 = ,

KKKK

qbb nn 21 −− = ,

qbb nn 1−= .

miRebuli ( )1−n tolobis gadamravlebiT gveqneba

Page 112: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

112

11221132

−−−− ⋅⋅⋅=⋅⋅ n

nnnn qbbbbbbbb KK ,

saidanac miviRebT 1

1−= n

n qbb .

am formulas geometriuli progresiis n –uri anu zogadi

wevris formula ewodeba.

dadebiTwevrebiani geometriuli progresiis nebismieri

wevri dawyebuli meoredan, misi wina da momdevno wevrebis

saSualo geometriulis tolia.

marTlac, vTqvaT 1−nb , nb da 1+nb aris dadebiTwevrebiani

geometriuli progresiis nebismierad aRebuli sami

momdevno wevri, maSin gansazRvrebis Tanaxmad:

n

n

n

n

bb

bb 1

1

+

= .

e. i.

11112

+−+− =⇔= nnnnnn bbbbbb .

marTebulia Sebrunebuli debulebac: Tu

dadebiTwevrebiani ricxviTi mimdevrobis yoveli wevri

dawyebuli meoredan, misi wina da momdevno wevrebis

saSualo geometriulis tolia, maSin es mimdevroba

geometriul progresias warmoadgens.

marTlac, Tu dadebiTwevrebiani nb mimdevrobis

nebismieri sami momdevno 1−nb , nb da 1+nb wevrebisaTvis

WeSmaritia

11 +−= nnn bbb

toloba, maSin

n

n

n

nnnn b

bbbbbb 1

111

2 +

+− =⇔= .

amrigad nb mimdevrobis nebismieri wevris Sefardeba

mis wina wevrTan, erTi da igive ricxvia, rac imas niSnavs,

rom nb geometriuli progresiaa.

$48. hfpnfusjvmj!qsphsftjjt!qjswfmj!n xfwsjt!!kbnjt!gpsnvmb!

aRvniSnoT nb geometriuli progresiis pirveli n

wevris jami nS –iT, e. i.

nnn bbbbS ++++= −121 L . (1)

Page 113: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

113

cxadia, Tu 1=q , maSin nbbb === L21 da nbSn ⋅= 1 . Tu 1≠q ,

maSin (1) tolobis orive mxare gavamravloT q –ze. gveqneba

qbqbqbqbqS nnn ++++=⋅ −121 L ,

anu

qbbbbqS nnn ++++= L32 . (2)

Tu (2) tolobas gamovaklebT (1)-s, miviRebT

1bqbSqS nnn −=− ,

aqedan

11

−−

=q

bqbS nn . (3)

geometriuli progresiis n –uri wevris formulis

gaTvaliswinebiT, pirveli n –wevris jamis formula

miiRebs saxes

( )1

11

−−

=qqbS

n

n . (4)

roca 1<q , geometriuli progresiis pirveli n wevris

jamis gamosaTvlelad mizanSewonilia (3) da (4)

formulebi ase gadavweroT

qqbbS n

n −−

=11 ,

( )qqbS

n

n −−

=111 .

$49. hfpnfusjvmj!qsphsftjjt!kbnj-!!

spdb! 1<q !

!

vTqvaT q aris nb geometriuli progresiis mniSvneli

da 1<q (q≠0), aseT SemTxvevaSi geometriul progresias

usasrulod klebadi geometriuli progresia ewodeba.

rogorc vnaxeT am progresiis pirveli n wevris jami Sn gamoiTvleba formuliT

( )qqbS

n

n −−

=111 .

aqedan

nn q

qb

qbS

−−

−=

1111 . (1)

am gamosaxulebis pirveli Sesakrebi mudmivia, meore

Sesakrebi Seicavs mamravlad qn-s. qn, roca 1<q xarisxis n

maCveneblis zrdasTan erTad miiswrafvis nulisaken. ami-

Page 114: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

114

tom, Tu usasrulod klebadi geometriuli progresiis

jams aRvniSnavT S-iT, (1) tolobidan miiReba

qbS−

=1

1 .

$50. lvUyvsj!tjejeffcjt!sbejbovmj!pnb!!

kuTxeebis gazomvis dros gamoiyeneba zomis sxvadasxva

erTeuli: 1 ,1 ,1 ′′′o da a. S. SemoviRoT kuTxis zomis kidev

erTi erTeuli.

hbotbSwsfcb/ im centraluri kuTxis sidides, romlis

Sesabamisi rkalis sigrZe radiusis tolia, radiani

ewodeba.

radgan naxevarwrewiris sigrZe rπ –is tolia, xolo

misi Sesabamisi centraluri kuTxis sidide 180o-ia, amitom

radiani π –jer naklebia 180o-ze, e. i.

1 rad 547157180 ′′′≈π

= oo

da piriqiT

1180π

=o rad 017,0≈ rad.

SemdgomSi aRniSvnas “radiani” gamovtovebT da davwerT

π= 2360o,

290 π

=o,

360 π

=o,

445 π

=o,

630 π

=o da a. S.

$51. usjhpopnfusjvmj!gvordjfcj!!

rogorc cnobilia, sibrtyis iseT gadaadgilebas, roca

nebismier OA sxivsa da mis Sesabamis 1OA sxivs Soris

kuTxis sidide α aris mudmivi, ewodeba mobruneba O

wertilis garSemo α kuTxiT da α0R simboloTi aRiniSneba.

Tu mobruneba xdeba saaTis isris moZraobis sawinaaRmdego

mimarTulebiT, maSin miRebulia, rom 0>α , xolo

Tu_saaTis isris moZraobis mimarTulebiT, maSin 0<α ;

0=α Seesabameba sibrtyis igivur asaxvas. aqedan

gamomdinare, π≤α≤π− , magram, Tu mobrunebas ganvixilavT,

rogorc brunvis Sedegs, maSin mobrunebis kuTxe SeiZleba

iyos nebismieri; amasTan cxadia, rom απ+α = 0

20 RR k

, Zk ∈ .

Page 115: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

115

ganvixiloT wrewiri, romlis centri koordinatTa

saTaveSia, xolo radiusi 1-is tolia. aseT wrewirs

erTeulovani wrewiri ewodeba.

vTqvaT 0P aris wertili koordinatebiT (1;0). tP –Ti

aRvniSnoT wertili, romelSic

aisaxeba 0P koordinatTa saTavis

garSemo t radianiT mobrunebisas

(nax. 44). tP wertilis ty ordinats

t ricxvis ( t radiani kuTxis)

sinusi ewodeba da tsin simboloTi

aRiniSneba, xolo tx abscisas t ricxvis ( t radiani kuTxis)

kosinusi ewodeba da tcos

simboloTi aRiniSneba, e. i.

tyt sin= , txt cos= .

tsin da tcos warmoadgenen t argumentis funqciebs,

romlebic gansazRvrulia nebismieri t –saTvis, radgan

nebismieri t radianiT mobrunebas Seesabameba erTaderTi

savsebiT gansazRvruli tP wertili.

tsin da tcos funqciebis mniSvnelobaTa simravlea [-1;1],

radgan erTeulovani wrewiris wertilebis TiToeuli

koordinati Rebulobs mxolod [-1;1] segmentis yvela

mniSvnelobas.

t ricxvis (radianis) sinusis Sefardebas kosinusTan t ricxvis (radianis) tangensi ewodeba da tgt simboloTi

aRiniSneba. e. i.

tttgt

cossin

= .

cxadia, rom tgt funqcia gansazRvrulia, roca 0cos ≠t ,

magram 0cos =t mxolod maSin, rodesac tP wertili Oy

RerZze mdebareobs, e. i. roca kt π+π

=2

, Zk ∈ .

amrigad, tgt funqcia gansazRvrulia yvelgan, garda

kt π+π

=2

, Zk ∈ ricxvebisa.

ganvixiloT 1=x wrfe, romelsac tangensebis RerZi

ewodeba. nebismier kt π+π

≠2

, Zk ∈ ricxvs SeiZleba

1

10P

tP

y

x

ty

t

tx

nax. 44

Page 116: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

116

SevusabamoT tangensebis RerZis erTaderTi tA wertili,

romelic warmoadgens tOP wrfis tangensebis RerZTan

gadakveTis wertils (nax. 45). t ricxvis tangensi udris

tangensebis RerZze misi Sesabamisi tA wertilis ordinats.

tsin da tcos funqciebisagan gansxvavebiT, tgt funqciis mniSvnelobaTa simravlea R , radgan tangensebis RerZis

nebismieri tA wertilis ordinati warmoadgens tOAP0

kuTxis tangenss (nax. 45).

t ricxvis (radianis) kosinusis Sefardebas sinusTan t ricxvis (radianis) kotangensi ewodeba da ctgt simboloTi

aRiniSneba, e. i.

ttctgt

sincos

= .

cxadia, rom ctgt funqcia gansazRvrulia, roca 0sin ≠t ,

magram 0sin =t mxolod maSin, rodesac tP wertili Ox RerZze mdebareobs, e. i. roca kt π= , Zk ∈ .

amrigad, ctgt funqcia gansazRvrulia yvelgan, garda

kt π= , Zk ∈ , ricxvebisa.

ganvixiloT 1=y wrfe, romelsac kotangensebis RerZi

ewodeba. nebismier kt π≠ , Zk ∈ , ricxvs SeiZleba

SevusabamoT kotangensebis RerZis erTaderTi tA wertili,

romelic warmoadgens tOP wrfis kotangensebis RerZTan

gadakveTis wertils (nax. 46). t ricxvis kotangensi udris kotangensebis RerZze misi Sesabamisi tA wertilis

abscisas.

ctgt funqciis mniSvnelobaTa simravlea R , radgan

kotangensebis RerZis nebismieri tA wertilis abscisa

warmoadgens tOAP0 kuTxis kotangenss (nax. 46).

0P x

tA

0P

tP

y

xt

nax. 45

0

tA

tP

y

t

nax. 46

0

Page 117: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

117

tsin , tcos , tgt da ctgt funqciebs trigonometriuli

funqciebi ewodeba.

trigonometriul funqciaTa

gansazRvrebis safuZvelze SeiZ-

leba davadginoT maTi niSnebi im

meoTxedebSi, romlebadac iyofa

sibrtye sakoordinato RerZebiT.

tsin funqcia I da II meoTxedSi

dadebiTia, xolo III da IV

meoTxedSi_uaryofiTi, radgan I

da II meoTxedSi moTavsebuli

nebismieri wertilis ordinati

dadebiTia, xolo III da IV

meoTxedSi moTavsebuli nebismie-

ri wertilis ordinati_uaryofiTi (nax. 47).

analogiurad SeiZleba vaCvenoT, rom tcos funqcia I da

IV meoTxedSi dadebiTia, xolo II da III meoTxedSi _

uaryofiTi (nax. 48).

radgan tsin da tcos funqciebs I da III meoTxedSi

erTnairi niSani aqvT, xolo II da IV meoTxedSi _

mopirdapire, amitom tgt da ctgt funqciebi I da III

meoTxedSi dadebiTia, xolo II da IV meoTxedSi _

uaryofiTi (nax. 49).

y

x

nax. 47

0

+ +

_ _

y

x

nax. 48

0

_ +

_ +

sinusis niSnebi kosinusis niSnebi

y

x

nax. 49

0

_ +

+ _

tangensis da kotangensis

niSnebi

Page 118: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

118

$52. usjhpopnfusjvmj!gvordjfcjt!nojTwofmpcbUb!hbnpUwmb!bshvnfoujt!phjfsUj!nojTwofmpcjtbUwjt!!

!!

gamovTvaloT trigonometriul funqciaTa mniSvnelo-

bebi, 0, πππππ ,2

,3

,4

,6

da π23

argumentebisaTvis.

ganvixiloT erTeulovani wrewiris )0;1(0P , )1;0(2πP ,

)0;1(−πP da )1;0(2

3 −πP wertilebi (nax. 50). trigonometriul

funqciaTa gansazRvrebidan gamomdinare gvaqvs: 00sin = ,

10cos = , 010

0cos0sin0 ===tg , 0ctg ar arsebobs; 1

2sin =

π,

02

cos =π

, 2πtg ar arsebobs, 0

10

2sin

2cos

2==

π

π

=πctg ; 0sin =π ,

1cos −=π , 0=πtg , πctg ar arsebobs; 12

3sin −=π

, 02

3cos =π

,

23πtg ar arsebobs, 0

23

=πctg .

trigonometriul funqciaTa gansazRvrebidan gvaqvs:

21

21

6sin ===

π OBAB

marTkuTxa samkuTxedSi 30o-iani kuTxis mopirdapire

kaTetis Tvisebis Tanaxmad (nax. 51);

=−==π 22

6cos ABOBAO

23πP

2πP

πP 0P

y

x

nax. 50

0

y

x

nax. 51

0 A

B

Page 119: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

119

23

411 =−=

(piTagoras Teoremis Tanaxmad);

33

31

23

21

6cos

6sin

6===

π

π

=πtg ; 3

2123

6sin

6cos

6==

π

π

=πctg .

4cos

4sin π

===π OAAB , radgan OAB samkuTxedi tolferdaa

(nax. 52). piTagoras Teoremis Tanaxmad

22

2112 22 ==⇒== OAOBAO .

e. i.

22

4cos

4sin =

π=

π;

1

4cos

4sin

4=

π

π

=πtg ; 1

4sin

4cos

4=

π

π

=πctg .

21

21

3cos ===

π OBAO

(marTkuTxa samkuTxedSi 30o-iani kuTxis mopirdapire

kaTetis Tvisebis Tanaxmad (nax. 53));

23

411

3sin 22 =−=−==

π OAOBAB

(piTagoras Teoremis Tanaxmad);

B

0P

y

x

nax. 52

0

y

x

nax. 53

0 A

B

A

Page 120: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

120

3

2123

3cos

3sin

3==

π

π

=πtg ;

33

31

23

21

3sin

3cos

3===

π

π

=πctg .

trigonometriul funqciaTa gamoTvlili mniSvnelo-

bebis safuZvelze SevadginoT Semdegi cxrili:

α o00 = o30

6=

π o45

4=

π o60

3=

π o90

2=

π o180=π

o2702

3=

π

αsin

0 21

22

23 1 0 1−

αcos

1 23

22 2

1 0 1− 0

αtg 0 33 1 3 _ 0 _

αctg

_ 3 1 33 0 _ 0

$53. xy sin= gvordjjt!Uwjtfcfcj!eb!hsbgjlj!!

1. xy sin= funqciis gansazRvris area RyD =)( , xolo

mniSvnelobaTa simravle_ [ ]1;1)( −=yE .

2. xy sin= funqcia kentia, radgan nebismieri x –isaTvis

xx sin)sin( −=− , vinaidan abscisTa Re-

rZis mimarT simetriuli xP da xP−

wertilebis ordinatebi gansxvavde-

bian mxolod niSniT (nax. 54).

3. xy sin= funqcia periodulia

da misi umciresi dadebiTi periodia

π2 . marTlac, radgan, nebismieri x –isaTvis

xx RR 02

0 =π+, amitom π2 warmoa-

dgens erT-erT periods. vaCvenoT,

rom igi umciresi dadebiTi periodia. Tu davuSvebT, rom

] [π2;0∈l aris periodi, maSin nebismieri x –isaTvis

xlx sin)sin( =+ . kerZod, roca 0=x , miviRebT tolobas

0sin =l ,

xP

xP−

y

x

nax. 54

0

Page 121: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

121

romelic marTebulia ] [π2;0 Sualedis mxolod erTi π=l

mniSvnelobisaTvis, radgan es ricxvi aris erTaderTi

aRniSnuli Sualedidan, romlis Sesabamisi wertili

erTeulovan wrewirze, abscisTa RerZze Zevs. magram π ar

warmoadgens xsin –is periods, radgan 12

sin =π

, xolo

12

3sin2

sin −=π

=⎟⎠⎞

⎜⎝⎛ π+π

.

4. xy sin= funqcia zrdadia ⎥⎦⎤

⎢⎣⎡−

2;

2ππ

SualedSi, radgan

rodesac x izrdeba 2π

− –dan 2π–mde, xP -is ordinati

izrdeba –1-dan 1-mde. analogiurad SeiZleba vaCvenoT, rom

xsin funqcia ⎥⎦⎤

⎢⎣⎡

23;

2ππ

SualedSi klebulobs 1-dan –1-mde.

radgan xsin periodulia periodiT π2 , amitom cxadia, rom

igi zrdadia nebismier ⎥⎦⎤

⎢⎣⎡ ++− kk ππππ 2

2;2

2, Zk ∈ , saxis

SualedSi, xolo klebadia nebismier ⎥⎦⎤

⎢⎣⎡ ++ kk ππππ 2

23;2

2,

Zk ∈ , saxis SualedSi.

ganxiluli Tvisebebis safuZvelze avagoT xy sin=

funqciis grafiki.

vinaidan ⎥⎦⎤

⎢⎣⎡

2;0 π

SualedSi xsin

funqcia izrdeba 0-dan 1-mde, xolo

misi mniSvnelobebi 6π,

4π da

3π–ze

Sesabamisad aris 21,

22 da

23,

amitom, am SualedSi xy sin= funqci-

is grafiks aqvs saxe (nax. 55).

xsin funqciis grafiki simetriulia 2π

=x wrfis

mimarT, radgan nebismieri x –isaTvis

⎟⎠⎞

⎜⎝⎛ +π

=⎟⎠⎞

⎜⎝⎛ −π xx

2sin

2sin ;

y

x02π

nax. 55

Page 122: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

122

marTlac, x

P−

π2

da x

P+

π2

wertilebi

simetriulia Oy RerZis mimarT (nax.

56), amitom maTi ordinatebi tolia. aqedan

gamomdinare, xy sin= funqciis grafiks

[ ]π;0 SualedSi aqvs saxe (nax. 57).

xsin funqciis grafiki simetriulia

koordinatTa saTavis mimarT, radgan

igi kenti funqciaa. amitom [ ]ππ ;−

SualedSi am funqciis grafiks aqvs saxe (nax. 58).

xsin funqcia periodulia periodiT π2 , amitom

sabolood mis grafiks eqneba saxe (nax. 59). xy sin=

funqciis grafiks sinusoida ewodeba.

rogorc xsin funqciis grafikis agebis sqemidan Cans,

sinusoidis asagebad sakmarisia vicodeT xy sin= funqciis

grafiki ⎥⎦⎤

⎢⎣⎡

2;0 π

SualedSi.

xP

+π2

xP

−π2

2πy

x

nax. 56

0

π2π

y

x0

nax. 57

02π

y

x

nax. 58

π π2

y

x0π3

25π

23π

2π−

π−23π−π−2

25π−

nax. 59

Page 123: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

123

$54. xy arcsin= gvordjjt!Uwjtfcfcj!eb!hsbgjlj!!

xy sin= funqcia zrdadia ⎥⎦⎤

⎢⎣⎡−

2;

2ππ

SualedSi, amitom

arsebobs misi Seqceuli funqcia am SualedSi, romelsac

arksinusi ewodeba da xarcsin simboloTi aRiniSneba.

radgan xsin funqcia ⎥⎦⎤

⎢⎣⎡−

2;

2ππ

SualedSi Rebulobs yvela

mniSvnelobas [-1;1] Sualedidan, amitom xy arcsin= funqciis

gansazRvris are [ ]1;1)(arcsin −=xD , xolo mniSvnelobaTa

simravle_ ⎥⎦⎤

⎢⎣⎡−=

2;

2)(arcsin ππxE .

cxadia, Tu 11 ≤≤− a , maSin aarcsin warmoadgens im

kuTxis sidides ⎥⎦⎤

⎢⎣⎡−

2;

2ππ Sualedidan, romlis sinusi

udris a –s, e. i.

aa =)sin(arcsin . SeiZleba vaCvenoT, rom

xx arcsin)arcsin( −=− , amitom xy arcsin= funqcia kentia. xy arcsin= funqcia zrdadia, rogorc zrdadi funqciis Seqceuli funqcia da radgan urTierTSeqceul funqciaTa

grafikebi simetriulia xy = wrfis mimarT, amitom am

funqciis grafiks aqvs saxe (nax. 60).

y

x

1 -1

nax. 60

Page 124: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

124

$55. xy cos= gvordjjt!Uwjtfcfcj!eb!hsbgjlj!!

1. xy cos= funqciis gansazRvris

area RyD =)( , xolo mniSvnelobaTa

simravle_ ]1;1[)( −=yE .

2. xy cos= funqcia luwia, radgan

nebismieri x –isaTvis xx cos)cos( =− ,

vinaidan abscisTa RerZis mimarT

simetriuli xP da xP− wertilebis

abscisebi tolia (nax. 61).

3. xy cos= funqcia periodulia da

misi umciresi dadebiTi periodia π2 . marTlac, radgan

nebismieri x –isaTvis xx RR 0

20 =π+

, amitom π2 warmoadgens

erT-erT periods. vaCvenoT, rom igi umciresi dadebiTi

periodia. Tu davuSvebT, rom ] [π2;0∈l aris periodi, maSin

nebismieri x –isaTvis xlx cos)cos( =+ . kerZod, roca 0=x ,

miviRebT tolobas

1cos =l ,

romelic ar aris marTebuli l –is arcerTi

mniSvnelobisaTvis ] [π2;0 Sualedidan.

4. xy cos= funqcia zrdadia [ ]0;π− SualedSi, radgan

rodesac x izrdeba π− –dan 0-mde, xP -is abscisa izrdeba

-1-dan 1-mde. analogiurad SeiZleba vaCvenoT, rom xcos funqcia [ ]π;0 SualedSi klebulobs 1-dan –1-mde. radgan

xcos periodulia periodiT π2 , amitom cxadia, rom igi

zrdadia nebismier [ ]kk πππ 2;2+− , Zk ∈ , saxis SualedSi,

xolo klebadia nebismier [ ]kk πππ 2;2 + , Zk ∈ , saxis

SualedSi.

ganxiluli Tvisebebis safuZvelze avagoT xy cos= funqciis grafiki.

vinaidan ⎥⎦⎤

⎢⎣⎡

2;0 π

SualedSi xy cos=

funqcia klebulobs 1-dan 0-mde,

xolo misi mniSvnelobebi 6π,

4π da

3π–ze Sesabamisad aris

23,

22 da

xP

xP−

y

x

nax. 61

0

y

x02π

nax. 62

Page 125: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

125

21, amitom am SualedSi xy cos= funqciis grafiks aqvs

saxe (nax. 62).

xcos funqciis grafiki simetriulia 2π

=x wertilis

mimarT, radgan nebismieri x –isaTvis

⎟⎠⎞

⎜⎝⎛ +π

−=⎟⎠⎞

⎜⎝⎛ −π xx

2cos

2cos ;

marTlac x

P−

π2

da x

P+

π2

wertilebi simetriulia Oy RerZis

mimarT (nax. 56) da amitom maTi abscisebi gansxvavdebian

mxolod niSniT. aqedan gamomdinare, xy cos= funqciis

grafiks [ ]π;0 SualedSi aqvs saxe (nax. 63).

xcos funqciis grafiki simetriulia Oy RerZis mimarT,

radgan igi luwi funqciaa. amitom [ ]ππ ;− SualedSi am

funqciis grafiks aqvs saxe (nax. 64).

xcos funqcia periodulia periodiT π2 , amitom sabo-

lood mis grafiks eqneba saxe (nax. 65).

xy cos= funqciis grafiks kosinusoida ewodeba.

rogorc funqciis grafikis agebis sqemidan Cans,

π− ππ

0 2π x

y

nax. 63

y

0 2π

−2π x

nax. 64

ππ−

25π−

23π

y

x0π3

25ππ2

2π−

23π−π−2

nax. 65

27ππ−3

Page 126: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

126

kosinusoidis asagebad sakmarisia vicodeT xy cos=

funqciis grafiki ⎥⎦⎤

⎢⎣⎡

2;0 π

SualedSi.

$56. xy arccos= gvordjjt!Uwjtfcfcj!eb!hsbgjlj!!

xy cos= funqcia klebadia [ ]π;0 SualedSi, amitom

arsebobs misi Seqceuli funqcia am SualedSi, romelsac

arkkosinusi ewodeba da xarccos simboloTi aRiniSneba.

radgan xcos funqcia [ ]π;0 SualedSi Rebulobs yvela

mniSvnelobas [-1;1] Sualedidan, amitom xy arccos= funqciis

gansazRvris are ]1;1[)(arccos −=xD , xolo mniSvnelobaTa

simravle_ [ ]π;0)(arccos =xE . cxadia, Tu 11 ≤≤− a , maSin

aarccos warmoadgens im kuTxis sidides [ ]π;0 Sualedidan,

romlis kosinusi udris a –s, e. i.

aa =)cos(arccos .

SeiZleba vaCvenoT, rom

xx arccos)arccos( −π=− . xy arccos= funqcia klebadia, ro-

gorc klebadi funqciis Seqceuli

funqcia da radgan urTierTSeqceul

funqciaTa grafikebi simetriulia

xy = wrfis mimarT, amitom am fun-

qciis grafiks aqvs saxe (nax. 66).

§57. tgxy = gvordjjt!Uwjtfcfcj!eb!hsbgjlj!!

1. tgxy = funqciis gansazRvris area yvela namdvil

ricxvTa simravle, garda kπ+π2

, Zk ∈ , saxis ricxvebisa,

xolo mniSvnelobaTa simravlea R .

2. tgxy = funqcia kentia, radgan nebismieri x –isaTvis

gansazRvris aridan

tgxxx

xxxtg −=

−=

−−

=−cossin

)cos()sin()( .

π

0

x

y

1 -1 nax. 66

Page 127: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

127

3. tgxy = funqcia periodulia da misi umciresi

dadebiTi periodia π . marTlac, x -is nebismieri

mniSvnelobisaTvis gansazRvris aredan x da π±x

ricxvebi gamoisaxebian erTeulovani wrewiris xP da π±xP

wertilebiT, romlebic simetriulia koordinatTa O

saTavis mimarT (nax. 67), amitom am

ricxvebis Sesabamisi wertilebi tange-

nsebis RerZze erTi da igivea. e. i.

tgxxtg =π± )( .

amrigad π warmoadgens erT-erT peri-

ods. vaCvenoT, rom igi umciresi dade-

biTi periodia. Tu davuSvebT, rom

] [π;0∈l aris periodi, maSin nebismieri

x –isaTvis

tgxlxtg =+ )( .

kerZod, roca 0=x , miviRebT

0=tgl

tolobas, romelic ar aris marTebuli l –is arcerTi

mniSvnelobisaTvis ] [π;0 Sualedidan.

4. tgxy = funqcia zrdadia ⎢⎣⎡

⎥⎦⎤−

2;

2ππ

SualedSi, radgan,

rodesac x izrdeba 2π

− –dan 2π–mde tangensebis RerZze

misi Sesabamisi wertilis ordinati izrdeba −∞ –dan +∞ –

mde. radgan tgx periodulia periodiT π , amitom, cxadia,

rom igi zrdadia nebismier ⎢⎣⎡

⎥⎦⎤ ++− kk ππππ

2;

2, Zk ∈ , saxis

SualedSi.

ganxiluli Tvisebebis safuZvelze avagoT tgxy =

funqciis grafiki.

vinaidan ⎢⎣⎡

⎢⎣⎡

2;0 π

SualedSi tgx funqcia izrdeba 0-dan

+∞ –mde, xolo misi mniSvnelobebi 6π,

4π da

3π–ze

Sesabamisad aris 33, 1 da 3 , amitom am SualedSi

funqciis grafiks aqvs saxe (nax. 68).

xP

π±xP

y

x

nax. 67

0

Page 128: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

128

tgx funqciis grafiki simetriulia koordinatTa

saTavis mimarT, radgan igi kenti funqciaa. amitom ⎢⎣⎡

⎥⎦⎤−

2;

2ππ

SualedSi am funqciis grafiks aqvs saxe (nax. 69).

tgx funqcia periodulia periodiT π , amitom mis grafiks aqvs saxe (nax. 70).

tgxy = funqciis grafiks tangensoida ewodeba.

§58. arctgxy = gvordjjt!Uwjtfcfcj!eb!hsbgjlj!!

tgxy = funqcia zrdadia ⎢⎣⎡

⎥⎦⎤−

2;

2ππ

SualedSi, amitom

arsebobs misi Seqceuli funqcia am SualedSi, romelsac

arktangensi ewodeba da arctgx simboloTi aRiniSneba.

333

x

y

02π

nax. 68

y

0 x

nax. 69

y

x02

5π− π2−

23π

−π−

−2

5ππ22

3ππ2π

nax. 70

Page 129: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

129

radgan tgx funqcia ⎢⎣⎡

⎥⎦⎤−

2;

2ππ

SualedSi Rebulobs yvela

mniSvnelobas R –dan, amitom arctgxy = funqciis

gansazRvris are RarctgxD =)( , xolo mniSvnelobaTa

simravle_ ⎢⎣⎡

⎥⎦⎤−=

2;

2)( ππarctgxE . cxadia, rom nebismieri a

ricxvisaTvis arctga warmoadgens im kuTxis sidides

⎢⎣⎡

⎥⎦⎤−

2;

2ππ

Sualedidan, romlis tangensi udris a –s, e. i.

aarctgatg =)( .

SeiZleba vaCvenoT, rom

arctgxxarctg −=− )( ,

amitom arctgxy = funqcia kentia.

arctgxy = funqcia zrdadia, rogorc zrdadi funqciis

Seqceuli funqcia da radgan urTierTSeqceul funqciaTa

grafikebi simetriulia xy = wrfis mimarT, amitom am

funqciis grafiks aqvs saxe (nax. 71).

§59. ctgxy = gvordjjt!Uwjtfcfcj!eb!hsbgjlj!

! 1. ctgxy = funqciis gansazRvris area yvela namdvili

ricxvis simravle, garda kπ , Zk ∈ , saxis ricxvebisa,

xolo mniSvnelobaTa simravlea R .

x

y

0

nax. 71

Page 130: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

130

2. ctgxy = funqcia kentia, radgan nebismieri x –isaTvis

gansazRvris aridan

ctgxx

xxxxctg −=

−=

−−

=−sin

cos)sin()cos()( .

3. ctgxy = funqcia periodulia da misi umciresi

dadebiTi periodia π . marTlac x –is nebismieri

mniSvnelobisaTvis gansazRvris aridan x da π±x

ricxvebi gamoisaxebian erTeulovani wrewiris xP da π±xP

wertilebiT, romlebic simetriulia koordinatTa O

saTavis mimarT (nax. 72), amitom am ricxvebis Sesabamisi

wertilebi kotangensebis RerZze erTidaigivea. e. i.

ctgxxctg =π± )( .

amrigad, π warmoadgens erT-erT periods. vaCvenoT, rom

igi umciresi dadebiTi periodia. Tu

davuSvebT, rom ] [ ;0 π∈l aris perio-

di, maSin nebismieri x –isaTvis

ctgxlxctg =+ )( .

kerZod, roca 2π

=x , miviRebT tolo-

bas:

02

=⎟⎠⎞

⎜⎝⎛ +π lctg ,

romelic ar aris marTebuli l –is arcerTi mniSvnelobi-

saTvis ] [ ;0 π Sualedidan.

4. ctgxy = funqcia klebadia ] [ ;0 π SualedSi, radgan,

rodesac x izrdeba 0-dan π –mde, kotangensebis RerZze

misi Sesabamisi wertilis abscisa klebulobs +∞ –dan −∞ –

mde. radgan ctgx periodulia periodiT π , amitom cxadia, rom igi klebadia nebismier ] [ ; kk πππ + , Zk ∈ , saxis

SualedSi.

ganxiluli Tvisebebis safuZvelze avagoT ctgxy =

funqciis grafiki.

vinaidan ⎥⎦⎤

⎥⎦⎤

2 ;0 π

SualedSi ctgx funqcia klebulobs

+∞ –dan 0-mde, xolo misi mniSvnelobebi 6π,

4π da

3π–ze

xP

π±xP

y

x

nax. 72

0

Page 131: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

131

Sesabamisad aris 3 , 1 da 33, amitom am SualedSi

funqciis grafiks aqvs saxe (nax. 73).

ctgx funqciis grafiki simetriulia 2π

=x wertilis

mimarT, radgan nebismieri kx π+π

≠2

, Zk ∈ , ricxvisaTvis

⎟⎠⎞

⎜⎝⎛ +π

−=⎟⎠⎞

⎜⎝⎛ +π

⎟⎠⎞

⎜⎝⎛ +π

−=

⎟⎠⎞

⎜⎝⎛ −π

⎟⎠⎞

⎜⎝⎛ −π

=⎟⎠⎞

⎜⎝⎛ −π xctg

x

x

x

xxctg

22

sin

2cos

2sin

2cos

2.

aqedan gamomdinare, ctgxy = funqciis grafiks ] [π;0

SualedSi aqvs saxe (nax. 74).

ctgx funqcia periodulia periodiT π , amitom mis gra-fiks aqvs saxe (nax. 75).

x

y

0 π2π

nax. 74

13

y

x02π

nax. 73

33

Page 132: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

132

ctgxy = funqciis grafiks kotangensoida ewodeba.

§60. arcctgxy = gvordjjt!Uwjtfcfcj!eb!hsbgjlj!!

ctgxy = funqcia klebadia ] [ ;0 π SualedSi, amitom

arsebobs misi Seqceuli funqcia am SualedSi, romelsac

arkkotangensi ewodeba da arcctgx simboloTi aRiniSneba.

radgan ctgx funqcia ] [ ;0 π SualedSi Rebulobs yvela

mniSvnelobas R –dan, amitom arcctgxy = funqciis

gansazRvris are RarcctgD =)( , xolo mniSvnelobaTa

simravle_ ] [ ;0 )( π=arcctgE . cxadia, nebismieri a

ricxvisaTvis arcctga warmoadgens im kuTxis sidides ] [ ;0 π

Sualedidan, romlis kotangensi udris a –s, e. i.

aarcctgactg =)( .

SeiZleba vaCvenoT, rom

arcctgxxarcctg −π=− )( .

arcctgxy = funqcia

klebadia, rogorc kleba-

di funqciis Seqceuli

funqcia da radgan urTi-

erTSeqceul funqciaTa

grafikebi simetriulia

xy = wrfis mimarT, amitom

am funqciis grafiks aqvs

saxe (nax. 76).

π3− π3

y

x02

5π−

π2−2

3π−

π−2π

−2

5ππ22

3ππ2π

nax. 75

x

y

0

nax. 76

Page 133: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

133

§61. ebnpljefcvmfcb!fsUj!eb!jhjwf!bshvnfoujt!usjhpopnfusjpvm!gvordjfct!Tpsjt!!

!

1. vinaidan erTeulovani wrewiris nebismieri ( )ααα yxP ,

wertilis koordinatebi akmayofileben pirobas 122 =+ αα yx ,

xolo α=α cosx , α=α siny , amitom gvaqvs:

1sincos 22 =α+α . (1)

2. Tu k2π

≠α , Zk ∈ , maSin

1=α⋅α ctgtg . (2)

marTlac,

1sincos

cossin

=αα

⋅αα

=α⋅α ctgtg .

3. Tu kπ+π≠α

2, Zk ∈ , maSin gvaqvs igiveoba

α=α+

22

cos11 tg . (3)

marTlac

α=

αα+α

=αα

+=α+22

22

2

22

cos1

cossincos

cossin11 tg .

4. Tu kπ≠α , Zk ∈ , maSin gvaqvs igiveoba

α=α+ 2

2

sin11 ctg . (4)

marTlac

α=

αα+α

=αα

+=α+22

22

2

22

sin1

sincossin

sincos11 ctg .

(1)_(4) formulebi saSualebas gvaZlevs erT-erTi

trigonometriuli funqciis mniSvnelobis mixedviT

vipovoT amave argumentis danarCeni trigonometriuli

funqciebi, Tu cnobilia romel meoTxedSia argumenti.

nbhbmjUj/ vipovoT αsin , αcos da αctg , Tu 43

−=αtg ,

⎢⎣⎡

⎥⎦⎤∈ ππα ;

2. (2) formulis Tanaxmad

341

−=α

=αtg

ctg .

Page 134: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

134

Tu gaviTvaliswinebT, rom α moTavsebulia meore

meoTxedSi, sadac kosinusi uaryofiTia, (3) formulidan

gveqneba

54

1691

11

1cos2

−=+

−=α+

−=αtg

.

αsin gamoiTvleba Semdegnairad

53

54

43cossin =⎟

⎠⎞

⎜⎝⎛−⎟⎠⎞

⎜⎝⎛−=α⋅α=α tg .

§62. psj!bshvnfoujt!kbnjtb!eb!tywbpcjt!!usjhpopnfusjvmj!gvordjfcj!

! mtkicdeba, rom nebismieri α da β –saTvis adgili aqvs

tolobebs:

( ) βα+βα=β+α sincoscossinsin ,

( ) βα−βα=β−α sincoscossinsin ,

( ) βα−βα=β+α sinsincoscoscos ,

( ) βα+βα=β−α sinsincoscoscos .

vaCvenoT, rom Tu kπ+π≠α

2, nπ+π

≠β2

da mπ+π≠β+α

2,

( )Zmnk ∈,, , maSin

( )β⋅α−β+α

=β+αtgtg

tgtgtg1

.

marTlac

=βα−βαβα+βα

=

ββ

⋅αα

ββ

+αα

=β⋅α−β+α

sinsincoscossincoscossin

cossin

cossin1

cossin

cossin

1 tgtgtgtg

( )( ) ( )β+α=

β+αβ+α

= tgcossin

.

analogiurad SeiZleba vaCvenoT, rom:

( )β⋅α+β−α

=β−αtgtg

tgtgtg1

, kπ+π≠α

2, nπ+π

≠β2

, mπ+π≠β−α

2,

( )Zmnk ∈,, .

Page 135: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

135

jamisa da sxvaobis trigonometriul funqciaTa

gamosaTvlel formulebs Sekrebis formulebi ewodeba.

§63. ebzwbojt!gpsnvmfcj!!

rogorc cnobilia, nebismieri x ricxvi SeiZleba

Caiweros α+π= kx 2 saxiT, sadac π<α≤ 20 , Zk ∈ . aqedan

gamomdinare, radgan sinus da kosinus funqciebis periodia

π2 , am funqciebis mniSvnelobaTa gamoTvla nebismieri x argumentisaTvis daiyvaneba αsin da αcos funqciebis

mniSvnelobebis gamoTvlamde, sadac [ [πα 2;0∈ . ufro metic

xsin da xcos funqciebis mniSvnelobaTa gamoTvla

SeiZleba daviyvanoT αsin –s da αcos –s moZebnamde, sadac

⎥⎦⎤

⎢⎣⎡∈

2;0 πα . amis saSualebas gvaZlevs e. w. dayvanis

formulebi, romelTac aqvT Semdegi saxe:

α=⎟⎠⎞

⎜⎝⎛ α+π cos2

sin , α−=⎟⎠⎞

⎜⎝⎛ α+π sin2

cos ,

α=⎟⎠⎞

⎜⎝⎛ α−π cos2

sin , α=⎟⎠⎞

⎜⎝⎛ α−π sin2

cos ,

( ) α−=α+π sinsin , ( ) α−=α+π coscos ,

( ) α=α−π sinsin , ( ) α−=α−π coscos ,

α−=⎟⎠⎞

⎜⎝⎛ α+π cos

23sin , α=⎟

⎠⎞

⎜⎝⎛ α+π sin

23cos ,

α−=⎟⎠⎞

⎜⎝⎛ α−π cos

23sin , α−=⎟

⎠⎞

⎜⎝⎛ α−π sin

23cos .

es formulebi marTebulia nebismieri α –saTvis da

maTi damtkiceba SeiZleba Sekrebis formulebis

saSualebiT. magaliTad,

α=α⋅+α⋅=απ

+απ

=⎟⎠⎞

⎜⎝⎛ α+π cossin0cos1sin

2coscos

2sin

2sin .

analogiurad, radgan tangensisa da kotangensis

periodia π , xolo nebismieri x ricxvi SeiZleba Caiweros

α+π= kx saxiT, sadac π<α≤0 , Zk ∈ , amitom am

funqciebis mniSvnelobaTa gamoTvla nebismieri x argumentisaTvis daiyvaneba αtg da αctg funqciebis

mniSvnelobebis moZebnamde, sadac [ [πα ;0∈ . iseve rogorc

Page 136: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

136

sinusisa da kosinusis SemTxvevaSi tgx da ctgx funqciebis

mniSvnelobaTa gamoTvla SeiZleba daviyvanoT αtg –s da

αctg –s moZebnamde, sadac ⎥⎦⎤

⎢⎣⎡∈

2;0 πα , dayvanis formulebis

saSualebiT, romelTac aqvT saxe:

α−=⎟⎠⎞

⎜⎝⎛ α+π ctgtg2

, α−=⎟⎠⎞

⎜⎝⎛ α+π tgctg2

,

α=⎟⎠⎞

⎜⎝⎛ α−π ctgtg2

, α=⎟⎠⎞

⎜⎝⎛ α−π tgctg2

.

davamtkicoT erT-erTi maTgani

α−=α−α

=⎟⎠⎞

⎜⎝⎛ α+π

⎟⎠⎞

⎜⎝⎛ α+π

=⎟⎠⎞

⎜⎝⎛ α+π ctgtg

sincos

2cos

2sin

2.

dayvanis formulebis damaxsovreba advilad SeiZleba

Semdegi wesis mixedviT:

Tu dayvanis formulaSi 2π aRebulia kent ricxvjer

da mas akldeba, an emateba α , maSin dasayvani funqcia

icvleba “kofunqciiT”∗, Tu

2π aRebulia luw ricxvjer,

maSin dasayvani funqciis saxelwodeba ucvleli rCeba.

dayvanili funqciis win iwereba is niSani, ra niSanic aqvs

dasayvan funqcias, Tu CavTvliT, rom ⎢⎣⎡

⎥⎦⎤∈

2;0 πα .

ganvixiloT magaliTebi

1. ( ) ( ) =+==+⋅= oooooo 4590sin135sin1355360sin1935sin

2245cos == o.

2. =⎟⎠⎞

⎜⎝⎛ π

=π=⎟⎠⎞

⎜⎝⎛ π+π=π

6232

329

329 ctgctgctgctg

33

6−=

π−= tg .

∗ sinusis, kosinusis, tangensis da kotangensis kofunqciebi ewodeba Sesabamisad kosinuss, sinuss, kotangenss da tangenss.

Page 137: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

137

§64. psnbhj!eb!obyfwbsj!bshvnfoujt!!!!usjhpopnfusjvmj!gvordjfcj!

Tu ( ) β⋅α+β⋅α=β+α sincoscossinsin formulaSi CavsvamT

α=β , miviRebT

α⋅α=α⋅α+α⋅α=α cossin2sincoscossin2sin .

amrigad,

α⋅α=α cossin22sin .

analogiurad

α−α=α⋅α−α⋅α=α 22 sincossinsincoscos2cos ,

α−α

=αα−α+α

=α 212

12

tgtg

tgtgtgtgtg ,

e. i.

α−α=α 22 sincos2cos , (1)

α−α

=α21

22tgtgtg , kπ+π

≠α2

, n24π

≠α ( )Znk ∈, .

Tu (1) formulis marjvena mxares gamovsaxavT mxolod

sinusiT an mxolod kosinusiT, miviRebT

α−=α 2sin212cos ,

1cos22cos 2 −α=α .

aqedan

22cos1sin2 α−

=α , 2

2cos1cos2 α+=α .

Tu miRebul formulebSi α –s SevcvliT 2α–iT,

gveqneba

2cos1

2sin 2 α−

,

2cos1

2cos2 α+

,

saidanac

2cos1

2sin α−

±=α

, (2)

2cos1

2cos α+

±=α

. (3)

Tu ( )12 +π≠α k , ( )Zk ∈ , (2) tolobis (3)-ze gayofiT

miviRebT

Page 138: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

138

α+α−

±=α

cos1cos1

2tg . (4)

(2)_(4) formulebSi niSani “+” an “_” unda aviRoT imis

mixedviT, Tu romel meoTxedSia 2α.

naxevari argumentis tangensi mTeli argumentis

sinusiTa da kosinusiT SeiZleba gamoisaxos formuliT

α+α

cos1sin

2tg , ( )12 +π≠α k , ( )Zk ∈

marTlac,

22

cos2

sin

2cos2

2cos

2sin2

cos1sin

2

α=

α

α

αα

=α+

α tg ,

analogiurad SeiZleba vaCvenoT, rom

αα−

sincos1

2tg , kπ≠α , ( )Zk ∈ .

§65. usjhpopnfusjvm!gvordjbUb!hbnptbywb!obyfwbsj!bshvnfoujt!ubohfotjU!

! xSirad mosaxerxebelia trigonometriul funqciaTa

gamosaxva naxevari argumentis tangensiT Semdegi

formulebis saSualebiT:

21

22

sin2 α+

α

=αtg

tg, ( )12 +π≠α k , ( )Zk ∈ (1)

21

21

cos2

2

α+

α−

=αtg

tg, ( )12 +π≠α k , ( )Zk ∈ (2)

21

22

2 α−

α

=αtg

tgtg , kπ+π

≠α2

, ( )12 +π≠α n , ( )Znk ∈, (3)

davamtkicoT es formulebi:

Page 139: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

139

α=α

⋅α

=αα

α

+

α

sin2

cos2

sin2

2cos

1:

2cos

2sin

2

21

22

22tg

tg;

=αα

α−

α

+

α−

2cos

1:

2cos

2sin

2cos

21

21

22

22

2

2

tg

tg

α=α

−α

= cos2

sin2

cos 22.

(3) formula miiReba (1) tolobis gayofiT (2)_ze.

§66. usjhpopnfusjvm!gvordjbUb!obnsbwmjt!!hbsebrnob!kbnbe!

!

gamoviyvanoT β⋅α cossin , β⋅α sinsin da β⋅α coscos

namravlebis trigonometriul funqciaTa jamad gardaqmnis

formulebi.

Tu SevkrebT

( ) β⋅α+β⋅α=β+α sincoscossinsin

da

( ) β⋅α−β⋅α=β−α sincoscossinsin

tolobebs, miviRebT:

( ) ( ) β⋅α=β−α+β+α cossin2sinsin , saidanac

( ) ( )[ ]β−α+β+α=β⋅α sinsin21cossin .

analogiurad

( ) β⋅α+β⋅α=β−α sinsincoscoscos (1) da

( ) β⋅α−β⋅α=β+α sinsincoscoscos (2) tolobebis SekrebiT miviRebT:

( ) ( ) β⋅α=β+α+β−α coscos2coscos , saidanac

( ) ( )[ ]β+α+β−α=β⋅α coscos21coscos .

aseve, Tu (1) tolobas gamovaklebT (2)-s, miviRebT

( ) ( ) β⋅α=β+α−β−α sinsin2coscos ,

Page 140: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

140

saidanac

( ) ( )[ ]β+α−β−α=βα coscos21sinsin .

§67. usjhpopnfusjvm!gvordjbUb!kbnjt!hbsebrnob!obnsbwmbe!

! rogorc wina paragrafSi vnaxeT, marTebulia Semdegi

formulebi:

( ) ( ) yxyxyx cossin2sinsin ⋅=−++ , (1)

( ) ( ) yxyxyx coscos2coscos ⋅=−++ , (2)

( ) ( ) yxyxyx sinsin2coscos ⋅=+−− , (3)

advili saCvenebelia agreTve, rom

( ) ( ) yxyxyx sincos2sinsin ⋅=−−+ , (4) SemoviRoT aRniSvnebi

α=+ yx , β=− yx , (5)

saidanac

2β+α

=x , 2β−α

=y , (6)

(5) da (6) tolobebis gaTvaliswinebiT (1)_(4)

formulebidan miviRebT:

2cos

2sin2sinsin β−αβ+α

=β+α ,

2cos

2sin2sinsin β+αβ−α

=β−α ,

2cos

2cos2coscos β−αβ+α

=β+α ,

2sin

2sin2coscos β−αβ+α

−=β−α .

ganvixiloT axla tangensebis jami β+α tgtg .

( )β⋅α

β+α=

β⋅αβ⋅α+β⋅α

=ββ

+αα

=β+αcoscos

sincoscos

sincoscossincossin

cossintgtg .

amrigad

( )β⋅α

β+α=β+α

coscossintgtg , kπ+π

≠α2

, π+π

≠β n2

, ( )Znk ∈, .

analogiurad SeiZleba vaCvenoT, rom

( )β⋅α

β−α=β−α

coscossintgtg , kπ+π

≠α2

, π+π

≠β n2

, ( )Znk ∈, ;

Page 141: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

141

( )β⋅αβ+α

=β+αsinsin

sinctgctg , kπ≠α , nπ≠β , ( )Znk ∈, ;

( )β⋅α

α−β=β−α

sinsinsinctgctg , kπ≠α , nπ≠β , ( )Znk ∈, .

§68. usjhpopnfusjvmj!hboupmfcfcj!!

1. hbowjyjmpU! axsin = ! hboupmfcb/ radgan nebismieri

x –saTvis 1sin1 ≤≤− x , amitom, roca 1>a , am gantolebas

amonaxsni ara aqvs.

roca 1≤a , maSin ax =sin gantolebis amosaxsnelad

sakmarisia vipovoT misi yvela amonaxsni nebismier π2

sigrZis SualedSi da gamoviyenoT sinusis perioduloba.

aseT Sualedad mosaxerxebelia aviRoT ⎥⎦⎤

⎢⎣⎡−

23;

2ππ

.

⎥⎦⎤

⎢⎣⎡−

2;

2ππ

da ⎥⎦⎤

⎢⎣⎡

23;

2ππ

SualedebSi xsin funqcia

monotonuria da TiToeul maTganze Rebulobs yvela

mniSvnelobas –1-dan 1-mde (nax. 77). amitom am Sualedebidan

TiToeulSi gantolebas eqneba erTaderTi amonaxsni.

arksinusis gansazRvris Tanaxmad ⎥⎦⎤

⎢⎣⎡−

2;

2ππ

SualedSi

moTavsebuli amonaxsni iqneba aarcsin .

radgan aarcsin−π ekuTvnis ⎥⎦⎤

⎢⎣⎡

23;

2ππ

Sualeds da

( ) ( ) aaa ==−π arcsinsinarcsinsin , amitom aarcsin−π warmoadgens

am SualedSi moTavsebul amonaxsns (nax. 77).

1

-1

π23

y

xaarcsin−πaarcsin2π

ay =

a

nax. 77

Page 142: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

142

imisaTvis, rom CavweroT ax =sin gantolebis yvela

amonaxsni, visargebloT periodulobiT, e. i. miRebuli ori

amonaxsnidan TiToeuls davumatoT nπ2 , ( )Zn∈ , saxis

ricxvi. miviRebT, rom amonaxsnTa simravle Sedgeba ori

usasrulo qvesimravlisagan, romlebic ganisazRvrebian

formulebiT:

nax π+= 2arcsin , Zn∈ ,

( )12arcsin2arcsin +π+−=π+−π= nanax , Zn∈ .

am simravleTa gaerTianeba mogvcems ax =sin gantolebis

amonaxsnTa simravles, romelic ganisazRvreba formuliT:

( ) kax k π+−= arcsin1 , Zk ∈ .

im SemTxvevaSi, roca a udris 0-s, 1-s an –1-s, ax =sin gantolebis amonaxsnTa simravle SeiZleba ufro martivi

formuliT ganisazRvros, kerZod:

0sin =x gantolebis amonaxsnTa simravlea

Zkkx ∈π= , ;

1sin =x gantolebis amonaxsnTa simravlea

⎭⎬⎫

⎩⎨⎧ ∈π+

π= Zkkx ,2

2;

1sin −=x gantolebis amonaxsnTa simravlea

⎭⎬⎫

⎩⎨⎧ ∈π+

π−= Zkkx ,2

2.

2. hbowjyjmpU! axcos = ! hboupmfcb/! radgan nebismieri

x –isaTvis 1cos1 ≤≤− x , amitom, roca 1>a am gantolebas

amonaxsni ara aqvs.

roca 1≤a , maSin ax =cos gantolebis amosaxsnelad

sakmarisia vipovoT misi yvela amonaxsni nebismieri π2

sigrZis SualedSi da gamoviyenoT kosinusis perioduloba.

aseT Sualedad mosaxerxebelia aviRoT [ ]ππ ;− .

[ ]0;π− da [ ]π;0 SualedebSi xcos funqcia monotonuria

da TiToeul maTganze Rebulobs yvela mniSvnelobas –1-

dan 1-mde (nax. 78). amitom am Sualedebidan TiToeulSi

gantolebas eqneba erTaderTi amonaxsni. arkkosinusis

gansazRvrebis Tanaxmad [ ]π;0 SualedSi moTavsebuli

amonaxsni iqneba aarccos . radgan kosinusi luwi funqciaa,

amitom [ ]0;π− SualedSi moTavsebuli amonaxsni iqneba

aarccos− .

Page 143: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

143

imisaTvis, rom CavweroT ax =cos gantolebis yvela

amonaxsni, visargebloT kosinusis periodulobiT, e. i.

miRebuli ori amonaxsnidan TiToeuls davumatoT kπ2 ,

( )Zk ∈ , saxis ricxvi. miviRebT, rom amonaxsnTa simravle

Sedgeba Semdegi ori usasrulo qvesimravlisagan:

Zkkax ∈π+= ,2arccos ,

Zkkax ∈π+−= ,2arccos .

miRebuli simravleebis gaerTianeba mogvcems ax =cos gantolebis amonaxsnTa simravles

Zkkax ∈π+±= ,2arccos .

im SemTxvevaSi, roca a udris 0-s, 1-s an –1-s ax =cos gantolebis amonaxsnTa simravle SeiZleba ufro martivi

formuliT ganisazRvros, kerZod:

0cos =x gantolebis amonaxsnTa simravlea

⎭⎬⎫

⎩⎨⎧ ∈π+

π= Zkkx ,

2;

1cos =x gantolebis amonaxsTa simravlea

Zkkx ∈π= ,2 ;

1cos −=x gantolebis amonaxsTa simravlea

Zkkx ∈π+π= ,2 .

3. hbowjyjmpU! atgx = ! hboupmfcb/ am gantolebis

amosaxnelad sakmarisia vipovoT misi yvela amonaxsni

nebismieri π sigrZis SualedSi da gamoviyenoT tangensis

perioduloba. aseT Sualedad mosaxerxebelia aviRoT

⎢⎣⎡

⎥⎦⎤−

2;

2ππ

. am SualedSi tgx funqcia zrdadia da Rebulobs

yvela mniSvnelobas −∞ –dan +∞ –mde (nax. 79), amitom

aarccos−π−

1

y

xaarccos π

ay =

a

nax. 78

Page 144: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

144

⎢⎣⎡

⎥⎦⎤−

2;

2ππ

SualedSi gantolebas eqneba erTaderTi

amonaxsni. arktangensis gansazRvrebis Tanaxmad es

amonaxsni iqneba arctga .

imisaTvis, rom CavweroT atgx = gantolebis yvela

amonaxsni, visrgebloT tangensis periodulobiT, e. i.

miRebul amonaxsns davumatoT kπ , ( )Zk ∈ , saxis ricxvi.

miviRebT, rom atgx = gantolebis amonaxsnTa simravlea

Zkkarctgax ∈π+= , .

4. atgx = gantolebis amoxsnis dros Catarebuli

msjelobis analogiurad SeiZleba vaCvenoT, rom actgx = gantolebis amonaxsnTa simravlea

Zkkarcctgax ∈π+= , .

zemoT ganxiluli gantolebebi warmoadgenen

umartives trigonometriul gantolebebs. sazogadod,

trigonometriuli gantolebis amosaxsnelad saWiroa

igivuri gardaqmnebis saSualebiT igi Seicvalos misi

tolfasi umartivesi trigonometriuli gantolebiT an

aseT gantolebaTa gaerTianebiT.

§69. ybsjtyj!jsbdjpobmvsj!nbDwfofcmjU!!

CvenTvis cnobilia, Tu rogor ganisazRvreba xarisxi

racionaluri maCvenebliT. racionalurmaCvenebliani xari-

sxebis gamoyenebiT ki ganisazRvreba iracionalur maCvene-

bliani xarisxi. Tu α raime iracionaluri ricxvia, maSin

yovelTvis arsebobs β1 da β2 racionaluri ricxvebi iseTi,

rom

− arctga

y

x

ay =

a

nax. 79

Page 145: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

145

β1< α< β2 (1)

da amasTan β2 - β1 ragind mcirea. mtkicdeba, rom nebismieri namdvili a (a>0, a≠1) ricxvisaTvis arsebobs erTaderTi γ ricxvi, romlisTvisac utoloba 21 ββ γ aa << sruldeba

nebismieri β1 da β2-saTvis, romlebic akmayofileben (1)

piorobas. aseT γ ricxvs ewodeba a ricxvis α xarisxi, e. i. γ=aα. hbotbSwsfcb/ nebismieri dadebiTi α iracionaluri

ricxvisaTvis

00 =α.

iracionalur maCveneblian xarisxs gaaCnia raciona-

lur maCvenebliani xarisxis analogiuri Tvisebebi. amri-

gad, nebismieri namdvili maCveneblisaTvis:

1. ( ) ααα = baab , 2. α

αα

=⎟⎠⎞

⎜⎝⎛

ba

ba

, 3. β+αβα =⋅ aaa ,

4. ( ) αββα = aa , 5. βα

β

α−= a

aa

,

sadac 0>a , 0>b da R∈βα , .

§70. nbDwfofcmjboj!gvordjjt!Uwjtfcfcj!eb!hsbgjlj!!

xay = saxis funqcias, sadac 0>a , 1≠a , maCvenebliani

funqcia ewodeba. am funqciis gansazRvris area namdvil

ricxvTa R simravle, xolo mniSvnelobaTa simravle

ki_ ] [+∞;0 . xay = funqciis grafiki Oy RerZs kveTs (0;1)

wertilSi, radgan 10 =a .

Tu 10 << a , maSin maCvenebliani funqcia klebadia.

marTlac, roca 21 xx < , gvaqvs

( ) 01 12121 >−=− −xxxxx aaaa ,

vinaidan 01 >xa , xolo 112 <− xxa , radgan 012 >− xx .

analogiurad SeiZleba vaCvenoT, rom Tu 1>a , maSin

maCvenebliani funqcia zrdadia.

zemoT moyvanili Tvisebebi saSualebas gvaZlevs

avagoT xay = funqciis grafiki (nax. 80).

Page 146: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

146

§71. mphbsjUnjt!dofcb!!

ganvixiloT

ba x =

gantoleba, sadac x cvladia, xolo a da b namdvili

ricxvebia, amasTan 0>a da 1≠a .

Tu 0≤b , maSin mocemul gantolebas amonaxsni ar

gaaCnia, radgan nebismieri x –isaTvis 0>xa .

Tu 0>b , maSin gantolebas aqvs erTaderTi amonaxsni,

radgan maCvenebliani funqcia monotonuria da misi

mniSvnelobaTa simravlea ] [+∞;0 .

ba x = gantolebis amonaxsns, sadac 0>a , 1≠a , 0>b ,

uwodeben b ricxvis logariTms a fuZiT.

hbotbSwsfcb/! b ricxvis logariTmi a fuZiT

( 0>a , 1≠a ) ewodeba xarisxis maCvenebels, romelSic unda

avaxarisxoT a , rom miviRoT b da balog simboloTi

aRiniSneba.

magaliTad, 225log5 = , radgan 2552 = ; 29log31 −= ,

radgan 931 2

=⎟⎠⎞

⎜⎝⎛

.

logariTmis gansazRvrebidan gamomdinareobs

ba ba =log igiveoba, romelsac ZiriTadi logariTmuli igiveoba

ewodeba.

10 , <<= aay x1 , >= aay x

y

1

0 x

y

1

0 x

nax. 80

Page 147: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

147

im SemTxvevaSi, rodesac logariTmis fuZe 10=a an

ea = , b ricxvis logariTmi Sesabamisad blg da bln

simboloTi aRiniSneba. blg –s ricxvis aTobiTi logariTmi,

xolo bln –s naturaluri logariTmi ewodeba. praqtikaSi

ufro xSirad gamoiyeneba swored aseTi saxis

logariTmebi, romelTa mniSvnelobebis gamosaTvlelad

arsebobs specialuri cxrilebi.

moviyvanoT logariTmis ZiriTadi Tvisebebi:

1. balog gamosaxulebas azri aqvs mxolod maSin, roca

0>b .

2. erTis logariTmi nebismieri fuZiT nulis tolia.

marTlac, radgan 10 =a , amitom 01log =a .

3. Tu logariTmis fuZe erTze naklebi dadebiTi

ricxvia, maSin erTze naklebi dadebiTi ricxvis

logariTmi dadebiTia, xolo erTze meti ricxvis

logariTmi ki_uaryofiTi.

4. Tu logariTmis fuZe erTze meti ricxvia, maSin

erTze naklebi dadebiTi ricxvis logariTmi uaryofiTia,

xolo erTze meti ricxvis logariTmi ki_dadebiTi.

5. fuZis logariTmi erTis tolia. marTlac, radgan

aa =1, amitom 1log =aa .

§72. obnsbwmjt-!gbsepcjtb!eb!ybsjtyjt!!mphbsjUnj!

! Ufpsfnb! 2/ dadebiT ricxvTa namravlis logariTmi

TanamamravlTa logariTmebis jamis tolia, e. i.

( ) naaana xxxxxx loglogloglog 2121 +++= LK ,

sadac 01 >x , 02 >x ,K , 0>nx .

ebnuljdfcb/ vTqvaT

11log yxa = , 22log yxa = ,K , nna yx =log ,

maSin logariTmis gansazRvrebis Tanaxmad

11

yax = , 22

yax = ,K , nyn ax = .

am tolobaTa gadamravlebiT miviRebT

nyyyn axxx +++= LK 21

21 ,

saidanac

( ) nna yyyxxx +++= LK 2121log ,

Page 148: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

148

e. i.

( ) naaana xxxxxx loglogloglog 2121 +++= LK .

Ufpsfnb!3/!ori dadebiTi ricxvis fardobis logariTmi

udris gasayofisa da gamyofis logariTmebis sxvaobas, e. i.

212

1 logloglog xxxx

aaa −= , sadac 01 >x , 02 >x .

ebnuljdfcb/ vTqvaT

11log yxa = , 22log yxa = .

logariTmis gansazRvrebis Tanaxmad

11

yax = , 22

yax = .

am tolobaTa gayofiT miviRebT

21

2

1 yyaxx −= ,

saidanac

212

1log yyxx

a −= ,

e. i.

212

1 logloglog xxxx

aaa −= .

Ufpsfnb!4/ dadebiTfuZiani xarisxis logariTmi xaris-

xis maCveneblisa da xarisxis fuZis logariTmis namravlis

tolia, e. i.

xkx ak

a loglog = , sadac 0>x .

ebnuljdfcb/ vTqvaT

yxa =log ,

maSin logariTmis gansazRvrebis Tanaxmad yax = .

am tolobis orive mxaris k xarisxSi axarisxebiT

miviRebT: kyk ax = ,

saidanac

kyxka =log ,

e. i.

xkx ak

a loglog = .

Tu raime gamosaxuleba Sedgenilia dadebiTi

ricxvebisagan gamravlebis, gayofisa da axarisxebis

Page 149: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

149

operaciebiT, maSin zemoT damtkicebuli Tvisebebis

Tanaxmad SeiZleba am gamosaxulebis logariTmis gamosaxva

masSi Semavali ricxvebis logariTmebis saSualebiT. aseT

gardaqmnas galogariTmeba ewodeba.

nbhbmjUj/ gavalogariTmoT a fuZiT 3

2

37

bxa gamosaxu-

leba, sadac 0>a , 1≠a , 0>b , 0>x .

( ) ( ) ++=−= 2323

2log7log3log7log

37log abxa

bxa

aaaaa

++=−−+ 27loglog3loglog 321

aaaa bx

bx aaa log33loglog21

−−+ .

xSirad saWiroa galogariTmebis Sebrunebuli

gardaqmnis Sesruleba, e. i. gamosaxulebis logariTmis

saSualebiT TviT gamosaxulebis povna. aseT gardaqmnas

potencireba ewodeba.

nbhbmjUj/ vipovoT x , Tu 1log31log2log +−= cbx aaa .

3

23

12 logloglogloglogc

abacbx aaaaa =+−= ,

e. i.

3

2loglog

cabx aa = .

aqedan

3

2

cabx = .

§73. mphbsjUnjt!fsUj!gv[jebo!nfpsff!hbebtwmb!!

gamosaxulebebis gardaqmnis dros xSirad saWiroa

logariTmis erTi fuZidan meoreze gadasvla, rac

SesaZlebelia Semdegi formulis saSualebiT

abb

c

ca log

loglog = , ( )0>b . (1)

davamtkicoT es formula.

Page 150: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

150

gavalogariTmoT c fuZiT ZiriTadi logariTmuli

igiveoba

ba ba =log.

gveqneba

( ) ba cb

ca loglog log = .

aqedan

bab cca logloglog =⋅ ,

saidanac

abb

c

ca log

loglog = .

Tu (1) formulaSi c –s SevcvliT b –Ti, miviRebT

ab

ba log

1log = .

Tu miRebul formulaSi a –s SevcvliT ka –Ti,

gveqneba:

bkaka

b ab

kb

a k log1log

1log

1log === .

amrigad

bk

b aa k log1log = , ( )0 ,0 ≠> kb .

§74. mphbsjUnvmj!gvordjjt!Uwjtfcfcj!eb!hsbgjlj!!

vinaidan xay = funqcia ( )1 ,0 ≠> aa monotonuria,

amitom mas gaaCnia Seqceuli funqcia. xay = tolobidan

gansazRvrebiT yx alog= . Tu am tolobaSi cvladebs

gadavanacvlebT, miviRebT xy alog= , romelic warmoadgens

xay = funqciis Seqceul funqcias.

xy alog= saxis funqcias ( )1 ,0 ≠> aa , logariTmuli

funqcia ewodeba. radgan logariTmuli funqcia

warmoadgens maCvenebliani funqciis Seqceul funqcias,

amitom xy alog= funqciis grafiki simetriulia xay =

funqciis grafikisa xy = wrfis mimarT (nax. 81, 82).

maCvenebliani funqciis Tvisebebidan gamomdinareobs

misi Seqceuli logariTmuli funqciis Tvisebebi:

Page 151: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

151

1. logariTmuli funqciis gansazRvris area ] [+∞;0 ,

xolo mniSvnelobaTa simravle ki_ R .

2. logariTmuli funqciis grafiki Ox RerZs kveTs (1;0)

wertilSi.

3. Tu 10 << a , maSin xy alog= funqcia klebadia, xolo

Tu 1>a _zrdadi.

§75. nbDwfofcmjboj!eb!mphbsjUnvmj!hboupmfcfcj!!

1. gantolebas, romelic cvlads Seicavs xarisxis

maCvenebelSi, maCvenebliani gantoleba ewodeba.

ba x = ( )1 ,0 ≠> aa warmoadgens umartives maCveneblian

gantolebas. roca 0>b , am gantolebis amonaxsns

1

xy =

10 ,log <<= axy a

10 , <<= aay x

y

1

0 x

nax. 81

1 ,log >= axy a

1

xy =

1 , >= aay x

y

1

0 x

nax. 82

Page 152: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

152

warmoadgens bx alog= , xolo, roca 0≤b gantolebas

amonaxsni ar aqvs.

xSirad maCvenebliani gantoleba daiyvaneba )()( xxf aa ϕ=

( )1 ,0 ≠> aa saxis gantolebaze, romelic )()( xxf ϕ=

gantolebis tolfasia.

nbhbmjUj/ amovxsnaT gantoleba

777 252

=−x

.

423

2577777 222

325

25 22

=⇔=−⇔=⇔=−−

xxxx

.

aqedan

21 −=x , 22 =x .

2. gantolebas, romelic cvlads Seicavs logariTmis

niSnis qveS, logariTmuli gantoleba ewodeba.

bxa =log ( )1 ,0 ≠> aa warmoadgens umartives logariT-

mul gantolebas, romlis amonaxsnia bax = .

xSirad logariTmuli gantoleba daiyvaneba

)(log)(log xxf aa ϕ= ( )1 ,0 ≠> aa saxis gantolebaze. aseT

SemTxvevaSi sakmarisia amoixsnas )()( xxf ϕ= gantoleba da

TiToeuli amonaxsni Semowmdes sawyis gantolebaSi CasmiT.

nbhbmjUj/!amovxsnaT gantoleba

)65lg()3lg()2lg( −=++− xxx .

namravlis logariTmis Tvisebis gamoyenebiT gveqneba

)65lg()3)(2lg( −=+− xxx ,

aqedan

0465665)3)(2( 22 =−⇔−=−+⇔−=+− xxxxxxxx ,

e. i.

01 =x , 42 =x .

sawyis gantolebaSi CasmiT advilad davrwmundebiT,

rom mocemul gantolebas aqvs mxolod erTi amonaxsni

4=x .

§76. nbDwfofcmjboj!eb!mphbsjUnvmj!vupmpcfcj!!

1. utolobas, romelic cvlads Seicavs xarisxis maCve-

nebelSi, maCvenebliani utoloba ewodeba.

Page 153: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

153

ba x > da bax < ( )1 ,0 ≠> aa warmoadgenen umartives

maCveneblian utolobebs. ganvixiloT TiToeuli maTgani:

a) ba x > .

Tu 0≤b , maSin am utolobis amonaxsnTa simravlea R .

Tu 0>b , maSin xa funqciis monotonurobis gamo

bx alog< , rodesac 10 << a da bx alog> , rodesac 1>a .

b) ba x < .

Tu 0≤b , maSin am utolobis amonaxsnTa simravle

carielia.

Tu 0>b , maSin xa funqciis monotonurobis gamo

bx alog> , rodesac 10 << a da bx alog< , rodesac 1>a .

)()( xxf aa ϕ< saxis utolobis amoxsna ( )1 ,0 ≠> aa agreTve

damyarebulia maCvenebliani funqciis monotonurobaze.

kerZod, Tu 10 << a , maSin maCvenebliani funqcia klebadia

da

)()()()( xxfaa xxf ϕ>⇔< ϕ,

xolo, Tu 1>a , maSin maCvenebliani funqcia zrdadia da

)()()()( xxfaa xxf ϕ<⇔< ϕ.

nbhbmjUj!2/ amovxsnaT utoloba

2342 222 −+− > xxx

.

065234222 2223422>+−⇔−>+−⇔> −+− xxxxxxxx

.

aqedan

] [ ] [+∞∞−∈ ;32; Ux .

nbhbmjUj!3/ amovxsnaT utoloba

454

73

73

2 −+−

⎟⎠⎞

⎜⎝⎛>⎟

⎠⎞

⎜⎝⎛

xxx

.

08645473

73 22

4542

<+−⇔−<+−⇔⎟⎠⎞

⎜⎝⎛>⎟

⎠⎞

⎜⎝⎛

−+−

xxxxxxxx

.

aqedan

] [4;2∈x .

2. utolobas, romelic cvlads Seicavs logariTmis

niSnis qveS, logariTmuli utoloba ewodeba.

bxa >log da bxa <log ( )1 ,0 ≠> aa warmoadgenen

umartives logariTmul utolobebs. ganvixiloT

TiToeuli maTgani:

Page 154: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

154

a) bxa >log .

Tu 10 << a , maSin xalog funqcia klebadia, misi

gansazRvris area ] [+∞;0 , amitom bax <<0 .

Tu 1>a , maSin xalog funqcia zrdadia, amitom bax > .

b) bxa <log .

Tu 10 << a , maSin xalog funqcia klebadia, amitom

bax > .

Tu 1>a , maSin xalog funqcia zrdadia, misi

gansazRvris area ] [+∞;0 , amitom bax <<0 .

)(log)(log xxf aa ϕ> saxis utolobis amoxsna ( )1 ,0 ≠> aa

agreTve damyarebulia logariTmuli funqciis

monotonurobaze. kerZod, Tu 10 << a , maSin logariTmuli

funqcia klebadia da

⎩⎨⎧

>ϕϕ>

⇔⎪⎩

⎪⎨

>ϕ>ϕ>

⇔ϕ<,0)(

)()(

0)(0)(

)()()(log)(log

xxxf

xxf

xxfxxf aa

xolo, Tu 1>a , logariTmuli funqcia zrdadia da

⎩⎨⎧

>ϕ<

⇔⎪⎩

⎪⎨

>ϕ>ϕ<

⇔ϕ<.0)(

)()(

0)(0)(

)()()(log)(log

xfxxf

xxf

xxfxxf aa

nbhbmjUj!4/ amovxsnaT utoloba

xxx 3log)2)(6(log 55 <−+ .

( )( )⇔

⎪⎩

⎪⎨⎧

>−+<−+

⇔⎩⎨⎧

>−+<−+

⇔<−+026

0120)2)(6(3)2)(6(

3log)2)(6(log2

55 xxxx

xxxxx

xxx

( )( )( )( ) ] [3;2

2 634

026034

∈⇔⎩⎨⎧

>−<<<−

⇔⎩⎨⎧

>−+<−+

⇔ xxx

xxxxx

an.

§77. lpncjobupsjljt!fmfnfoufcj!!

xSirad saWiroa sasruli simravlis elementebisagan

sxvadasxva kombinaciis Sedgena da raime wesiT Sedgenili

yvela SesaZlo kombinaciis raodenobis gamoangariSeba.

aseT amocanebs kombinatoruls uwodeben, xolo maTemati-

Page 155: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

155

kis nawils, romelic dasaxelebuli amocanebis amoxsnas

Seiswavlis_kombinatorikas.

hbebobdwmfcb/! erTidaigive sasruli simravlis

elementebi SeiZleba davalagoT rigiT imis mixedviT, Tu

simravlis romel elements avirCevT pirvel elementad,

romels_meored da a. S. dalagebuli simravlis

aRsaniSnavad mis elementebs movaTavsebT mrgval

frCxilebSi mocemuli rigis mixedviT.

hbotbSwsfcb/ sasrul simravleSi dadgenil rigs misi

elementebis gadanacvleba ewodeba.

n elementiani simravlis yvela SesaZlo gadanacvleba-

Ta ricxvi nP –iT aRiniSneba. cxadia igi damokidebulia

mxolod simravlis elementTa raodenobaze.

Tu simravle Sedgeba erTi elementisagan, maSin

SesaZlebelia erTaderTi gadanacvleba, e. i. 11 =P . Tu

simravle Sedgeba ori elementisagan_ ba, , maSin SesaZle-

belia mxolod ori gadanacvleba: ( )ba, da ( )ab, , e. i.

22 =P . Tu simravle Sedgeba sami elementisagan_ cba ,, ,

maSin SesaZlebelia mxolod eqvsi gadanacvleba: ( )cba ,, ,

( )bca ,, , ( )bac ,, , ( )abc ,, , ( )cab ,, da ( )acb ,, , e. i. 63 =P .

advili SesamCnevia, rom 11 =P , 212 ⋅=P , 3213 ⋅⋅=P .

maTematikuri induqciis principis gamoyenebiT davam-

tkicoT, rom

nPn K321 ⋅⋅= . (1)

rogorc zemoT vnaxeT, rodesac 1=n es formula mar-

Tebulia. davuSvaT, rom igi marTebulia kn = –saTvis, e. i.

kPk K321 ⋅⋅= , axla vaCvenoT, rom formula marTebulia

1+= kn –saTvis, e. i.

( )13211 +⋅⋅=+ kkPk K .

marTlac, imisaTvis, rom miviRoT 1+k elementisagan

Sedgenili yvela SesaZlo gadanacvleba, saWiroa TiToeul

k elementian adrindel gadanacvlebas mivuerToT axali

( 1+k )-e elementi, romelic SeiZleba davayenoT 1-el, me-2,

me-3,K , k -ur da ( 1+k )–e adgilze. amrigad, yoveli k

elementiani gadanacvleba warmoqmnis 1+k axal

gadanacvlebas, amitom 1+k elementiani simravlis yovel

SesaZlo gadanacvlebaTa ricxvi iqneba ( )1+⋅ kPk , e. i.

Page 156: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

156

( ) ( )132111 +⋅⋅=+=+ kkkPP kk K .

amrigad, maTematikuri induqciis principis Tanaxmad (1)

formula marTebulia nebismieri n –isaTvis.

nK321 ⋅⋅ namravli n ! simboloTi aRiniSneba (ikiTxeba

“ n -faqtoriali”), miRebulia agreTve, rom 0!=1 da 1!=1.

amitom n elementiani simravlis gadanacvlebaTa ricxvis

gamosaTvleli formula SeiZleba Semdegnairad Caiweros

nPn = !.

xzpcb/ hbotbSwsfcb/! n elementiani simravlis nebismi-

er m elementian dalagebul qvesimravles ( )nm ≤ ewodeba

wyoba n elementisagan m –ad.

n elementiani simravlis yvela SesaZlo m

elementian wyobaTa ricxvi mnA simboloTi aRiniSneba.

cxadia, rom 10 =nA , radgan arsebobs erTaderTi

carieli qvesimravle.

advili misaxvedria, rom nAn =1

. marTlac, n -dan erTi

elementi n xerxiT SeiZleba avirCioT, xolo am erTi

elementisagan miiReba erTaderTi dalagebuli simravle.

davamtkicoT axla, rom, roca nm <≤1

( ) mn

mn AmnA −=+1

.

imisaTvis, rom n elementisagan SevadginoT yvela

SesaZlo 1+m elementiani wyoba, SeiZleba moviqceT

Semdegnairad: jer avarCioT raime m raodenobis elementi

da movaTavsoT isini pirvel m adgilze, amis Sesruleba

SeiZleba mnA xerxiT. ( )1+m -e adgilze SeiZleba

movaTavsoT nebismieri elementi darCenili mn −

elementidan. amrigad, yoveli m elementiani wyoba

warmoqmnis mn − raodenobis 1+m elementian wyobas.

maSasadame, sul gveqneba ( ) mnAmn − xerxi.

Tu gaviTvaliswinebT, rom nAn =1

da visargeblebT

damtkicebuli formuliT, gveqneba:

nAn =1

,

( ) ( )11 12 −=−= nnAnA nn ,

( ) ( )( )212 23 −−=−= nnnAnA nn

...............................................

( ) ( )( ) ( )1211 1 +−−−=+−= − mnnnnAmnA mn

mn K .

Page 157: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

157

vinaidan

( )( ) ( ) ( )! ! 121mn

nmnnnn−

=+−−− K .

miviRebT

( )! ! mn

nAmn −= .

SevniSnoT, rom

! nPA nnn == .

kvgUfcb/ hbotbSwsfcb/! n elementiani simravlis nebis-

mier m elementian qvesimravles ( )nm ≤ ewodeba jufTeba

n elementidan m –ad.

cxadia, rom mocemuli simravlis ori m elementiani

jufTeba sxvadasxvaa maSin da mxolod maSin, rodesac

isini ganxvavdebian erTi elementiT mainc, xolo m

elementiani wyobebi rom gansxvavdebodnen, sakmarisia isini

gansxvavdebodnen dalagebiT.

n elementiani simravlis yvela SesaZlo m elemen-

tian jufTebaTa ricxvi mnC simboloTi aRiniSneba.

davamtkicoT, rom

m

mnm

n PAC = .

imisaTvis, rom mocemuli n elementisagan SevadginoT

yvela SesaZlo m elementiani wyoba, SeiZleba moviqceT

Semdegnairad: jer n elementidan gamovyoT raime m

elementi, rac mnC xerxiT SeiZleba Sesruldes,

gamoyofili m elementi davalagoT, rac mP xerxiT

SeiZleba Sesruldes. amgvarad miviRebT mmn PC dalagebul

simravles, e. i.

mmn

mn PCA = ,

saidanac

m

mnm

n PAC = .

Tu gaviTvaliswinebT, rom

( )! ! mn

nAmn −= da ! mPm =

miviRebT

Page 158: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

158

( )! ! !

mnmnC m

n −= .

daumtkiceblad moviyvanoT jufTebaTa ricxvis Semdegi

Tvisebebi:

1. mn

nmn CC −= ;

2. 1

11 +

++ =+ m

nmn

mn CCC ;

3. nn

nnnn CCCC 2210 =++++ L .

§78. ojvupojt!cjopnjbmvsj!gpsnvmb!!

maTematikuri induqciis principis gamoyenebiT

davamtkicoT, rom nebismieri naturaluri n –isaTvis

marTebulia niutonis Semdegi formula:

( ) nnn

mmnmn

nn

nn

nn

n bCbaCbaCbaCaCba ++++++=+ −−− LL222110.

roca 1=n , 2=n da 3=n formula marTebulia, radgan:

( ) bCaCbaba 11

01

1 +=+=+ ;

( ) 222

12

202

222 2 bCabCaCbababa ++=++=+ ;

( ) 333

223

213

303

32233 33 bCabCbaCaCbabbaaba +++=+++=+ .

davuSvaT axla, rom niutonis formula marTebulia kn = –

saTvis, e. i.

( ) kkk

kkk

kk

kk

kk

k bCabCbaCbaCaCba +++++=+ −−−− 11222110 L

da vaCvenoT, rom igi marTebulia 1+= kn –saTvisac,

marTlac

( ) ( ) ( ) +++++=++=+ −−−−+ 112221101 ( kkk

kk

kk

kk

kk abCbaCbaCaCbababa L

+++++=++ −−−+ 121212110))( kkk

kk

kk

kk

kkk baCbaCbaCaCbabC L

+++++++ −−− kkk

kk

kk

kk

kkk abCbaCbaCbaCabC 13222110 L

( ) ( ) ++++++=+ −++ L212110101 baCCbaCCaCbC kkk

kkk

kk

kkk

( ) 11 +− +++ kkk

kkk

kk bCabCC .

Tu gaviTvaliswinebT, rom 0

10

+= kk CC , 11++= k

kkk CC da

gamoviyenebT formulas 1

11 +

++ =+ m

kmk

mk CCC

miviRebT:

( ) 1111

2121

11

101

1 ++++

−++

++

+ +++++=+ kkk

kkk

kk

kk

kk

k bCabCbaCbaCaCba L

Page 159: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

159

amrigad, maTematikuri induqciis principis Tanaxmad

niutonis formula marTebulia nebismieri naturaluri n –

isaTvis.

niutonis formulis mnC koeficientebs binomur koefi-

cientebs uwodeben.

ganvixiloT niutonis formulidan gamomdinare

ZiriTadi Sedegebi:

1. niutonis formulis mixedviT ( )nba + –is daSlaSi

Sedis 1+n Sesakrebi.

2. niutonis formulaSi a –s xarisxis maCvenebeli

klebulobs n –dan 0-mde, xolo b –s xarisxis maCvenebeli

izrdeba 0-dan n –mde. daSlis nebismier SesakrebSi a –sa

da b –s xarisxis maCvenebelTa jami n –is, e. i. binomis

xarisxis maCveneblis tolia.

3. daSlis boloebidan Tanabrad daSorebuli binomuri

koeficientebi Tanatolia (radgan mn

nmn CC −= ).

4. niutonis formulaSi Sesakrebebis zogadi saxiT

CawerisaTvis mosaxerxebeli iqneba, Tu ( )1+k –e Sesakrebs

aRvniSnavT kT –Ti, maSin:

kknknk baCT −= , nk ,,1 ,0 K= .

%8:/!tubujtujljt!fmfnfoufcj!

!sxvadasxva saxis dakvirvebebis Sedegad miRebul mona-

cemebs, romlebic ricxvebiT aris warmodgenili, statis-

tikuri monacemebi ewodeba.

es monacemebi SeiZleba exebodes TiTqmis yvelafers,

rac dakvirvebis sagani SeiZleba iyos. magaliTad sports,

xelovnebas, bizness, klimats qveynisa da xalxis cxovre-

bas, moswavlis swavlas skolaSi, ... e.i. monacemebi aris

cnobebi, an maxasiaTebeli Tvisebebi, romlebic aucilebe-

lia raime daskvnis gamosatanad.

swored, aseTi monacemebis Segrovebas, damuSavebas

(ganxilvas), xelsayreli formiT warmodgenas da gamoyene-

bas Seiswavlis statistika, e.i. statistikis sagania raime

movlenis (procesis) Sesaxeb informaciis Segroveba, damu-

Saveba da gamoyeneba.

magaliTad samedicino daskvna: `moweva saSiSia jan-

mrTelobisaTvis~ - Tambaqos mweveli adamianebis janmrTe-

Page 160: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

160

lobis Sesaxeb saTanado monacemebis Segrovebisa da damu-

Savebis Sedegia, e.i. statistikuri gamokvlevebis Catarebis

Sedegia.

statistikis gamoyenebis TvalsaCino magaliTia sasuqe-

bis gamoyenebis sakiTxis Seswavla soflis meurneobaSi. am

SemTxvevaSi grovdeba monacemebi gamoyenebuli sasuqis

odenobisa da mosavlianobis zrdas Soris damokidebule-

bis Sesaxeb. aq Seiswavleba agreTve sakiTxi, Tu rogor

aisaxeba mosavlianobis am gziT gazrda produqciis xaris-

xze. am monacemebis analizi xels uwyobs sasuqis optima-

luri odenobis dadgenas.

informaciis Segroveba xSirad SerCevis wesiT SeiZle-

ba moxdes. magaliTad, arCevnebis Sedegebis prognozireba

xSirad amomrCevelTa nawilis gamokiTxviT xdeba. es wesi

gamoiyeneba agreTve gamoSvebul produqciaze moTxovnis

gansazRvris mizniT. SerCeviTi gamokiTxviT monacemebis

Segroveba garkveul wesebs unda eqvemdebarebodes.

ricxviT monacemTa raime erTobliobis dasaxasiaTeb-

lad, monacemTa erTobliobis Sesadareblad, gamoiyeneba

Semdegi ricxviTi maxasiaTeblebi:

1) sixSire _ cdaTa mocemul serialSi raRac movle-

nis moxdenaTa raodenoba.

2) fardobiTi sixSire – movlenis sixSiris Sefardeba

cdaTa raodenobasTan.

3) diapazoni (gabnevis diapazoni, gani) – ricxviT mona-

cemTa erTobliobaSi udides da umcires ricxvebs Soris

sxvaoba. e. i. monacemTa gabnevis diapazoni monacemTa gafa-

ntulobis sazomia.

4) monacemTa saSualo – yvela dasaxelebuli ricxvis

jamisa da maTi raodenobis Sefardeba.

5) moda – ricxvi (ricxvebi), romelic am monacemebSi

yvelaze xSirad gvxvdeba. Tu yvela monacemi

gansxvavebulia, maSin am erTobliobas moda ara aqvs.

6) mediana – ricxviT monacemTa mediana aris zrdis

mixedviT dalagebuli (romelsac variaciuli mwkrivi

ewodeba) am monacemebis Sua ricxvi, Tu erTobliobaSi

ricxvebis raodenoba kentia; xolo Tu erTobliobaSi

ricxvebis raodenoba luwia, maSin mediana ori Sua

ricxvis ariTmetikuli saSualoa.

7) ricxviT monacemTa standartuli gadaxra, anu

saSualo kvadratuli gadaxra – monacemTa TiToeuli

Page 161: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

161

ricxvisa da am monacemTa saSualos sxvaobis kvadratebis

saSualodan kvadratuli fesvi.

standartuli gadaxra saSualos mimarT monacemTa

gafantulobis sazomia da saSualosTan monacemebis

`Tavmoyras~ axasiaTebs (e.i. monacemTa saSualodan am

monacemebis gadaxras `zomavs~).

vTqvaT raime ori eqsperimentis ricxviTi monacemebia

(romelic dalagebulia zrdis mixedviT):

I. 5; 5; 5; 6; 8; 8; 12; II. 6; 8; 8; 10; 11; 11.

am monacemTa sixSireTa da fardobiTi sixSireTa

cxrilia:

I.

II.

pirvelis diapazonia 7; meoris – 5.

advilia Semowmeba, rom am monacemTa saSualoebia: I _

7; II _ 9.

modaa: I – 5; II – 8 da 11.

mediana: I – 6; II – 9.

axla vipovoT am monacemTa standartuli gadaxra.

monacemTa TiToeuli ricxvisa da saSualos sxvaobebis

sixSireTa cxrilia

I.

II.

sxvaobebis kvadratebis sixSireTa cxrilia

I.

5 6 8 12

sixSire 3 1 2 1

fardobiTi

sixSire 73

71

72

71

sxvaobebi _2 _1 1 5

sixSireebi 3 1 2 1

sxvaobebi _3 _1 1 2

sixSireebi 1 2 1 2

sxvaobebis

kvadrati 4 1 1 25

sixSireebi 3 1 2 1

6 8 10 11

sixSire 1 2 1 2

fardobiTi

sixSire 61

31

61

31

Page 162: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

162

II.

kvadratebis saSualoa I _ 740

, II _ 3

10.

amdenad standartuli gadaxrebia: I _ 4,2740

≈ , II _

8,13

10≈ .

statistikuri monacemebis TvalsaCinod (xelsayreli

formiT) warmodgenisaTvis gamoiyeneba sxvadasxva xerxi –

cxriluri, wertilovani, xazovani (poligoni), svetovani

(horizontaluri an vertikaluri) da wriuli diagramebi.

nbhbmjUj/ q. TbilisSi SemTxveviT Semowmebul 12

ojaxSi bavSvTa raodenobebis Sesabamisi monacemebia:

2, 1, 1, 3, 2, 2, 1, 1, 3, 4, 1, 4.

monacemebi warmovadginoT wertilovani, svetovani,

xazovani da wriuli diagramebiT.

bnpytob/ am monacemTa variaciuli mwkrivia

1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4

xolo sixSireTa cxrilia bavSvTa raodenoba ojaxSi 1 2 3 4

sixSire 5 3 2 2

am monacemTa diagramebia:

1) wertilovani (nax. 83)

sxvaobebis

kvadrati 9 1 1 4

sixSireebi 1 2 1 2

••

•••

•• •

•••

•••••

3

1• •••

1 2 3 4 bavSvTa raodenoba

sixSire

•2

45

nax. 83

Page 163: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

163

2) svetovani (nax. 84)

3) xazovani (nax. 85)

4) wriuli (nax. 86)

(1) _ erT bavSviani ojaxebis seqtori

°=°⋅ 150360125

(2) _ or bavSviani ojaxebis seqtori

°=⋅ 903600123

(3) _ sam bavSviani ojaxebis seqtori

°=°⋅ 60360122

(4) – oTx bavSviani ojaxebis seqtori

°=°⋅ 60360122

••

•••3

1••• •

1 2 3 4 bavSvTa raodenoba

sixSire

2

45

nax. 84

••

•••

• •3

1••••

1 2 3 4bavSvTa raodenoba

sixSire

•2

45

nax. 85

)3(122

)4(122

)2(123

)1(125

nax. 86

Page 164: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

164

%91/!yepnjmpcjt!bmcbUpcb/!gbsepcjUj!tjyTjsf!

albaTobis Teoria aris mecniereba, romelic Seiswav-

lis masobriv SemTxveviT movlenaTa raodenobrivi xasia-

Tis kanonzomierebebs.

albaTobis Teoriis pirvelad cnebas xdomiloba war-

moadgens.

magaliTad, monetis agdebisas SesaZlo Sedegi oria:

gerbi da safasuri. safasuri SeiZleba movides an SeiZleba

arc movides. aseT SemTxvevaSi amboben safasuris mosvla

SemTxveviTi xdomilobaa. aseve, erTi kamaTlis gagorebisas

SesaZlo Sedegebis raodenoba eqvsia. magram beSi (5)

SeiZleba movides, SeiZleba arc movides, e.i. beSis mosvla

SemTxveviTi xdomilobaa. SemTxveviTi xdomilobaa agreTve

kamaTelze kenti ricxvis mosvla. misi xelSemwyobia mxolod

sami SesaZlo Sedegi: 1-is, 3-isa da 5-is mosvla.

amrigad, xdomiloba SemTxveviTia Tu mas erTsa da

imave pirobebSi SeiZleba hqondes an ar hqondes adgili.

zogi xdomiloba iseTia, rom mas aucileblad eqneba

adgili, Tu cdas CavatarebT. aseT xdomilobas aucilebel

xdomilobas uwodeben.

magaliTad, Tu yuTSi moTavsebulia mxolod wiTeli

feris birTvebi, maSin cxadia, xdomiloba – `yuTidan

amoRebuli birTvi wiTeli ferisaa~ - iqneba aucilebeli

xdomiloba.

xdomilobas, romelsac ar SeiZleba hqondes adgili

raime cdis Catarebis dros, SeuZlebeli xdomiloba

ewodeba.

yuTidan lurji feris birTvis amoReba SeuZlebeli

xdomilobaa, Tu yuTSi mxolod Savi feris birTvebia.

erTi kamaTlis gagorebisas winaswar SeuZlebelia

Tqma, ra ricxvi mova, magram SeiZleba vivaraudoT, rom

TiToeuli ricxvis mosvla Tanabradaa mosalodneli

(savaraudo). aseT SesaZlo Sedegebs Tanabrad

mosalodneli (tolSesaZlebeli, tolalbaTuri) ewodeba.

monetis agdebisas gerbis mosvla, safasuris mosvla-

tolalbaTuri SesaZlo Sedegebia.

vTqvaT yuTSi 30 wiTeli da 3 lurji burTia. Tu

yuTidan SemTxveviT amoviRebT erT burTs, maSin ufro

savaraudoa, ufro mosalodnelia, rom amoRebuli burTi

wiTeli iqneba. amitom aseT SemTxvevaSi amboben, rom

Page 165: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

165

wiTeli burTis amoReba metalbaTuri xdomilobaa, lurji

burTis amoReba ki – naklebalbaTuria.

rogorc zemoT aRvniSneT, monetis agdebisas SesaZlo

Sedegi oria: gerbi an safasuri. erT-erTi aucileblad

mova, magram erTdroulad orives mosvla SeuZlebelia.

aseve, erTi kamaTlis gagorebisas SesaZlo Sedegebis

raodenoba eqvsia. yoveli gagorebisas am ricxvebidan mova

mxolod erTi da misi mosvla gamoricxavs danarCenis

mosvlas. aseT SemTxvevaSi amboben, rom es SesaZlo

Sedegebi wyvil-wyvilad araTavsebadia (urTierTgamomric-

xavia).

Cven ganvixilavT mxolod iseT cdebs, romelTa

SesaZlo Sedegebi tolSesaZlebeli (tolalbaTuri) da

wyvil-wyvilad araTavsebadia.

rogorc aRvniSneT xdomiloba cdis raime savaraudo

Sedegia. erTi kamaTlis gagorebisas eqvsi SesaZlo

Sedegia, magram am eqvsi SesaZlo Sedegis mixedviT

sxvadasxva xdomilobis dasaxeleba SeiZleba. magaliTad:

`erTisa da oTxis ar mosvla~ xdomilobaa, romlis

xelSemwyobia oTxi SesaZlo Sedegi. saxeldobr: 2-is, 3-is,

5-isa da 6-is mosvla.

amrigad, raime xdomilobis xelSemwyobi SesaZlo

Sedegia iseTi Sedegi, romliTac mocemuli xdomiloba

xorcieldeba.

raime xdomilobis ganxorcielebis SesaZlebloba

ricxviT gamoisaxeba. am ricxvs xdomilobis albaToba

ewodeba.

vTqvaT, raime eqsperimentis (cdis) SesaZlo Sedegebis

raodenobaa n, xolo raime A xdomilobis xelSemwyobi

SesaZlo Sedegebis raodenobaa m, maSin A xdomilobis

albaToba, romelic aRiniSneba )(Ap simboloTi, gamoiT-

vleba formuliT

nmAP =)( .

aqedan gamomdinareobs, rom Tu m=0, maSin A SeuZlebeli xdomilobaa da 0)( =AP ; xolo Tu nm = ,

maSin A aucilebeli xdomilobaa da 1)( =AP . (P aris

pirveli aso sityvisa Probabilite, romelic frangulad

albaTobas niSnavs).

Page 166: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

166

monetis agdebisas gerbis mosvlis albaTobaa 21

(SesaZlo Sedegia ori, maTgan xelSemwyobia erTi).

kamaTlis gagorebisas samisa da xuTis ar mosvlis

albaTobaa 32 (SesaZlo Sedegia eqvsi, maTgan xelSemwyobia

oTxi).

cxadia, nebismieri A xdomilobisaTvis nm ≤≤0 , amitom

1)(0 ≤≤ AP .

amrigad, Tu raime cdis SesaZlo Sedegebis simravle

sasrulia da isini tolSesaZlebelia (tolalbaTuria),

maSin cdis Cautarebladac SeiZleba vipovoT, am Sedegebis

mixedviT, dasaxelebuli raime xdomilobis albaToba. e.i.

albaToba aris ricxvi, romliTac cdis raime Sedegis

ganxorcielebis Sansi warmoidgineba.

cdaTa mocemul serialSi A xdomilobis moxdenaTa

raodenobas A xdomilobis sixSire ewodeba.

A xdomilobis sixSiris Sefardebas cdaTa

raodenobasTan A xdomilobis fardobiTi sixSire ewodeba.

Tu cdaTa raodenobaa n, xolo moxdenaTa sixSirea m,

maSin fardobiTi sixSire )(APn simboloTi aRiniSna, e.i.

nmAPn =)( .

xdomilobis albaTobis ganmsazRvreli formula ar

moiTxovs cdebis realur Catarebas. Tumca, cdebis

CatarebiT SeiZleba SevamowmoT Teoriulad miRebuli

ricxvebis kanonzomiereba.

fardobiTi sixSiriT SeiZleba Sefasdes xdomilobis

albaToba. mas statistikur albaTobas uwodeben. es

meTodi gamoiyeneba maSin, roca SeuZlebelia mocemuli

xdomilobis sasurveli (xelSemwyobi) Sedegebis

raodenobis miTiTeba.

%92/!fmfnfoubsvm!yepnjmpcbUb!tsvmj!tjtufnb!!!!!!!!!!)yepnjmpcbUb!tjwsdf*/!yepnjmpcbUb!Tfebsfcb!

raime cdis yvela im SesaZlo Sedegs, romlebic wyvil-

wyvilad araTavdebadia, am cdis elementaruli xdomilo-

bebi ewodeba. elementeruli xdomilobebis simravles ki

Page 167: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

167

elementarul xdomilobaTa sruli sistema (xdomilobaTa

sivrce).

SevniSnoT, rom am gansazRvrebaSi ar moiTxoveba

xdomilobaTa tolSesaZlebloba.

moviyvanoT magaliTebi.

nbhbmjUj! 2/ monetis agdebis cdis Sesabamisi elementa-

rul xdomilobaTa sruli sistemaa simravle g; s, sadac

`g~ aRniSnavs gerbs, xolo `s~- safasurs.

nbhbmjUj! 3/ kamaTlis gagorebisas cdis Sesabamisi ele-

mentarul xdomilobaTa sruli sistemaa simravle 1, 2, 3,

4, 5, 6.

nbhbmjUj!4/ ori monetis agdebisas elementarul xdomi-

lobaTa sruli sistemaa: gg, gs, sg, ss, aq yovel wyvilSi

pirveli aso erT-erTi monetis agdebis SesaZlo Sedegia,

meore aso ki meore monetisa.

nbhbmjUj!5/ vTqvaT, eqsperimentia ori sxvadasxva (wiTe-

li da TeTri) kamaTlis gagoreba da mosul ricxvebze da-

kvirveba. amovweroT am cdasTan dakavSirebuli elementa-

rul xdomilobaTa sruli sistema (sivrce).

T

w

1 2 3 4 5 6

1 (1;1) (1;2) (1;3) (1;4) (1;5) (1;6)

2 (2;1) (2;2) (2;3) (2;4) (2;5) (2;6)

3 (3;1) (3;2) (3;3) (3;4) (3;5) (3;6)

4 (4;1) (4;2) (4;3) (4;4) (4;5) (4;6)

5 (5;1) (5;2) (5;3) (5;4) (5;5) (5;6)

6 (6;1) (6;2) (6;3) (6;4) (6;5) (6;6)

aq, magaliTad, (5;3) wyvili Seesabameba elementarul

xdomilobas: wiTel kamaTelze 5 movida, TeTrze ki 3.

am eqsperimentis xdomilobaTa sruli sistema SeiZleba

CavweroT ase

61 ,61 );;( ≤≤≤≤= yxyxS .

aqedan Cans, rom Sedegebis raodenobaa 6⋅6=36. amitom

yoveli elementaruli xdomilobis albaTobaa 361

.

am eqsperimentTan dakavSirebiT ganvixiloT Semdegi

amocanebi:

1) ras udris `wyvilis~ (kamaTelze erTnairi

ricxvebis) mosvlis albaToba?

Page 168: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

168

am xdomilobis Sesabamisi elementarul xdomilobaTa

simravlea:

)6;6( ),5;5( ),4;4( ),3;3( ),2;2( ),1;1(=A .

A aris S-is qvesimravle )( SA⊂ . cxadia, A xdomilobis

albaTobaa 61

366= .

2) ganvixiloT xdomilobebi: A iyos xdomiloba

`mosul );( yx wyvilSi 9=+ yx ~, B – `mosul );( yx

wyvilSi 13<+ yx ~; C – `mosul );( yx wyvilSi 15≥+ yx ~.

maSin

)3;6( ),4;5( ),5;4( ),6;3(=A , ,SB = C= Ø.

91

364)( ==AP , 1)( =BP , 0)( =CP .

3) ras udris albaToba imisa, rom `wiTel~ kamaTelze

mosuli ricxvi 3-iT metia `TeTr~ kamaTelze mosul

ricxvze?

am xdomilobis Sesabamisi elementarul xdomilobaTa

simravlea

)3;6( );2;5( );1;4(=A

am xdomilobis albaTobaa 121

363)( ==AP .

4) A iyos xdomiloba `mosul );( yx wyvilSi 24≥⋅ yx ~.

am xdomilobis Sesamabisi elementarul xdomilobaTa

simravlea

)6;6( );5;6( );4;6( );6;5( );5;5( );6;4(=A ,

amitom 61

366)( ==AP .

nbhbmjUj! 6/ moswavlem programiT gaTvaliswinebuli 25

sakiTxidan moamzada 15. ras udris albaToba imisa, rom

moswavles Sexvdeba bileTi, romlis samive sakiTxi

momzadebuli aqvs?

25 sakiTxidan 3-sakiTxiani bileTebis Sedgena SeiZleba

−325C nairad. e.i. xdomilobaTa sruli sistemis elementarul

xdomilobaTa raodenobaa 325C . momzadebuli 15 sakiTxidan

Sedgenili bileTebis raodenobaa 315C , es aris

moswavlisaTvis sasurveli (xelSemwyobi) bileTebis

Page 169: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

169

raodenoba. amitom albaTobis gansazRvrebidan gamomdina-

re, albaToba imisa, rom moswavles Sexvdeba bileTi,

romlis samive sakiTxi momzadebuli aqvs iqneba

46091

321232425:

321131415

325

315 =

⋅⋅⋅⋅

⋅⋅⋅⋅

=CC

.

nbhbmjUj!7/ vTqvaT, raime avadmyofobis mosarCenad eqvsi

tipis wamali gamoiyeneba – I, II,...,VI. eqimma gadawyvita

gamoikvlios am eqvsidan romelime oTxi wamlis moqmedeba.

igi 6-dan alalbedze irCevs 4 wamals. ras udris

albaToba imisa, rom arCevani I wamalze SeCerdeba?

xdomilobaTa sruli sistema dasaxelebuli eqvsi

wamlidan Sedgenili yvela SesaZlo oTxeulis simravlea.

e.i. xdomilobaTa sruli sistema Sedgeba 1521562

646 =

⋅⋅

== CC

elementaruli xdomilobisgan. pirobis Tanaxmad, TiToeu-

li oTxeulis SerCeva, mocemuli 15-dan, tolSesaZlebelia,

amitom TiToeuli elementaruli xdomilobis albaTo-

baaA151

.

ramdeni oTxeuli Seicavs I wamals? anu ramdeni ele-

mentaruli xdomilobaa `xelSemwyobi~ saZebni A xdomilobi-

saTvis? I wamlis garda unda SeirCes kidev 3 wamali darCe-

nili 5-dan, maTi raodenobaa 1021452

535 =

⋅⋅

== CC . maSasadame

32

1510)( 4

6

35 ===

CCAP .

amrigad, Tu S aris mocemuli eqsperimentTan dakavSi-

rebuli xdomilobaTa sruli sistema (sivrce), maSin yove-

li A xdomiloba, romelic am eqsperimentis raime Sedegs

warmoadgens, am S simravlis qvesimravlea da Sedgeba moce-

muli xdomilobis xelSemwyobi elementaruli xdomilobebi-

sagan.

Tu S-is TiToeuli elementaruli xdomilobis alba-

Tobebia nPPP ,,, 21 L , maSin 121 =+++ nPPP L . gamomdinare aqe-

dan, Tu xdomilobaTa sivrce n tolSesaZlebeli Sedegis-

gan Sedgeba, maSin n

PPP n1

21 ==== L .

Page 170: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

170

S simravlis yoveli A xdomilobis (romelic S-is qvesimravlea) albaToba A-Si Semaval elementarul xdomi-

lobaTa albaTobebis jamis tolia.

Tu S sistemis A xdomilobis moxdenisas xdeba amave

sistemis raime B xdomilobac, maSin vityviT, rom A iwvevs B-s da amas ase CavwerT: BA ⊂ an AB ⊃ . amasTan, Tu BA ⊂

da AB ⊂ , maSin vityviT, rom es ori xdomiloba tolia

(tolZalovania) da davwerT BA = . e.i. ori xdomiloba

tolia niSnavs imas, rom isini erTi da imave elementa-

ruli xdomilobebisagan Sedgeba.

magaliTad, Tu kamaTlis gagorebisas A aris 3-is an 5-is mosvla, xolo B – kenti ricxvis mosvla, maSin cxadia

BA ⊂ , am SemTxvevaSi 31

62)( ==AP ,

21

63)( ==BP , e.i.

)()( BPAP < . sazogadod, roca ,BA ⊂ maSin )()( BPAP ≤ ; to-

lobas mxolod maSin aqvs adgili, roca BA = .

%93/!pqfsbdjfcj!yepnjmpcfcf!

vTqvaT, S aris mocemuli eqsperimentis Sesabamisi xdo-

milobaTa sruli sistema (sivrce). misi elementebi am

eqsperimentis Sesabamisi elementaruli xdomilobebia –

TiToeuli maTgani mocemuli eqsperimentis garkveul

Sedegs Seesabameba. es Sedegebi ar SeiZleba erTdroulad

moxdes – isini araTavsebadia. S-is yoveli qvesimravle

mocemuli eqsperimentis Sesabamisi xdomilobaa. erT-erTi

qvesimravle carieli simravlea Ø; igi arcerT elementa-

rul xdomilobas ar Seicavs, misi albaToba nulia, p(Ø)=0; qvesimravlea agreTve TviT S simravlec – igi aucilebeli

xdomilobaa; 1)( =SP . operaciebi xdomilobebze ise ganisa-

zRvreba, rogorc simravleze operaciebi.

ori A da B xdomilobis jami (gaerTianeba) ewodeba

iseT xdomilobas, romelic xdeba maSin da mxolod maSin,

rodesac xdeba erTi mainc A da B xdomilobebidan.

aRiniSneba ase BA+ an BAU .

nbhbmjUj! 2/ vTqvaT eqsperimentia kamaTlis gagoreba. A iyos xdomiloba: `4-ze meti ricxvis mosvla~, e.i. A aris simravle 6;5 . B iyos xdomiloba – `3-ze meti da 6-ze

naklebi ricxvis mosvla~, e.i. 5;4=B . amitom 6;5;4=+ BA ,

Page 171: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

171

es ki aris xdomiloba: `3-ze meti ricxvis mosvla~. cxadia,

31

62)( ==AP ;

31

62)( ==BP ,

21

63)( ==+ BAP . rogorc aqedan

Cans )()()( BPAPBAP +<+ .

am magaliTSi A da B xdomilobebs saerTo elementaru-

li xdomiloba aqvs – `5-is mosvla~; isini Tavsebadi xdomi-

lobebia.

Tu A da B raime araTavsebadi xdomilobebia, maSin

)()()( BPAPBAP +=+ .

nbhbmjUj!3/ yuTidan, romelSic aris 6 TeTri, 10 Savi da

4 wiTeli birTvi, SemTxveviT iReben erT-erTs. A iyos

xdomiloba amoRebuli birTvi TeTria, B-amoRebuli birTvi

wiTelia. vipovoT A da B xdomilobebis jamis albaToba.

A da B araTavsebadi xdomilobebia, amitom

)()()( BPAPBAP +=+ ; 206)( =AP ,

204)( =BP . e.i.

21

204

206)( =+=+ BAP .

ori A da B xdomilobis namravli (TanakveTa) ewodeba

iseT xdomilobas, romelic xdeba maSin da mxolod maSin,

rodesac xdeba rogorc A, ise B xdomiloba. aRiniSneba ase

AB an BAI .

nbhbmjUj! 4/ vTqvaT, eqsperimenti ori sxvadasxva kamaT-

lis gagorebaa (ix. $83-is magaliTi 4); rogorc viciT

Sesabamisi xdomilobaTa sruli sistemaa

61 ,61 ),;( ≤≤≤≤= yxyxS .

ganvixiloT S sruli sistemis sxvadasxva xdomilo-

bebi.

1) vTqvaT A aris im elementarul xdomilobaTa simra-

vle (S-is qvesimravle), romlebic akmayofileben pirobas

5≥x ; e.i. A Sedgeba 12 elementaruli xdomilobisgan,

amitom 31

3612)( ==AP .

B iyos elementarul xdomilobaTa simravle, romle-

bic akmayofileben pirobas 3≤y . B Sedgeba 18 elementa-

rul xdomilobisgan, 21

3618)( ==BP .

Page 172: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

172

BA ⋅ aris elementarul xdomilobaTa simravle, rom-

lisTvisac erTdroulad sruldeba pirobebi 5≥x da

3≤y . e.i.

)3;6( );2;6( );1;6( );3;5( );2;5( );1;5(=⋅BA .

amdenad

61

366)( ==⋅BAP .

maSasadame, am SemTxvevaSi )()()( BPAPBAP ⋅=⋅ .

2) axla ganvixiloT zemoT ganxilul cdasTan dakav-

Sirebuli kidev ori xdomiloba:

A iyos im elementarul xdomilobaTa simravle, rom-

lisTvisac 3≠x . e.i. A Sedgeba 30 elementaruli xdomi-

lobisgan, amitom 65

3630)( ==AP .

B iyos im elementarul xdomilobaTa simravle, rom-

lisTvisac 9=+ yx . cxadia )3;6(),4;5(),5;4(),6;3(=B .

91

364)( ==BP .

BA ⋅ aris im elementarul xdomilobaTa simravle,

romlisTvisac erTdroulad sruldeba ori piroba: 3≠x ,

9=+ yx . es xdomiloba sami elementaruli xdomilobisgan

Sedgeba: )3;6(),4;5(),5;4(

65

91

121

363)( ⋅≠==⋅ BAP .

maSasadame am SemTxvevaSi )()()( BPAPBAP ⋅≠⋅ .

Tu adgili aqvs tolobas )()()( BPAPBAP ⋅=⋅ , maSin A da B xdomilobebs damoukidebeli xdomilobebi ewodeba.

winaaRmdeg SemTxvevaSi am xdomilobebs damokidebuli

xdomilobebi ewodeba.

zemoT ganxiluli magaliTi 1-dan da magaliTi 2-dan

gamomdinareobs, rom )()()( BPAPBAP +≤+ . tolobas adgili

aqvs mxolod maSin, roca A da B araTavsebadi xdomile-

bebia.

mtkicdeba, rom Tu A da B nebismieri xdomilobebia,

maSin

)()()()( BAPBPAPBAP ⋅−+=+ .

Page 173: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

173

am tolobis marTebuloba SeiZleba SevamowmoT

zemoTmoyvanil magaliT 1-ze.

ori A da B xdomilobis sxvaoba ewodeba iseT

xdomilobas, romelic xdeba maSin da mxolod maSin,

rodesac xdeba A da ar xdeba B. aRiniSneba ase BA− an

BA \ .

vTqvaT, S xdomilobaTa raime sruli sistemaa da

SA ⊂ . A-s sawinaaRmdego xdomiloba, romelic aRiniSneba

A simboloTi, ewodeba AS \ xdomilobas. e.i. A

xdomiloba xorcieldeba maSin, roca ar xorcieldeba A da A ar xorcieldeba maSin, roca xorcieldeba A. cxadia A da A araTavdebadi xdomilobebia, e.i. SAA =+ ; gamomdi-

nare aqedan 1)()()( =+=+ APAPAAP , saidanac )(1)( APAP −= .

magaliTad, Tu A aris kamaTelze 2-ze meti ricxvis

mosvla, e.i. 6,5,4,3=A ; maSin A aris 2-ze meti ricxvis ar

mosvla, an 2-ze araumetesi ricxvis mosvla, e.i. 2,1=A . am

magaliTSi 32

64)( ==AP ;

31

62)( ==AP .

ramodenime xdomilobis jami da namravli ganisaz-

Rvreba oris analogiurad.

nAAA ,,, 21 L xdomilobebis jami ewodeba iseT xdomilo-

bas, romelic xdeba maSin da mxolod maSin, rodesac xdeba

erTi mainc ),,2,1( nKAK L= xdomilobebidan da aRiniSneba

ase:

nAAA +++ L21 an Un

KKA

1=

.

Tu nAAA ,,, 21 L xdomilobebidan yoveli ori araTavse-

badia, maSin

)()()()( 2121 nn APAPAPAAAP +++=+++ LL .

nAAA ,,, 21 L xdomilobebis namravli ewodeba iseT xdomi-

lobas, romelic xdeba maSin da mxolod maSin, rodesac

xdeba yoveli ),,2,1( nKAK L= da aRiniSneba ase:

nAAA ⋅⋅⋅ 21 L an In

KKA

1=

.

^

Page 174: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

174

%94/!hfpnfusjvmj!bmcbUpcb!

albaTobis klasikuri gansazRvreba moiTxovs, rom

elementarul xdomilobaTa sruli sistema Sedgebodes

sasruli raodenobis tolSesaZlebeli xdomilobebisagan.

praqtikaSi ki xSirad vxvdebiT cdebs, romelTa tolSesaZ-

lebel SedegTa simravle usasruloa. aseT SemTxvevaSi sa-

rgebloben albaTobis geometriuli gansazRvrebiT.

vTqvaT mocemuli gvaqvs AB monakveTi, romlis sigrZe

(nax. 87) udris d-s ( )dAB = da am

monakveTze mdebare CD monakveTi

δ=CD . albaToba imisa, rom AB monakveTze SemTxveviT SerCeuli wertili moxvdes am

monakveTze mdebare CD monakveTze gamoiTvleba formuliT

dP δ= . (1)

aq AB monakveTi xdomilobaTa sruli sistemis

(sivrcis) rolSia, dasaxelebul xdomilobas AB monakve-

Tis qvesimravles _ CD monakveTs vuTanabrebT.

analogiurad, vTqvaT moce-

muli gvaqvs S farTobis mqone

raime brtyeli figura (nax. 88)

da am figuris raime nawili,

romlis farTobia s. albaToba

imisa, rom mocemul figuraze

SemTxveviT SerCeuli wertili

moxvdeba am figuris aRebul

nawilSi gamoiTvleba formuliT

SsP = . (2)

(1) da (2) geometriuli albaTobis formulebia.

ganvixiloT magaliTebi, romelTa amoxsna moxerxebu-

lia albaTobis geometriuli gansazRvrebis gamoyenebiT.

nbhbmjUj! 2/ monakveTi sam tol nawiladaa dayofili.

vipovoT albaToba imisa, rom am monakveTze SemTxveviT

SerCeuli wertili Sua nawilSi ar moxvdeba.

• •• •A BC D

nax. 87

S

s

nax. 88)

Page 175: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

175

e.i. unda gamovTvaloT albaToba imisa, rom SemTxveviT

SerCeuli wertili moxvdeba pirvel an mesame nawilSi.

Tanaxmad (1) formulisa es albaToba 32

=P .

nbhbmjUj! 3/ vTqvaT MN aris ABC samkuTxedis Suaxazi

)||( ACMN . vipovoT albaToba imisa, rom ABC samkuTxedSi SemTxveviT SerCeuli wertili BMN samkuTxedSi moxvdeba.

(2) formulis gamoyenebiT

41

==ABC

BMN

ASP .

nbhbmjUj! 4! )Tfywfesjt! bnpdbob*/ ori megobari SeTanxmda,

rom isini Sexvdebodnen erTmaneTs 10-dan 11 saaTamde,

amasTan, Sexvedris adgilze TiToeuli mosuli elodeba

meores 20 wuTs da midis. ras udris maTi Sexvedris

albaToba, Tu TiToeuli modis alalbedze daTqmuli

drois (10 saaTidan 11 saaTamde drois SualedSi) ganmav-

lobaSi da maTi mosvlis momentebi ar aris damokidebuli

erTmaneTze?

drois mTeli Sualedi wuTebis gamoyenebiT ase

gamovsaxoT [0;60]. pirvelis mosvlis dro aRvniSnoT x-iT,

meoresi ki y-iT. imisaTvis, rom isini Sexvdnen erTmaneTs,

aucilebelia da sakmarisi, rom 20≤− yx ; amasTan 600 ≤≤ x

da 600 ≤≤ y .

);( yx wyvils SevusabamoT wer-

tili sakoordinato sibrtyeze. yve-

la SesaZlo SemTxvevaTa erTobli-

oba mogvcems kvadrats (nax. 89), ro-

mlis gverdis sigrZea 60, xolo im

);( yx wertilebis simravle, romle-

bic gamoiwveven Sexvedras warmod-

genilia kvadratis daStrixuli na-

wiliT; misi farTobia 22 4060 −=S .

saZiebeli albaToba `geometriul enaze~ SeiZleba ase

CamovayaliboT: ra aris albaToba imisa, rom kvadratSi

SerCeuli );( yx wertili moxvdeba daStrixul nawilSi?

(2) formulis ZaliT

95

6040602

22=

−=P .

0

y

x

60

20

6020

nax. 89

Page 176: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

176

b n p d b o b U b ! l s f c v m j !

§1. bsjUnfujlvmj!hbnpUwmfcj

1.1. daSaleT martiv mamravlebad:

88; 96; 124; 144; 460; 588.

1.2. ipoveT mamravlebad daSlis xerxiT Semdegi ricxve-

bis udidesi saerTo gamyofi:

34 da 48; 120 da 150; 14, 20 da 48; 36, 54 da 72.

1.3. ipoveT mamravlebad daSlis xerxiT Semdegi

ricxvebis umciresi saerTo jeradi:

8 da 28; 64 da 96; 240 da 360; 48, 72 da 80.

1.4. 1) mocemuli naturaluri ricxvis 7-ze gayofis dros

naSTi udris 3-s. ras udris naSTi 7-ze gayofis dros,

Tu mocemul ricxvs gavadidebT 2-iT?

2) raime naturaluri ricxvis 11-ze gayofis dros

naSTi udris 5-s. ras miviRebT naSTSi 11-ze gayofis

dros, Tu mocemul ricxvs gavadidebT 4-iT?

3) raime naturaluri ricxvis 4-ze gayofis dros

naSTi udris 3-s. ras miviRebT naSTSi 4-ze gayofis

dros, Tu mocemul ricxvs gavadidebT 2-iT?

4) raime naturaluri ricxvis 3-ze gayofis dros

naSTi udris 1-s. ras miviRebT naSTSi 3-ze gayofis

dros, Tu mocemul ricxvs gavadidebT 7-iT?

1.5. 1) mocemuli naturaluri ricxvis 3-ze gayofis dros

miiReba ganayofi 31 da naSTi 2. ras udris naSTi

igive ricxvis 7-ze gayofis dros?

2) ricxvis 6-ze gayofis dros naSTia 5. ras udris

naSTi amave ricxvis 12-ze gayofis dros?

3) ricxvis 3-ze gayofis dros naSTia 2, xolo 5-ze

gayofis dros ki _ 3. ras udris naSTi amave ricxvis

15-ze gayofis dros?

4) ricxvis 2-ze gayofis dros naSTia 1, xolo 7-ze

gayofis dros ki 6. ras udris naSTi amave ricxvis 14-

ze gayofis dros?

1.6. 1) ra umciresi naturaluri ricxvi unda davumatoT

4766-s, rom miRebuli ricxvi unaSTod gaiyos 3-ze?

2) ra umciresi naturaluri ricxvi unda davumatoT

47831-s, rom miRebuli ricxvi unaSTod gaiyos 9-ze?

3) ra umciresi naturaluri ricxvi unda davumatoT

Page 177: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

177

87898-s, rom miRebuli ricxvi unaSTod gaiyos 3-ze?

4) ra umciresi naturaluri ricxvi unda davumatoT

35987-s, rom miRebuli ricxvi unaSTod gaiyos 9-ze?

1.7. 1) 6 erTnair fanqarSi gadaixades 73 TeTrze meti da

81 TeTrze naklebi. ramdeni TeTri Rirda erTi

fanqari?

2) 37 erTnair saSlelSi gadaixades 12 larze meti da

12,5 larze naklebi. ramdeni TeTri Rirda erTi

saSleli?

3) moswavleebma eqskursiisaTvis Seagroves Tanxa,

romelic metia 350 larze da naklebia 370 larze.

TiToeulma moswavlem gadaixada 17 lari. ramdeni

moswavle wasula eqskursiaze?

4) redaqciis TanamSromlebma Seagroves garkveuli

Tanxa, romelic metia 335 larze da naklebia 355

larze. TiToeulma gadaixada 15 lari. ramdeni

TanamSromelia redaqciaSi?

TfbtsvmfU!nprnfefcfcj!)$$2/9.2/29*;!

1.8. 1) 127

85+ ; 2)

121

85

52

++ ; 3) 24174

433 + ; 4)

534

1251

1542 ++ .

1.9. 1) 1253

327 − ; 2)

1675

438 − ; 3)

94

65− ; 4)

20138− .

1.10. 1) 158:

54

433 + ; 2)

813:

416

874 − ;

3) 871

25111:

533 − ; 4)

811:

652

413 ⎟

⎠⎞

⎜⎝⎛ − .

1.11. 1) 311

32:

6510

4113 ⋅⎟

⎠⎞

⎜⎝⎛ − ; 2)

4122

922:

313

731 ⋅⎟

⎠⎞

⎜⎝⎛ + ;

3) 1031:

538

541

325 ⎟

⎠⎞

⎜⎝⎛ −⋅ ; 4) ⎟

⎠⎞

⎜⎝⎛ +−⎟

⎠⎞

⎜⎝⎛ +

713

614:

213

312 .

1.12. 1) 76:1220

1076

211

438

53:6 −⋅+⋅−⋅+ ;

2) 1312

32

265

341

412715

154

4103

351

5 ⋅⎟⎟⎠

⎞⎜⎜⎝

⎛−++⋅⎟⎟

⎞⎜⎜⎝

⎛−+ ;

3) 101431

18135

2472

654

521:

18111

3673

1255 ⋅⎟

⎠⎞

⎜⎝⎛ −+−⎟

⎠⎞

⎜⎝⎛ −+ ;

Page 178: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

178

4) 1132

512

1675:

109

416

959:

3114

8725 ⋅+⎟

⎠⎞

⎜⎝⎛ ⋅−+ .

1.13. 1) ( )6059:65,303,0:4,2 ⋅− ; 2) ( )( ) 57,0:2,34,04,2 ⋅−− ;

3) ⎟⎠⎞

⎜⎝⎛ −

213:2,4

315:1,3 ; 4) ⎟

⎠⎞

⎜⎝⎛ −⎟

⎠⎞

⎜⎝⎛ ⋅−

2131:6,0

3135,1:5,0 .

1.14. 1) 75,812

176

3258,2:

213

412

213

4,2:533

544

871

⋅+−

+

−⋅;

2)

85

524

51375,1

541

432

194

611:

832,8:

321

543

++

⎟⎠⎞

⎜⎝⎛ −⋅

⎥⎦

⎤⎢⎣

⎡−⎟

⎠⎞

⎜⎝⎛ +

;

3) 04,0

322:

18583

30785 ⎟

⎠⎞

⎜⎝⎛ −

; 4) ( ) 5,2:25,121655

1433

536

⋅⎟⎠⎞

⎜⎝⎛ −

.

1.15. 1) ( ) ( )[ ]11209,024,02,2

3318

9713

2116 +−+⋅⎟

⎠⎞

⎜⎝⎛ − ;

2) )6(1,1)3(,0)3(,0)6(1,0

6518

3617

1852

32:13:

413

513:2

++

⋅⎥⎦

⎤⎢⎣

⎡⋅⎟⎠⎞

⎜⎝⎛ −+⎟

⎠⎞

⎜⎝⎛+ ;

3) 59,0

)6(41,0431125,1

651

)6(4,0)3(8,0 −+⋅

−;

4) 5,0

851)7(,13

2118

)26(,06533

9813:

151

45382

⋅⋅⎟⎠⎞

⎜⎝⎛ −

⋅+⎟⎠⎞

⎜⎝⎛ −

.

1.16. 1) 121

65

211:

25 −−−

⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛ ; 2)

211

32:

32

73 −−−

⎟⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛

;

3) 43

21

53:

61 31

⋅⎟⎠⎞

⎜⎝⎛−+⎟

⎠⎞

⎜⎝⎛

−−

; 4) ⎟⎟

⎜⎜

⎛⎟⎠⎞

⎜⎝⎛−⋅

⎟⎟

⎜⎜

⎛⎟⎠⎞

⎜⎝⎛⋅−

−−−

10

21

4135:

2335 .

1.17. 1) ( ) ( )15024321 2222:2222 −−−−−−− ⋅−⋅⋅−⋅ ;

Page 179: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

179

2) ( ) ( )423324 3334:3335 −−−−−− ⋅+⋅⋅−⋅ ;

3) 1

11

215

3234

−−

⎟⎠⎞

⎜⎝⎛−

⎟⎠⎞

⎜⎝⎛⋅−

; 4) 01

213

8110

21

432

⎟⎠⎞

⎜⎝⎛+

⎟⎠⎞

⎜⎝⎛−⋅⎟

⎠⎞

⎜⎝⎛+

−−

.

1.18. 1) 101100

132

121

1⋅

++⋅

+⋅

L ; 2)101991

531

311

⋅++

⋅+

⋅L ;

3) 2018

153

142

131

1⋅

++⋅

+⋅

+⋅

L ; 4) 2017

163

152

141

1⋅

++⋅

+⋅

+⋅

L .

1.19. gansazRvreT proporciis ucnobi wevri:

1) 5:1012: =x ;2 ) x:458:15 = ; 3)4,08,1

7,2 x= ; 4) 8,1:

436

322: =x .

!!hbnpUwbmfU!)$$2/31<!2/32*;!

1.20. 1) 9000-is 65 nawili; 2) 169-is

1311

nawili;

3) 89,2-is 2233

nawili; 4) 3133 -is 0,01 nawili.

1.21. 1) 140-is 35%; 2) 215-is 16%; 3) 280-is 0,5%; 4) 280-is 318 %.

jqpwfU!sjdywj-!spnmjt!)$$2/33<!2/34*;!

1.22. 1) 32 nawili aris 50; 2)

154

nawili aris 3185 ;

3) 0,04 nawili aris 88,4. 4) 0,2 nawili aris 24,45.

1.23. 1) 22% aris 33; 2) 30% aris 6;

3) 313 % aris

3133 ; 4) 12,3% aris 135,3.

1.24. 1) 2000-is ra nawils Seadgens 225?

2) 3133 -is ra nawils Seadgens 2?

3) 3199 -is ra nawils Seadgens

9516 ?

4) 510,3-is ra nawils Seadgens 17,01?

1.25. 1) 500-is ramdeni procentia 352?

2) 340-is ramdeni procentia 68?

Page 180: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

180

3) 885,6-is ramdeni procentia 239,112?

4) 61231 -is ramdeni procentia 97,09?

1.26. 1) 450 dayaviT 7-isa da 8-is proporciul nawilebad;

2) 960 dayaviT 11-isa da 13-is proporciul nawilebad;

3) 130 dayaviT 32-isa da

23-is proporciul nawilebad;

4) 261 dayaviT 65-isa da

97-is proporciul nawilebad.

1.27. 1) 720 dayaviT Semdegi sami ricxvis proporciul

nawilebad: 5; 4 da 3;

2) 3630 dayaviT Semdegi sami ricxvis proporciul

nawilebad: 0,6; 1 da 0,4;

3) 880 dayaviT Semdegi sami ricxvis proporciul

nawilebad: 35;

611

da 1213

;

4) 432 dayaviT Semdegi oTxi ricxvis proporciul

nawilebad: 0,6; 1; 0,8 da 3.

1.28. 1) mudmivi siCqariT moZravma matarebelma 5 saaTSi

gaiara mTeli gzis 65 nawili. ramden saaTSi gaivlis

is mTel gzas?

2) moswavlem wignis 43 nawili waikiTxa 6 dReSi.

ramden dReSi waikiTxavs is wignis darCenil nawils?

3) fermerma nakveTis 98 nawili moxna 16 saaTSi.

ramden saaTSi moxnavs is mTel farTobs?

4) avtomobilma mTeli gzis 76 nawilis gavlis dros

daxarja 18 litri benzini. ramdeni litri benzini

daixarjeba darCenili gzis gavlisas?

1.29. 1) avtomobilma mTeli gzis 60% gaiara 9 saaTSi.

ramden saaTSi gaivlis is gzis darCenil nawils?

2) avzis 75% wyliT gaivso 12 saaTSi. ramden saaTSi

gaivseba avzi mTlianad?

3) fermerma nakveTis 40%-ze mosavali aiRo 8 saaTSi.

ramden saaTSi aiRebs is mosavals nakveTis darCenil

nawilze?

4) kalaTSi moTavsebuli vaSlebis raodenobis 45%

Page 181: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

181

Seadgens 27 vaSls. ramdeni vaSlia kalaTaSi?

1.30. 1) fermerma nakveTis 54 nawili moxna traqtoriT,

xolo darCenili nawili ki daamuSava xeliT,

razedac man daxarja 6-jer meti dro, vidre imuSava

traqtoriT. ramdenjer metia Sromis nayofiereba

traqtoriT muSaobis SemTxvevaSi xeliT muSaobasTan

SedarebiT?

2) gza qalaqidan soflamde Sedgeboda aRmarTisa da

daRmarTisagan. aRmarTis gavlas, romlis sigrZe

Seadgenda mTeli gzis 71 nawils, velosipedistma

moandoma 2-jer meti dro, vidre daRmarTis gavlas.

ramdenjer meti iyo velosipedistis siCqare

daRmarTze aRmarTze siCqaresTan SedarebiT?

3) turistma mTeli gzis 91 nawili gaiara fexiT,

xolo darCenili gza ki imgzavra avtobusiT. fexiT

siarulis dros man daxarja 3-jer meti dro, vidre

avtobusiT. ramdenjer metia avtobusis siCqare fexiT

moZraobis siCqaresTan SedarebiT?

4) mgzavrma mTeli gzis 3266 % ifrina TviTmfrinaviT,

xolo darCenili gza imgzavra avtomobiliT. avtomobiliT

mgzavrobis dros man daxarja 4-jer meti dro, vidre

frenis dros. ramdenjer metia TviTmfrinavis siCqare

avtomobilis siCqaresTan SedarebiT?

1.31. 1) moswavlis mier wignis wakiTxuli gverdebis

raodenoba 3-jer metia wignis waukiTxavi gverdebis

raodenobaze. wignis ramdeni procenti waukiTxavs

moswavles? 2) fermeris mier moxnuli nakveTis farTobi 4-jer

metia darCenil mouxnav farTobze. mTeli nakveTis

ramdeni procenti mouxnavs fermers?

3) avtomobilma daxarja 9-jer meti benzini, vidre

darCa benzinis avzSi. benzinis mTeli raodenobis

ramdeni procenti darCa avzSi?

4) mgzavrma gaiara 8-jer meti manZili, vidre darCa

gasavleli. mTeli gzis ra nawili gaiara mgzavrma?

1.32. 1) miwis nakveTi naxazze 1:10000 masStabiTaa mocemuli.

cnobilia, rom naxazze or wertils Soris manZilia

Page 182: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

182

3,7 sm. ipoveT Sesabamisi manZili nakveTze.

2) rukaze qalaqebs Soris manZili 12 sm-ia. ra

manZilia sinamdvileSi am qalaqebs Soris, Tu rukis

masStabia 1:800000?

3) naxazze 125 metrs Seesabameba 5 sm. ra manZilia or

wertils Soris sinamdvileSi, Tu naxazze igi 7 sm-ia?

4) naxazze stadionis zomebia 5 sm da 8 sm.

sinamdvileSi stadionis mcire ganzomilebaa 20 m.

ipoveT stadionis meore ganzomileba.

1.33. 1) suraTis sigrZea 50 sm, sigane 40 sm. suraTis

farTobi gaadides 5-jer. ramdeni kvadratuli metri

gaxda suraTis farTobi?

2) mikroskopi yoveli sagnis farTobs adidebs 106-jer.

ramdeni kvadratuli santimetri farTobiT gamoCndeba

mikroskopSi 0,00001 mm2 farTobis mqone sxeuli?

3) evraziis rukis masStabia 1:7000000, xolo

amierkavkasiis rukisa ki 1:3500000. ramdenjer metia

amierkavkasiis rukaze saqarTvelos farTobi evraziis

rukaze mocemul saqarTvelos farTobze?

4) saqarTvelos farTobia 70000 kvadratuli

kilometri, xolo saqarTvelos rukis masStabia

1:500000. ramdeni kvadratuli santimetri ukavia

saqarTvelos rukaze?

1.34. 1) erTi ricxvi Seadgens meoris 30%-s. meore ricxvis

ra nawils Seadgens pirveli ricxvi?

2) erTi ricxvi Seadgens meore ricxvis 85%-s. meore

ricxvis ra nawils Seadgens pirveli ricxvi?

3) erTi ricxvi Seadgens meore ricxvis 80%-s. pirveli

ricxvis ramden procents Seadgens meore ricxvi?

4) erTi ricxvi Seadgens meoris 72 nawils, pirveli

ricxvis ramden procents Seadgens meore ricxvi?

1.35. 1) qsovilis fasma moimata Tavisi fasis 31-iT. axali

fasis ra nawils Seadgens Zveli fasi?

2) produqciis fasma moimata Tavisi fasis 25%-iT.

axali fasis ramden procents Seadgens Zveli fasi?

3) qsovilis fasma moiklo Tavisi fasis 52-iT. Zveli

fasis ra nawils Seadgens axali fasi?

Page 183: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

183

4) produqciis fasma moiklo Tavisi fasis 20%-iT.

axali fasis ramden procents Seadgens Zveli fasi?

1.36. 1) xuTi kombaini dReSi iRebs 300 ha mosavals. ramden

heqtarze aiRebs mosavals erT dReSi Svidi iseTive

kombaini?

2) sami traqtori yanas 8 saaTSi xnavs. ramdeni

traqtori moxnavs igive yanas 6 saaTSi?

3) xuT kalatozs kedeli amohyavs 6 sT-Si. ramdeni

kalatozi aaSenebs igive kedels 10 sT-Si?

4) avtomobili 6 sT-Si gadis 300 km manZils. ramden

saaTSi gaivlis is 750 km-s, Tu igive siCqariT

imoZravebs?

5) sami traqtori 5 dReSi 150 ha miwas xnavs. ramden

heqtar miwas moxnavs 4 traqtori 7 dReSi?

6) xuTi ostati 3 saaTSi 150 detals amzadebs. ramden

detals daamzadebs 7 ostati 4 saaTSi?

1.37. 1) oTxi kombaini 5 saaTSi xorbals iRebs 60 ha

farTobze. ramden saaTSi aiRebs 9 kombaini mosavals

216 ha farTobis mqone nakveTze?

2) Svidi traqtori 3 dReSi 210 ha miwas xnavs. ramdeni

traqtori moxnavs 150 ha miwas 5 dReSi?

3) orma satvirTo manqanam 3 sT-Si 30 km manZilze 450

t tvirTi gadazida. ramden tona tvirTs gadazidavs 7

aseTive manqana 2 sT-Si 25 km manZilze?

4) xuTma satvirTo manqanam 4 sT-Si 20 km manZilze 100

t tvirTi gadazida. ramdeni aseTi manqanaa saWiro

1000 t tvirTis gadasazidad 50 km manZilze 5 sT-is

ganmavlobaSi?

1.38. 1) kalaTidan, romelSic ido 15 wiTeli da 20 yviTeli

vaSli, amoiRes 17 vaSli. darCa Tu ara kalaTSi

erTidaigive feris ori vaSli?

2) kalaTidan, romelSic ido 6 wiTeli da 7 yviTeli

vaSli, amoiRes 5 vaSli. darCa Tu ara kalaTSi

sxvadasxva feris ori vaSli?

3) yuTidan, romelSic 4 TeTri da 3 Savi birTvia,

amoiRes 3. aris Tu ara amoRebul birTvebSi

erTidaigive feris ori birTvi mainc?

4) kalaTidan, romelSic iyo 7 TeTri da 5 yviTeli

vaSli, amoiRes 8 vaSli. aris Tu ara amoRebul

vaSlebSi sxvadasxva feris TiTo vaSli mainc?

1.39. 1) yuTSi 6 TeTri da 4 wiTeli burTulaa.

burTulebis ra udidesi raodenoba SegviZlia

Page 184: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

184

amoviRoT yuTidan, rom yuTSi aucileblad darCes: a)

TiToeuli feris TiTo burTula mainc; b) erTi

feris ori burTula da meore feris erTi burTula

mainc; g) TiToeuli feris or-ori burTula mainc; d)

romelime erTi feris ori burTula mainc.

2) yuTSi 20 burTulaa: 8-wiTeli, 7-TeTri da 5-Savi.

burTulebis ra udidesi raodenoba SegviZlia

amoviRoT yuTidan, rom yuTSi darCes: a) oTxi cali

erTi feris burTula da danarCeni ori feris

burTulebidan TiToeuli feris TiTo burTula

mainc; b) oTxi cali erTi feris burTula da

danarCeni ori feris burTulebidan TiToeuli feris

or-ori burTula mainc; g) oTxi cali erTi feris

burTula da danarCeni ori feris burTulebidan

TiToeuli feris sam-sami burTula mainc; d) oTxi

cali erTi feris burTula da danarCeni ori feris

burTulebidan TiToeuli feris oTx-oTxi burTula

mainc.

3) yuTSi aris 3 lurji, 4 wiTeli da 5 Savi burTi. ra

umciresi raodenobis burTi unda amoviRoT yuTidan,

rom amoRebul burTebSi aucileblad iyos: a) 3 mainc

erTi feris burTi; b) samive feris burTebi; g) ori

sxvadasxva feris TiTo burTi mainc; d) TiToeuli

feris sam-sami burTi mainc.

4) kalaTSi 120 burTulaa. aqedan 32 lurji, 26

wiTeli, 14 mwvane, 28 TeTri. danarCeni burTulebi

aris yavisferi, yviTeli da Wreli. ra umciresi

raodenobis burTulebi unda amoviRoT kalaTidan,

rom maT Soris erTi feris 20 burTula mainc iyos?

1.40. 1) saaTi, romelic dRe-RameSi win midis 6 wuTiT,

gaaswores. drois ra umciresi monakveTis Semdeg

aCvenebs saaTi isev swor dros?

2) saaTi, romelic yovel 3 saaTSi 2 wuTiT CamorCeba,

gaaswores. drois ra umciresi monakveTis Semdeg

uCvenebs saaTi isev swor dros?

3) gansazRvreT umciresi kuTxe, romlebsac erTmaneT-

Tan Seadgenen saaTis isrebi: a) 2 sT 40 wT-ze; b) 4 sT

48 wT-ze.

4) gansazRvreT umciresi kuTxe, romlebsac erTmaneT-

Tan Seadgenen saaTis isrebi, Tu saaTis Cvenebaa: a) 3

sT 40 wT; b) 5 sT 48 wT.

1.41. 1) WiqaSi myofi yoveli baqteria erT wamSi iyofa or

Page 185: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

185

baqteriad. Tu WiqaSi Tavidan movaTavsebT erT

baqterias, Wiqa gaivseba erT wuTSi. ramden wamSi

gaivseba Wiqa, Tu Tavidan WiqaSi movaTavsebT or

baqterias?

2) WiqaSi myofi yoveli baqteria erT wamSi iyofa or

baqteriad. Tu WiqaSi Tavidan movaTavsebT erT

baqterias, Wiqa gaivseba erT wuTSi. ramden wamSi

gaivseba Wiqis naxevari, Tu Tavidan WiqaSi movaTavsebT oTx

baqterias?

3) WiqaSi myofi yoveli baqteria erT wamSi iyofa sam

baqteriad. Tu WiqaSi Tavidan movaTavsebT erT

baqterias, Wiqa aivseba erT wuTSi. ramden wamSi

aivseba Wiqis mesamedi, Tu Tavidan WiqaSi erTi

baqteriaa?

4) raketam, yovel saaTSi (dawyebuli meoredan)

gadioda ra orjer met manZils imaze, rac mas hqonda

gavlili am dromde, mTeli gza gaiara 10 sT-Si.

moZraobis dawyebidan ramden saaTSi hqonda mas

gavlili mTeli gzis mecxredi?

1.42. CawereT gaSlili formiT mocemuli ricxvi

1) 327; 2) 4029;

3) 5203; 4) 71002

1.43. CawereT gaSlili formiT orobiT sistemaSi mocemu-

li ricxvi

1) 11012 2) 111112

3) 101012 4) 1100102

1.44. CawereT orobiT sistemaSi

1) 7; 2) 9; 3) 16; 4) 60;

5) 110; 6) 129; 7) 502; 8) 813.

1.45. CawereT aTobiT sistemaSi ricxvi

1) 10112 2) 110102

3) 1001112 4) 110001102

1.46. romelia meti

1) 100012 Tu 19 2) 1101012 Tu 51

3) 10010102 Tu 75 4) 1111112 Tu 111

5) 100000002 Tu 100 6) 1010102 Tu 43

1.47. ramden cifrs Seicavs mocemuli ricxvis Canaweri

orobiT sistemaSi?

1) 18; 2) 82;

Page 186: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

186

3) 128; 4) 1023.

1.48. ramden cifrs Seicavs mocemuli ricxvis Canaweri

aTobiT sistemaSi

1) 10102 2) 10000002

3) 11100002 4) 11111101012

1.49. gamoTvaleT

1) 11102 + 1012 2) 101112 + 110012

3) 110112 + 111012 4) 11102 _ 10112

5) 1011002 _ 110012 6) 11010012 _ 10111112

1.50. CawereT aTobiT sistemaSi udidesi ricxvi, romelic

orobiT sistemaSi SeiZleba Caiweros:

1) oTxi cifriT; 2) eqvsi cifriT.

1.51. CawereT aTobiT sistemaSi umciresi ricxvi, romelic

orobiT sistemaSi SeiZleba Caiweros:

1) xuTi cifriT; 2) Svidi cifriT.

1.52. ipoveT umciresi samniSna ricxvi, romlis Canaweri

orobiT sistemaSi Seicavs:

1) mxolod erT erTians; 2) mxolod erTianebs.

1.53. ipoveT udidesi samniSna ricxvi, romlis Canaweri

orobiT sistemaSi Seicavs:

1) mxolod erT erTians; 2) mxolod erTianebs.

§2. nprnfefcfcj!fsUxfwsfcf!eb!nsbwbmxfwsfcf!

nsbwbmxfwsjt!nbnsbwmfcbe!ebTmb!!

TfbtsvmfU!nprnfefcboj!)$$3/2.3/44*;!

2.1. 1) aa 25 − ; 2) xx 108 − ; 3) mm 58 −− ; 4) qq 22 +− .

2.2. 1) ababab 10415 −+ ; 2) xyxyxy 86 +−− ;

3) 333 8104 mmm −+− ; 4)

444 483225 kkk +−− .

2.3. 1) 222

213

2112 ddd −− ; 2)

444

216

2115 qqq +− ;

3) 555

85

21

43 aaa −− ; 4)

333

21

65

32 xxx ++ .

2.4. 1) 222 1,02,18,0 ccc −− ; 2)

666 29,05,1 nnn +− ;

3) 232323 423 bababa +− ; 4) yxyxyx 222 574 +− .

Page 187: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

187

2.5. 1) xxxx 4411 22 −−+ ; 2) 325 +−−− aa ;

3) 22 232 yyyy −+− ; 4)

2222 2 nmnm −+−− .

2.6. 1) yxyx31

32

31

31 22 ++− ;

2) babaabbabaab 323233

21

2142

321 −−−−+− ;

3) 323 5,01,03,0 ccc −− ;

4) mnmnm 002,011,1197,889,3387,9 −−+−− .

2.7. 1) ( )aba 538 ++ ; 2) ( ) ( )124 −−++ xx ;

3) ( ) ( )baba 34215 −++ ; 4) ( ) ( )2222 234 abbaabba +−+− .

2.8. 1) ( ) ( )2222 22 yxxyyxyx −−+++ ;

2) ( ) ( )354355 22 −−−++− mmmm ; 3) ( ) ( )22 241142 yyyy −+−+−− ;

4) ( ) ( )dcbadcba 242945610 +−−+−+− .

2.9. 1) )2(5 aa +− ; 2) )2(10 xx ++− ;

3) )2(5 22 yxyx −− ; 4) )4(4 abab +− .

2.10. 1) ( ) ( )dcdc 761612 −−+ ; 2) ( ) ( )2323 211 xxxx −−− ;

3) ( ) ( )2323 63133 bbabba +−− ; 4) ( ) ( )2222 5384 xyyxxyyx −−+ .

2.11. 1) ( ) ( )cb 32 −⋅+ ; 2) ( ) ⎟⎠⎞

⎜⎝⎛−⋅− qp

326 ;

3) ⎟⎠⎞

⎜⎝⎛+⋅⎟

⎠⎞

⎜⎝⎛+ ba

32

43

; 4) ( ) ( )yx 53,0 −⋅− .

2.12. 1) ( ) ( )aa +⋅+ 2; 2) ( ) ( )32 xx −⋅− ; 3) ( ) ( )42 pp −⋅+ ; 4) ( ) ( )2yyn ⋅+ .

2.13. 1)32 32 xx ⋅ ; 2) ( ) ( )42 26 pp −⋅− ; 3) ( ) ( )328 dd −⋅− ; 4) ( ) ( )22 45 bb +⋅− .

2.14. 1) 21 aan ⋅+; 2)

11 −+ ⋅ nn cc ; 3) 212 ++ ⋅ nn xx ; 4)

3223 +− ⋅ kk aa .

2.15. 1) ( ) ( )3232 5,06,0 yxyx +⋅− ; 2) ( ) ( )342 5,04,2 kbk −⋅+ ;

3) ⎟⎠⎞

⎜⎝⎛−⋅⎟

⎠⎞

⎜⎝⎛− 3232

311

211 zxyzyx ; 4) ( ) ( )23223 4,35,2 pqnmpnm −⋅− .

2.16. 1) ( ) mba ⋅+ ; 2) ( ) zyx 245 ⋅+− ; 3) ( )bab 423 −−⋅ ; 4) ( )xyx 256 −− .

2.17. 1) ( ) xyyxyx 252 22 ⋅+− ; 2) ( )pqqpqp 243

211 22 −⋅⎟

⎠⎞

⎜⎝⎛ +−− ;

3) ( ) nm aaa ⋅− 22 ; 4) ( ) xxx nn 523 1 ⋅−+.

2.18. 1) ( ) ( )baba 2332 −+− ; 2) ( ) ( )babbaa −−+ ;

Page 188: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

188

3) ( ) ( ) ( )qpqpqp −+−⋅−+⋅ 58436 ;

4) ( ) ( ) ( ) ( )babababa 252323 −⋅+−−+⋅−−⋅− .

2.19. 1) ( ) ( )412 +⋅+ xx ; 2) ( ) ( )qpqp −⋅− 435 ;

3) ( ) ( )qpqp −⋅− 435 ; 4) ( ) ( )baba 5232 −⋅+ .

2.20. 1) ( ) ( )2222 387 yxyx +−⋅−− ; 2) ( ) ( )514 22 +⋅− zz ;

3) ( ) ( )abaaba −⋅− 22 338 ; 4) ( ) ( )2333 4345 aabbab −⋅+ .

2.21. 1) ( ) ( )32223 527 xyyxxyyx +−⋅− ; 2) ( ) ( )yxyxyx 3252 222 −⋅−+ ;

3) ( ) ( )abababa 235 222 −⋅+− ; 4) ( ) ( )bababa −⋅++ 22.

2.22. 1) bab 4:8 ; 2) ( )nmn 5:15 − ; 3) ( ) ( )xxy 4:6 −− ; 4) ( ) qpq 6:10− .

2.23. 1) ( )cabc 3:6 − ; 2) ( ) ( )yxyz 8:24 −− ;

3) )5(:15 abab − ; 4) ( ) ( )xzxyz 4:4 −− .

2.24. 1) 35 : aa ; 2)

57 : zz− ; 3) )(:3 yy − ; 4) )(: 810 dd − .

2.25. 1) ( )44 : aa − ; 2) nn bb :2− ; 3)

mm aa :1+; 4)

11 : −+ nn xx .

2.26. 1) yxyx 223 4:16 ; 2) 3234 5:20 nmnm ;

3) ( )abccba 5:4 22 − ; 4) ( )bcacba 223 2:6 −− .

2.27. 1) ( ) aacab :43 + ; 2) ( ) xxzxy 5:1015 − ;

3) ( ) aaa 4:48 2 − ; 4) ( ) nmnmnm 2223 8:2416 + .

2.28. 1) ( ) ( )dcdcdc 2342 4:124 −− ; 2) ( ) ( )2432 3:159 xyyxxy −− ;

3) ( ) 323253 5:2010 nmnmnm + ; 4) ( ) .9:2718 22334 qpqpqp −

2.29. 1) ( )42m ; 2) ( )232x− ; 3) ( )324a− 4) ( )253a− .

2.30. 1) ( )243y− ; 2)

22

21

⎟⎠⎞

⎜⎝⎛ b ; 3) ( )333,0 x− ; 4) ( )257,0 x− .

2.31. 1) ( )232cab ; 2) ( )325 yx ; 3) ( )322 bca− ; 4) ( )4232 bca− .

2.32. 1) 5 ( )323 cba− ; 2) ( )23223 ba− ; 3) ( )33432 yx− ; 4) ( )2243521 cba−− .

2.33. 1) ( )3ka ; 2) ( )21+nx ; 3) ( )2nx− ; 4) ( )3nx− .

2.34. tolia Tu ara:

1) 2x− da ( )2x− ? 2)

3x− da ( )3x− ?

3) ( )42a− da ( )42a− ? 4) ( )52a− da ( )52a− ?

Page 189: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

189

TfbtsvmfU! nprnfefcfcj! Tfnplmfcvmj! hbnsbwmfcjt!

gpsnvmfcjt!hbnpzfofcjU!)$$3/46/.3/64*;!

2.35. 1) ( )( )11 −+ xx ; 2) ( )( )aa −+ 11 ;

3) ( )( )baba 33 −+ ; 4) ( )( )mnnm 2332 +− .

2.36. 1) ( )( )3232 −+ aa ; 2) ( )( )1313 −+ pp ;

3) ( )( )yxyx 3535 −+ ; 4) ⎟⎠⎞

⎜⎝⎛ +⎟⎠⎞

⎜⎝⎛ −

212

212 dd .

2.37. 1) ( )( )1212 +− xyxy ; 2) ( )( )baba 3535 22 +− ;

3) ( )( )nnnn baba −+ ; 4) ( )( )yxyx kk +− .

2.38. 1) ( )( )utut 5,02,05,02,0 +− ; 2) ( )( )nmnm 3,01,03,01,0 33 +− ;

3) ( )( )xcdxcd 3,22,13,22,1 −+ ; 4) ⎟⎠⎞

⎜⎝⎛ −⎟⎠⎞

⎜⎝⎛ + nmnm

313,0

313,0 .

2.39. 1) ( )21+c ; 2) ( )22 1+a ; 3) ( )222 yx + ; 4) ( )233 uz − .

2.40. 1) ( )223 nm + ; 2) ( )23 32 nm + ; 3)

2

21⎟⎠⎞

⎜⎝⎛ −a ; 4)

2

31⎟⎠⎞

⎜⎝⎛ +b .

2.41. 1)

2

51⎟⎠⎞

⎜⎝⎛ −x ; 2)

2

32⎟⎠⎞

⎜⎝⎛ −

yx; 3)

2

34⎟⎠⎞

⎜⎝⎛ +

ba; 4)

2

211

312 ⎟

⎠⎞

⎜⎝⎛ + nm .

2.42. 1)

232 5,0

43

⎟⎠⎞

⎜⎝⎛ − ba ; 2) ( )2222 54 baba + ;

3)

2433

32

53

⎟⎠⎞

⎜⎝⎛ − baba ; 4) ( )21 nn aa ++

.

2.43. 1)

232

53

65

⎟⎠⎞

⎜⎝⎛ − mnnm ; 2)

23324

321

431 ⎟

⎠⎞

⎜⎝⎛ + qpqp ;

3) ( )2232 5,02,1 yxyx − ; 4) ( )22332 2,05,2 nmnm −− .

2.44. 1) ( )232 nm yx − ; 2)

221

21

⎟⎠⎞

⎜⎝⎛ ++ ban

;

3)

2121

21

⎟⎠⎞

⎜⎝⎛ + +− nn aba ; 4)

2122

43

32

⎟⎠⎞

⎜⎝⎛ − −− mm xx .

2.45. 1) ( )232 cba ++ ; 2) ( )223 tyx +− ;

3) ( )232 232 cba −− ; 4) ( )232 dcba +−− .

Page 190: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

190

2.46. 1) ( ) ( )22 yxyx −−+ ; 2) ( ) ( )22 144 +++ xx ;

3) ( ) ( )22 5423 −+− yy ; 4) ( ) ( )( )73735535 2 +−−− aaa .

2.47. 1) ( ) ( ) ( )( )115131 22 −+−−++ mmmm ;

2) ( ) ( ) ( )( )xxxx +−−−++− 113153 22;

3) ( ) ( )[ ] xyyxyx 233 22 ⋅+−+ ; 4) ( ) ( ) 22222 4522 mmmmm ⋅⎥⎦⎤

⎢⎣⎡ −++ .

2.48. 1) ( )( )( )2422 aaa −−+ ; 2) ( )( )( )22 yxyxyx +−+ ;

3) ( )( )( )( )3333 +−−+ xxxx ; 4) ( ) ( )22 22 −+ aa .

2.49. 1) ( )( )cbacba −+++ ; 2) ( )( )zyxzyx −−+− ; 3) ( )( )zyxzyx 3232 +−++ ; 4) ( )( )dcbadcba −−++++ .

2.50. 1) ( )3nm + ; 2) ( )3dc − ; 3) ( )32 a+ ; 4) ( )33 b− .

2.51. 1) ( )32−x ; 2) ( )32ba + ; 3) ( )332 ba − ; 4)

3

314 ⎟

⎠⎞

⎜⎝⎛ + nm .

2.52. 1)

3

332

⎟⎠⎞

⎜⎝⎛ − yx ; 2)

3

21

31

⎟⎠⎞

⎜⎝⎛ + ba ; 3) ( )322 ba + ; 4) ( )323 32 ba − .

2.53. 1) ( )( )11 2 +−+ aaa ; 2) ( )( )422 2 ++− xxx ;

3) ( )( )22 96432 bababa +−+ ; 4) ( )( )422 11 mmm +−+ .

ebbnuljdfU!Tfnefh!upmpcbUb!nbsUfcvmpcb!)$$3/65<!3/66*;!

2.54. 1) ( )( )( ) 42 1111 aaaa −=+−+ ; 2) ( )( ) 321135 22 +=−+− aaaa ;

3) ( ) ( )( ) 22333427 22 +=−+−− nnnn ; 4) ( ) ( )22 4 baabba +=+− .

2.55. 1) ( ) ( )22 abba −=− ; 2) ( ) ( )22 baba +=−− ;

3) ( ) ( )333 3 babbaaba +=+++ ; 4) ( ) ( )333 3 babbaaba −=−−− .

ebTbmfU! nsbwbmxfwsfcj! nbnsbwmfcbe! tbfsUp! nbnsbwmjt!

gsDyjmfct!hbsfU!hbubojt!yfsyjU!)$$3/67.3/82*;!

2.56. 1) yx 22 + ; 2) nm 55 − ; 3) qp 510 − ; 4) dc 812 + .

2.57. 1) ayax − ; 2) nmn + ; 3) bab + ; 4) mmx − .

2.58. 1) aba 52 −− ; 2) b510 + ; 3) acab 77 + ; 4) mmn 55 − .

2.59. 1) aba −2; 2)

32 xx + ; 3) 24 xx − ; 4)

32 63 xx − .

Page 191: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

191

2.60. 1) 3223 baba + ; 2)

322 axxa − ; 3) 32 126 axxa + ; 4) baa 23 69 − .

2.61. 1) 2233 84 yxyx − ; 2)

232 108 mnnm + ; 3) 1++ mm aa ; 4)

mm xx −+1.

2.62. 1) 22 105 xxm ++; 2)

nnnn baba −2;

3) 132 2515 ++ − nn xx ; 4)

312 273 +− + nn aa .

2.63. 1) aaa −− 23 2 ; 2) 234 3 mmm −+ ;

3) axxyx 10155 +− ; 4) adacab 1293 −+ .

2.64. 1) 32323 201015 yxyxyx −+ ; 2) ababab 1863 23 −+ ;

3) 34222 864 yxyxyx −+− ; 4)

423324 963 nmnmnm +−− .

2.65. 1) ( ) ( )yxbyxa +++ ; 2) ( ) ( )33 +−+ ayax ;

3) ( ) ( )44 −+− xbxa ; 4) ( ) ( )11 +−+ anam .

2.66. 1) ( ) ( )abybax −+− ; 2) ( ) ( )mnbnma −−− ;

3) ( ) ( )xyqyxp −−− ; 4) ( ) ( )xnxm −−− 3532 .

2.67. 1) ( ) ( )xyyxa −−−2 ; 2) ( ) ( )pqaqp −+− 2 ;

3) ( ) ( )xxx −−− 113 ; 4) ( ) ( )abbak −−−2 .

2.68. 1) ( ) ( ) ( )11213 −+−−− xcxbxa ; 2) ( ) ( ) ( )apzapyapx −−−−− ;

3) ( ) ( ) ( )222222 barbaqbap +−+++ ; 4) ( ) ( ) ( )111 222 +−+−+ mcmbma .

2.69. 1) ( ) ( ) ( )apzpayapx −−−+− ; 2) ( ) ( ) ( )nnpnm −+−+− 222 ;

3) ( ) ( ) ( )cbazcbaycbax +++++−++ ;

4) ( ) ( ) ( )zyxczyxbzyxa −+−−+−−+ 532 .

2.70. 1) ( ) ( )23 yxyx +++ ; 2) ( ) ( )225 baba −+− ;

3) ( )( ) ( )24 yxyxyx ++−+ ; 4) ( ) ( )( )bababa −+−− 22 .

2.71. 1) ( ) ( )23 baaba +−+ ; 2) ( ) ( )222222 baaba +−+ ;

3) ( ) ( )23 babba −+− ; 4) ( ) ( )2yxyx +−+ .

ebTbmfU! nsbwbmxfwsfcj! nbnsbwmfcbe! ebkhvgfcjt! yfsyjU!

)$$3/83.3/87*;!

2.72. 1) ( ) bybxyxa −+− ; 2) ( )baabcac +++ ;

3) ( ) bxbccxa −+− ; 4) ( ) qnpnqpm −−+ .

2.73. 1) bybxayax +++ ; 2) bybxayax −+− ;

3) bcacaba +++2; 4) ayaxxyx +++2

.

2.74. 1) 933 23 +++ xxx ; 2) yxxyx 222 +−− ;

Page 192: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

192

3) nmmnm 552 −−+ ; 4) baaba 332 +−− .

2.75. 1) bxaxbyay −+− 2510 ; 2) zxxzx 3344 2 +−− ;

3) byaybxax 6565 +−− ; 4) ayaxxya 15142110 2 −−+ .

2.76. 1) baaxbxbxax +−+−− 22; 2) baaxbxbxax ++−−+ 22

;

3) cxbxcxaxbxax −+−++ 222; 4) cxcxaxbxbxax −+−−+ 222

.

ebTbmfU! nsbwbmxfwsfcj! nbnsbwmfcbe! Tfnplmfcvmj! hbnsbw.

mfcjt!gpsnvmfcjt!hbnpzfofcjU!)$$3/88.3/:4*;!

2.77. 1) 225 x− ; 2) 362 −c ; 3)

21 m− ; 4) 94 2 −x .

2.78. 1) 2536 2 −q ; 2) 2811 x− ; 3)

22

41 ba − ; 4)

22

41

91 yx − .

2.79. 1) 422 −ba ; 2) 2249 qp− ; 3)

222

41 bxa − ; 4)

201,01 a− .

2.80. 1) 224 zyx − ; 2) 46 −a ; 3)

44 ba − ; 4) 4161 a− .

2.81. 1) ( ) 22 943 pba −− ; 2) ( ) 22 163 cba −− ;

3) ( ) 22 10012 nm −− ; 4) ( ) 222 yxyx −− .

2.82. 1) ( ) 22

411 xx −+ ; 2) ( ) 22

942 cc −− ;

3) ( ) 25,03 2 −+a ; 4) ( ) 22 04,0 bcb −− .

2.83. 1) ( )22 rqp −− ; 2) ( )22 2 cba +− ;

3) ( )2216 yxa −− ; 4) ( )2249 bac −− .

2.84. 1) ( )2224 dcba −− ; 2) ( )2429 dcba −− ;

3) ( )22

41 bax −− ; 4) ( )22

254 yxy −− .

2.85. 1) ( ) ( )221 zyx +−+ ; 2) ( ) ( )22222 1+−+ pnm ;

3) ( ) ( )22 9874 cba −−+ ; 4) ( ) ( )22 54 bnm −−+ .

2.86. 1) ( ) ( )229 nmnm −−+ ; 2) ( ) ( )224 baba +−− ;

3) ( ) ( )22 916 yxba +−+ ; 4) ( ) ( )22 49 yxba −−− .

2.87. 1) 962 ++ aa ; 2) 962 +− aa ;

3) 144 2 ++ aa ; 4) 169 2 +− mm .

2.88. 1) 224 2 bbaa ++ ; 2)

224 2 bbxx +− ;

Page 193: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

193

3) 224 1025 nnmm +− ; 4)

224 69 qqpp ++ .

2.89. 1) 224 2 nnxx −−− ; 2)

422 4129 dcdc −+− ;

3) 4224 44 bbaa +− ; 4)

4224 1236 qqpp ++ .

2.90. 1) 3223 8126 nmnnmm +++ ; 2)

3223 8126 babbaa −+− ;

3) 11575125 23 +++ mmm ; 4) 32 8489664 aaa −+− .

2.91. 1) 33 qp + ; 2)

33 qp − ; 3) 83 +a ; 4) 273 +a .

2.92. 1) 127 6 −a ; 2) 33664 dba − ; 3)

63 8xx − ; 4)33 827 yx − .

2.93. 1)36

641 ba − ; 2)

696

271

81 cba − ; 3) 1

278 36 −ba ; 4)

6123

81

12527 cba − .

ebTbmfU!nsbwbmxfwsfcj!nbnsbwmfcbe!)$$3/:5.3/211*;!

2.94. 1) 22 242 yxyx ++ ; 2) 6126 2 +− pp ;

3) xxyxy 363 2 ++ ; 4) yxyxyx 345 122412 ++ .

2.95. 1) ( ) 222 41 aa −+ ; 2) ( )22 681 xx +− ;

3) ( ) 22 64459 npn −− ; 4) ( )22 274100 yxx −− .

2.96. 1) 12 22 −++ yxyx ; 2) 22 29 yxyx −+− ;

3) 3625204 22 −+− baba ; 4) 222 912425 babax −+− .

2.97. 1) baba +−− 22; 2) yxyx ++− 22

;

3) 3223 nmnnmm +−− ; 4)

3223 yxyyxx −−+ .

2.98. 1) bcacbaba −−++ 22 2 ; 2) 22 2 yxyxyzxz −+−− ;

3)2222 22 qpqpnmnm −+−++ ; 4)

2222 22 dcdcbaba −−−++ .

2.99. 1) 1235 −+− xxx ; 2) 1235 −−+ mmm ;

3) 3223 babbaa −−+ ; 4)

3223 yxyyxx +−− .

2.100. 1) 652 +− xx ; 2)22 127 baba +− ; 3) 122 −− xx ; 4)

22 152 baba −+ .

2.101. SeasruleT gayofa:

1) ( ) ( )32:3852 223 +−−+− xxxxx ;

2) ( ) ( )543:591156 2234 −+−+−+ xxxxxx ;

3) ( ) ( )3:7865 23 ++−+ xxxx ;

4) ( ) ( )2:6113342 223456 −+−+−+−− xxxxxxxx .

2.102. daSaleT mamravlebad:

1) 825 23 ++− xxx ; 2) 62 23 −−− xxx ;

Page 194: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

194

3) 6823 234 −+−− xxxx ; 4) 2532 234 −−+− xxxx .

2.103. gayofis Seusruleblad ipoveT naSTi:

1) ( ) ( )2:1735 234 −++− xxxx ; 2) ( ) ( )1:1227 346 +++−+ xxxxx ;

3) ( ) ( )1:76533 234 −++−+ xxxxx ; 4) ( ) ( )12:435 23 +−−+ xxxx .

2.104. p -s ra mniSvnelobisaTvis gaiyofa unaSTod pxxx ++− 9163 23

mravalwevri ( )3+x -ze?

2.105. p -s ra mniSvnelobisaTvis mogvcems pxxx ++− 243 34

mravalwevris ( )1−x -ze gayofa naSTs 5=R ?

2.106. p da q ricxvebis ra mniSvnelobisaTvis iyofa

pqxpxxx +++− 234 32 mravalwevri ( )12 −x -ze unaSTod?

2.107. p da q ricxvebis ra mniSvnelobisaTvis iyofa

143723 +−+ xqxpx mravalwevri ( )22 −+ xx -ze unaSTod?

§3. nprnfefcfcj!sbdjpobmvs!hbnptbyvmfcfcf

TflwfdfU!xjmbefcj!)$$4/2.4/21*;!

3.1. 1) a

ba10

55 −; 2)

xyx

633 +

; 3) banm

8844

+−

; 4) yx

qp121266

++

.

3.2. 1) bcacbcac

+−

; 2) aba

a+2

2; 3)

kykxkk

−+2

; 4) 22

2

33abbaaba

++

.

3.3. 1) 22 yxyx

−−

; 2) bxaxba

−− 22

; 3) 4

22

23

−−

aaa

; 4) ( )

22

2

baba−−

.

3.4. 1) 32

2

16943

yyxxyx

−+

; 2) xyyxyx

−−2

2

22

; 3) 4

442

2

−+−

xxx

; 4) 2

3

3331

xxx++

−.

3.5. 1) ( )2

2

333yxxyx

−; 2)

( )222

324520ba

ba+

−;

3) 22

22

66363

bababa

−+−

; 4) 22

22

15155105

nmnmnm

−++

.

Page 195: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

195

3.6. 1) 22

33

baba

−+

; 2) 22

33

qpqp

−−

; 3) 22

33

5522

yxyx

−−

; 4) 33

22

6633nmnm

+−

.

3.7. 1) 22

44

yxyx

+−

; 2) 22

44

xaxa

−−

; 3) 44

33

baba

−−

; 4) 33

44

yxyx

+−

.

3.8. 1) bybxayaxbybxayax

+−−−−+

; 2) bybxayaxbcbacab

++++++ 2

;

3) ( )

cbacba

++−+ 22

; 4) accbaabcba

22

222

222

++−+−+

.

3.9. 1) xyxzyzyyy

−+−−+− 32331

; 2) 2

3223

555bab

babbaa+

+++;

3) 3223

22

333

yyxxyxxyyx

+−−−

; 4) )(333

22

baabbaabba

++++

.

3.10. 1) 96

1272

2

+−+−

xxxx ; 2)

4465

2

2

++++

xxxx ; 3)

5623

2

2

++++

aaaa ; 4)

7812

2

2

++++

xxxx .

TfbtsvmfU!nprnfefcfcj!xjmbefcf!)$$4/22.4/42*;!

3.11. 1)33aba

++

; 2)a

nma

nm ++

−; 3)

2215 xx−

+; 4)

43

42

41 −

−+

+− xxx

.

3.12. 1)23

24

−+

+−+

ax

ax ; 2)

qpm

qpm

−−

−−− 311 ; 3)

aa

aa

−−

+−+

12

11

;4)xyxy

yxyx

−+

−−+ 2

.

3.13. 1)85yx

− ;2)154

103

3xxx

++ ;3)18

2312

54 baba −−

−;4)

45

532 2222 baab −

−−

.

3.14. 1) ba53

+ ; 2) ax47

− ; 3) xzn

xym

− ; 4) bxq

axp 32+ .

3.15. 1) mp

ymn

x 35− ; 2)

abba

aba 22 5432 −+

−;

3) ax

bxabbx

axb 5232 2 +−

+; 4)

bcacb

acabc 353 22 −

++

.

3.16. 1) xx

a 332 − ; 2) 32

25am

an− ; 3) 4334

21nmnm

+ ; 4) 232 xb

xa− .

3.17. 1) 225432

abba

baba −−

−; 2) 22

2

2

2 2635ba

baba

ba −+

−;

Page 196: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

196

3) aba

baaa 14532

2

2 −+

−+; 4)

xyx

yxxx 23125

2

2 −−

−−.

3.18. 1) 44

322

5−

+− xx

; 2) yx

xyx

x8844

3+

−+

;

3) yx

xyx

x33

233

7−

−+

; 4) bmbn

naman

m+

++

23.

3.19. 1) 33

59

72 +

+−

+− x

ax

ax

a; 2)

42

23

24

2 −+

−−

++ x

xxx

;

3) 2111 am

am

am

−+

+−

−; 4)

44

21

21

2 −−

−+

+ aaa.

3.20. 1) 9

356217

22 −−

++−

aa

aaa

; 2) 22

22

55 baba

baba

−+

−+−

;

3) aba

bba

aa

ba−

+−

−+

2

2; 4)

412

23

427

2 −−

+−

− xxx.

3.21. 1) ( )( )231

91

23

2 ++−

−−+

++ aa

aaa

a; 2)

621

92

35

2 +−

+−−

−− x

xxx

x;

3) 363

122

12 ++

−−

+ xxx

x; 4) 22 242

333

4nmnm

nmnm +−

−+

−.

3.22. 1) ( )29

13

213

1aaa

aa

aa

−−

−+−

−−+

; 2) ( )

xx

xx

xxx

−−

++−

−−−

52

53

251

2 ;

3) 1812262

33

12 +−

−+

−− pp

ppp

; 4) 224247

mnnm

nmm −−

−−

− .

3.23. 1) aaa

aa

aa−

+++

−−

−+−

16

121

1534

23

2;

2) 2222225

24

23

bababababa −+

+−−

++;

3)2233

31baba

abba

abba ++

−−

−−

−; 4)

22

2

33

224baba

bababba

baa

+++

−−

+−

.

3.24. 1) axybz

yzab

abxy

34

43

59

⋅⋅ ; 2) xyazb

aybx

yzax

2

2

89:3:2

;

3) 2

4

35

2

328

127:

98

ba

acd

acdb

⋅⎟⎟⎠

⎞⎜⎜⎝

⎛; 4)

pxycba

yxabc

bamqp

289:

83

23 322

2222

2⋅ .

Page 197: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

197

3.25. 1) xy

yxyxyx

3:

6 22

22 +−; 2)

yyxy

xxyx 22

: ++;

3) pq

aqapqp

qp2

32:9422

22 +−; 4)

xyxyyx

xyxxyx 22

2

2 +⋅

+−

.

3.26. 1) ( )2

4

2

22

baa

aba

+⋅

−; 2)

95:

325

2

2

2

2

−+

−−

aaa

aaa

;

3) ( ) ba

bababa

4433

2

22

−+

⋅+

−; 4)

( ) aa

aa

331010:

155 2

2 +−

+

−.

3.27. 1) 2222 222

2 ayaxyaxyx

yxyxayax

+++

⋅+−

+; 2) 33

2

22

2

33:

55 yxxyx

yxxyx

+−

−+

;

3) 22

22

33

44:

xaxa

xaxa

−+

−−

; 4) ( )2

44

22

2

21516

4105

yxyx

yxxyx

−⋅

+−

.

3.28. 1) ( ) ⎟⎠⎞

⎜⎝⎛ −

+−

−− 1

11

11 12

xxx ; 2) 2

22

22a

aaxxax

aax

a ++⋅⎟⎠⎞

⎜⎝⎛

+−

−;

3) ⎟⎠⎞

⎜⎝⎛ −

−+

⎟⎠⎞

⎜⎝⎛

+−

− xax

aax

axa

axx : ; 4) ⎟

⎟⎠

⎞⎜⎜⎝

−−⎟

⎠⎞

⎜⎝⎛

−−+

1:

111

2

mmm

mm .

3.29. 1) 2

2

961106:

132

313

aaaa

aa

aa

+−+

⎟⎠⎞

⎜⎝⎛

++

−; 2) ⎟⎟

⎞⎜⎜⎝

⎛+−⎟

⎟⎠

⎞⎜⎜⎝

⎛+

xyyx

xy

yx 11: 22

2;

3) 33

3

2

211

xax

xa

xa

xa

−⋅⎟⎠⎞

⎜⎝⎛ −⋅⎟

⎟⎠

⎞⎜⎜⎝

⎛++ ; 4) ⎟

⎠⎞

⎜⎝⎛ +⎟⎟

⎞⎜⎜⎝

⎛−+⎟⎟

⎞⎜⎜⎝

⎛−

xy

xy

yx

xy

yx 1:2: .

3.30. 1) 22

22

22 baabba

abba

abab

−+

⋅⎟⎠⎞

⎜⎝⎛

−+

−;2)

24:

48

362

22

2 −−

⎟⎠⎞

⎜⎝⎛

−+

−+

+ aa

aa

aa

aa

;

3) ⎟⎟⎠

⎞⎜⎜⎝

−−

+⎟⎟⎠

⎞⎜⎜⎝

++−

+ 22

2

22

32:

2 naa

naa

annaa

naa

;

4) ⎟⎠⎞

⎜⎝⎛

+−

−⎟⎠⎞

⎜⎝⎛

−+

− baba

abb

baab

32321:

23942

22 .

3.31. 1) ⎟⎟⎠

⎞⎜⎜⎝

+−

+−⎟⎟⎠

⎞⎜⎜⎝

++

−+

− 2102:

21

22

4

2

2 ppp

pppp

;

2) ⎟⎟⎠

⎞⎜⎜⎝

⎛+

−+

⎟⎟⎠

⎞⎜⎜⎝

+−

−+

−1

44:

22

46

21

22

22

22 qpqp

qppqq

qp;

Page 198: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

198

3) ⎟⎠⎞

⎜⎝⎛

−+

−⎟⎟⎠

⎞⎜⎜⎝

++−

+ abbaa

babaa

baa

21

42:

444

22

2222

2;

4) ( )( ) ( )( ) ( )( )bcaccabcbbcabaa −−+

−−+

−−111

.

hbbnbsujwfU!eb!hbnpUwbmfU!)$$4/43.4/46*;!

3.32. 1) 22

33

abbaabba

−−

, Tu 762 ,

713 == ba ;

2) yx

xyxy

yx

+⋅⎟⎟⎠

⎞⎜⎜⎝

⎛− , Tu 1,2 ,

5317 == yx ;

3) 22 :1xy

yxxy

x −⎟⎟⎠

⎞⎜⎜⎝

⎛− , Tu

52 ,

5317 == ba ;

4) 11:

11

32

2

−+

++−

xx

xxx

, Tu 81=x .

3.33. 1) ( )2

22

33

⎟⎟⎠

⎞⎜⎜⎝

⎛−−

++− xy

yxyxyx

, Tu 43 ,

412 −== yx ;

2) ( ) ba

ababba

abba+

⋅−+

+

32

44, Tu

32 ,

217 == ba ;

3)

1

2244

33 155−

⎟⎟⎠

⎞⎜⎜⎝

−⋅

−+

yxyxxyyx

, Tu 41 ,2,7 == yx .

4) ( )23 22

22 xxx

x+⋅⎟

⎠⎞

⎜⎝⎛

+− , Tu 5,2=x .

3.34. 1) yx

yxyxyx

yyx +

++⋅

−−

22

3321 , Tu

435 ,

413 −== yx ;

2) xyyx

xyxyxy

⋅⎟⎟⎠

⎞⎜⎜⎝

++

−−

22

2, Tu

137 ,

729 == yx ;

3) yxyx

yxyx

++

−−− 3333

, Tu 761 ,

13103 == yx ;

4) 222

22

22111aba

baba

++−

⋅⎟⎠⎞

⎜⎝⎛ + , Tu

71 ,

17319 == ba .

3.35. 1) abb

abaaba

b+

++

++ 22

2, Tu

51 ,

171

−== ba ;

Page 199: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

199

2) 1

11

223

2

+++

−−+

xxx

xxx

, Tu 2111=x ;

3) ( )

yxxyyx

254025 2

−−+

, Tu 217 ,

519 == yx ;

4) ( )

22

223

964543632

yxyxxyyxyx

+−−−+

, Tu 3116 ,

2127 −== yx .

TfbtsvmfU!nprnfefcfcj!xjmbefcf!)$$4/47.4/53*;!

3.36. 1) ( ) a

aaa

aaaa

a−+

⎟⎟⎠

⎞⎜⎜⎝

−−

−+−

−−+

−1

1:1

11

3113

1 2

3

2

2 ;

2) ⎟⎠⎞

⎜⎝⎛ −

−−⋅⎟

⎟⎠

⎞⎜⎜⎝

−+−−

+−

23223

2

32

2 112ab

ab

abaabba

bbaaba

;

3) 22

33

22 :11211yxyx

yxyxyx+

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+⋅

+++ ;

4) ⎟⎟⎠

⎞⎜⎜⎝

⎛+

−+

⎟⎠⎞

⎜⎝⎛

+−

−+

−1

44:

22

43

21

22

22

22 baba

baabb

ba.

3.37. 1) ba

baba

bbab

ababa

baa

−⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛

++

+⋅

+−

−:2222

2

22

2;

2) p

qpp

qqp

qppqqp −

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−⋅

+−

− :1 2222;

3) 22

22

22

22

222222

22:1111

baba

caca

cacbcbcb +

⎟⎟⎠

⎞⎜⎜⎝

⎛ +⋅⎟⎠⎞

⎜⎝⎛ −−⎟

⎠⎞

⎜⎝⎛ −⋅

+;

4) x

yxyxxyx

yxx−

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −−

+⋅

+− :

32

32

.

3.38. 1) ( ) 3322223 :11

21112

nmnm

nmnmnmnmnm−

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ +⋅

+++⎟

⎠⎞

⎜⎝⎛ +⋅

+;

2) 2222222:

211

baa

bababa −⎟⎠⎞

⎜⎝⎛

+++

−;

Page 200: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

200

3) 22

22

2222224:

211

21

dcccdd

dcdcdcdcdc −−+

⎟⎠⎞

⎜⎝⎛

+−−

−+

++;

4) 3232

3214

3223

912432

2

2

−+

⋅⎟⎟⎠

⎞⎜⎜⎝

+−

+++

−++

+xx

xx

xx

xxxx

.

3.39. 1) 6,218,0

3:9

31

625,45,15,0

5,15,0332 +−

⎟⎟⎟⎟

⎜⎜⎜⎜

+

−−

+−−

aa

a

aaa

a;

2) ⎟⎠⎞

⎜⎝⎛

−+

−+−

+−

−baba

baba

baab

abba

362

22

3128:

324

22 ;

3) ( )( ) ( ) ( )⎟⎟⎠

⎞⎜⎜⎝

+−+

+−−

+−+ yxyxy

yyxxxy

yxyxx

yxxy

2

2

4224

2

22

2

22: ;

4) ⎟⎟⎠

⎞⎜⎜⎝

++

+−

+++−+

⋅+

2222

2233

22

22

2266:6

baba

baababbaba

baba

abba

.

3.40. 1) 8

25:2

1020288

122

5322 −

⎟⎠⎞

⎜⎝⎛

−−

⋅+−

−+−− xx

aaaxaxaa

;

2) a

xaa

axaaxax

a3

2793

:9

1339

3 3

22−

⋅⎟⎠⎞

⎜⎝⎛

+−

−−

+−−;

3) 222

222

2

22baba

babab

bab

baaba

aa ++

+⋅⎟⎟⎠

⎞⎜⎜⎝

+−

−−

+− ;

4) ⎟⎠⎞

⎜⎝⎛ −−⋅⎟

⎠⎞

⎜⎝⎛

−+−−

+−

2232321

27936

93

aaaaaa

aa

.

3.41. 1) ⎟⎟⎠

⎞⎜⎜⎝

−+

−⎟⎟⎠

⎞⎜⎜⎝

++−

+ xyyxx

yxyxy

yx 21

25,05,0:

25,02

5,01

2222 ;

2) nm

nmnmnmnm

nmnm

mnm 48

2:22 22

2233 −+−

⋅⎟⎠⎞

⎜⎝⎛

+++

−+

+;

3) 22

33222:

baba

babbb

aba

−−

⎟⎟⎠

⎞⎜⎜⎝

+−⎟

⎟⎠

⎞⎜⎜⎝

⎛+

+;

4) ⎟⎟⎠

⎞⎜⎜⎝

⎛+

−−−

⎟⎠⎞

⎜⎝⎛ + 1

9331

271

22

2

33 mnmnmnn

nm.

Page 201: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

201

3.42. 1) ax

axaxxaxa

xaax

−⎟⎟⎠

⎞⎜⎜⎝

−−

⋅+ −

−−

−−

−−

− 1

11

11

11

1:1

;

2) ( )( )

( )( ) 1

1:1

11

1

11

222

21

212

+−

⎥⎥⎦

⎢⎢⎣

−−

⋅+

−−

−−

−−

xyyx

yxxyxyxy

yxx

xyy;

3) ( ) ⎟⎟⎠

⎞⎜⎜⎝

−+

−+−

− −−

−−

−−

−−−−

11

11

11

1111

41

xaxa

xaxaaxxa ;

4)

1

22

1

22

−−−−

−−−

−−−−

−−

⎟⎟⎠

⎞⎜⎜⎝

+++

+⎟⎟⎠

⎞⎜⎜⎝

+−−

nnnn

nn

nnnn

nn

bbaaba

bbaaba

.

hbbnbsujwfU!eb!hbnpUwbmfU!)$$4/54.4/59*;!

3.43. 1) ⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟

⎟⎠

⎞⎜⎜⎝

⎛− 2233

121

41:1

81

yxyxyx, Tu 2 ,

212 == yx ;

2) 32

333:

bbaba

baaab

−−

⎟⎟⎠

⎞⎜⎜⎝

++ , Tu 9 ,

3117 == ba ;

3) 223223

22:

9922

yxyx

yxyyxxxyyx

++

++++

, Tu 3 ,91

=−= yx ;

4) ( )

yxxyyx

344834 2

++−

, Tu 313 ,

415 −== yx .

3.44. 1) ( )

22

223

52515755

babaabbaba

++−+−

, Tu 2 ,519 == ba ;

2) 22

22

22

33

9241691216:

9162764

yxyxyxyx

yxyx

+−+−

−+

, Tu 312 ,

413 == yx ;

3)axxxa

aaxxa

axa

axa

+−

⋅++

⎟⎠⎞

⎜⎝⎛

+−

− 222 22: , Tu

5111,

535 −== ax ;

4) nmmnnm

mnnmnm3322

2233

233

+++++

, Tu 71 ,

91

−== mn .

3.45. 1) 11

11

11

11−−

−−

−−

−−

⋅+

axxaxa

xaax

, Tu 3119 ,191 −== xa ;

2)

122

33

11:

−−

−−

⎟⎟⎠

⎞⎜⎜⎝

⎛ ++−−

xyyxyx

xyxy

, Tu 4111 ,8 == yx ;

Page 202: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

202

3) ( ) ( )( ) ( ) 30113

312221

−−−−

−−−−−

yxyx

yxyx, Tu

819 ,16 =−= yx ;

4) ( )

( ) ( ) 823373

24235

yyxyx

yxyx−−−

−−−, Tu 18 ,

917 == yx .

3.46. 1)

3

23

242

112

⎟⎟⎠

⎞⎜⎜⎝

⎛−

+−−+−xxx

xx, Tu 6=x ;

2)

1

22

1

33

44 155

−−

⎟⎟⎠

⎞⎜⎜⎝

−⋅⎟

⎟⎠

⎞⎜⎜⎝

+−

yxxyyxyx

, Tu 231 ,

519 == yx ;

3) 21

22

363 ⎟

⎟⎠

⎞⎜⎜⎝

⎛−

−− yx

yxyx

, Tu 7 ,9 −== yx ;

4) 2112

11

2 −−−−

−−

+−−

bbaaba

, Tu 41 ,

4111 == ba .

3.47. 1) ⎟⎟⎠

⎞⎜⎜⎝

−+

−+

−+

⋅−

++aba

bababa

baba

bababba

223

22

2

322 2,Tu 25 ,71 == ba ;

2) ( )2222223223

22149

9922 yx

yxyx

yxyx

yxyyxxxyyx

−⋅⎟⎟⎠

⎞⎜⎜⎝

+−

+−+

⋅+++

+,

Tu 141 ,

71

== yx ;

3)

( )2

22

2

224211

2211

c

bac

abba

cbaabc

ba +−++

++⎟⎠⎞

⎜⎝⎛ −+

, Tu 2 ,375 ,4,7 === cba ;

4)416

13

127

14436144362

3

3

23

−⋅⎟⎟

⎜⎜

⎛⎟⎠⎞

⎜⎝⎛+⋅

++−−

aa

aaaa

,Tu 3,0=a .

3.48. 1) ⎟⎠⎞

⎜⎝⎛

++−⎟

⎠⎞

⎜⎝⎛

++

+−+1

323:14156 2

aa

aaaa , Tu 3,1=a ;

2) ,21

232:1

24552

23

2

23

⎟⎟⎠

⎞⎜⎜⎝

⎛−

++++

⎟⎟⎠

⎞⎜⎜⎝

+−+−

+ xx

xxxx

xxxx Tu 3,0=x ;

Page 203: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

203

3) ⎟⎟⎠

⎞⎜⎜⎝

−+−

−⎟⎟⎠

⎞⎜⎜⎝

−+−−+

+2

162:2

784222234

xxxx

xxxxx

,Tu 2,0=x ;

4) ⎟⎟⎠

⎞⎜⎜⎝

+++

−+⎟⎠⎞

⎜⎝⎛

+−

−+13

221:132112

22

xxxx

xxxx , Tu

317=x .

hbbnbsujwfU!)$$4/5:.4/63*;!

3.49. 1) ( ) xx

xxxxxx

21

:12

1332

23 −

+−−+−

, Tu 10 << x ;

2) 2

1212

+++

xxxx

, Tu 1−<x ; 3) ( )1

112

3

+

++−

xx

xx, Tu 2>x ;

4) 22

1

12

12

22

−−

−−

xx

x

xx, Tu

210 << x .

3.50. 1) 652

2423

2

−−+

−−−

aaa

aa; 2) ( ) 234

611623

23

−⋅+−−+−xxxx

xxx;

3) xxx

xxx

932

9323

2

−−

−+−; 4)

25103

25522 −+

+−+

aaa

aa.

3.51. 1) ( )mmm

mm

6

32 −−

−; 2)

143

12 +−

++−

xx

xxx;

3) 11

12

12

22

−−

+−

xx

x

xx; 4) ( )2

112

++−

xxxx

.

3.52. 1) 2

312

xx

xxxxx

+

++−−; 2)

xx

xx

+

++−3

3 11;

3) 112 ++− xxx ; 4) 2:4211

211 2 −⎟

⎟⎠

⎞⎜⎜⎝

⎛−+

+

+−⋅

−xx

xx

xxxx

.

Page 204: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

204

$4. nprnfefcfcj!sbejlbmfcf/!bmhfcsvm!hbnptbyvmfcbUb!hbsebrnob!

bnpjSfU!lwbesbuvmj!gftwj!sjdywfcjebo!)$$5/2.5/6*;!

4.1. 1) 841; 2) 784; 3) 7921; 4) 5329.

4.2. 1) 57600; 2) 54756; 3) 17424; 4) 56169.

4.3. 1) 700569; 2) 632025; 3) 3426201; 4) 2934369.

4.4. 1) 324121

; 2) 1849361

; 3) 1615 ; 4)

41552 .

4.5. 1) 0,9801; 2) 0,003969; 3) 2,7889; 4) 19,9809.

jqpwfU!gftwjt!nojTwofmpcb!)$$5/7<!5/8*;!!

4.6. 1) 6 64 ; 3 64 ; 3 125− ; 43 ; 2)

62 ; 3 62 ; 3

6

32⎟⎠⎞

⎜⎝⎛

; 4 83 ;

3) ( )23− ; ( )4 43− ; ( )45− . 4) 4x ; 6 12y ;

3 6mx ; n na3

.

4.7. 1) 42

41 yx ; 3 93

271 ba ;

4 1248 cba ; 62

42

254

dcba

;

2) 3 96364 zyx− ; 312

936

278

xcba

− ; 363

93

27643

yxbaxy − ;

3) 5 10−m ;

3 6−− a ; 49a ; 4 4816 yx− ;

4) 39

1

278

ba

; 6

42

25 −

xba

; 336

1512

12564

−−

dcba

.

hbnpjubofU!nbnsbwmj!gftwjebo!)$$5/9<!5/:*;!

4.8. 1) 98 ; 54 ; 168 ; 280 ; 2) 3 16 ; 3 72 ; 4 243 ; 5 96 ;

3)3a ; a9 ;

22a ; 45a ; 4)

3 28m ; 3 35n ;

3 62x ; 3 516y .

4.9. 1) 3292 bca ; 3 5242732 zyx ; 2)

4 85164

3 bcaa;

4 568132 dcc

;

3) 9

2ba; 3

93

6

bayx

; 4) 4

32

3625

mnm ; 3

39

56

12527

bayx

xa

.

Page 205: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

205

TfjubofU!nbnsbwmfcj!sbejlbmjt!rwfT!)$$5/21<!5/22*;!

4.10. 1) 22 ; 35 ; 54 ; 72 ; 2) 3 22 ; 3 23 ; 3 32 ; 3 25 ;

3) a2 ; 3 5a ; 3 10x ; 5 7a ; 4) 621

; 332

; a53

; 3

21 x .

4.11. 1) aa ; 3 2bb ; xa2

; 3 222 xcba ;

2) mnm2 ; bcc 52; 32 2axx ; 32 xb ;

3) abab ;

yxxy

232 ; 4) 3

ab

ba

; 42 x

yyx

.

TflwfdfU! gftwjtb! eb! gftwrwfTb! hbnptbyvmfcjt! nbDwfofcmfcj!

)$$5/23<!5/24*;!

4.12. 1) 4 2a ;

6 3m ; 2) 6 4b ;

20 15x ;

3) 4 2225 yx ; 6 3327 nm ; 4) 4

2

6

94

nm

; 993

126

278

dcba

.

4.13. 1) ( )6 231− ; 2) ( )4 2

21− ; 3) ( )8 252 − ; 4) ( )6 2

62 − .

TfbtsvmfU!nprnfefcboj!)$$5/25<!5/26*;!

4.14. 1) ( ) ( )5032383182 −++ ;

2) ( ) ( )807218345202 −++− ;

3) ( ) ( )100054150403245,0 −+−− ;

4) ( ) ( )4881221832 −−−+ .

4.15. 1) ( ) ( )aaaa 923622535 ++− ;

2) ( ) ( )3333 64278125 xxxx −−− ;

3) ( ) ( )4444 6258116 aaaa −++ ;

4) ( ) ( )xyyx 162789 33 −−− .

TfbtsvmfU!hbnsbwmfcb!)$$5/27.5/31*;!

4.16. 1) 62 ⋅ ; 2010 ⋅ ; 2) 14273 ⋅ ; 63224

43

⋅ ;

3) 343 ⋅ ; 33 42485 ⋅ ; 4) 43 222 ⋅⋅ ; 43 23232 ⋅⋅ .

Page 206: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

206

4.17. 1) ( ) 22503182 ⋅+ ; 2) ( ) 333 321654 ⋅− ;

3) ( ) 333 95245812 ⋅+ ; 4) ( ) 333 451282163 ⋅+ .

4.18. 1) 4 34 2 aa ⋅ ; 2) aa 22854 3 ⋅ ;

3) 43 23axa ⋅ ; 4) a

a 212

434,03 ⋅ .

4.19. 1) 6 54 33 2 aaa ⋅⋅ ; 2)

8 824 333 mmmmm ⋅⋅ ;

3) 52

3xy

ab

yx

ba

⋅ ; 4) 1065

24

3

ab

ba

ba

.

4.20. 1) ababb

aabab ⋅⎟

⎟⎠

⎞⎜⎜⎝

⎛+−+

12 ;

2) 33 233 2 254 xyxyyxyxyyxx ⋅⎟⎠⎞⎜

⎝⎛ +− ;

3) ⎟⎠⎞⎜

⎝⎛ +⋅⎟

⎠⎞⎜

⎝⎛ − 3 22 323 babababbab ;

4) ( ) ⎟⎠⎞⎜

⎝⎛ −+ 4 33 26 aaaaaa .

TfbtsvmfU!hbnsbwmfcb!Tfnplmfcvmj!hbnsbwmfcjt!gpsnvmf.

cjt!nfTwfpcjU!)$$5/32<!5/33*;!

4.21. 1) ( )( )3 3 −+ aa ; 2) ( )( )xaxa −+ ;

3) ( )( )35 35 −+ ; 4) ( )( )3425 3425 −+ .

4.22. 1) ( )( )bbabba −+++ ;

2) ( )( )babababa −++−−+ ;

3) ( )( )1 1 −−−+ mmmm ; 4) ( )( )xxxx +−−− 1 1 .

4.23. SeasruleT moqmedebani da gaamartiveT:

1) 3

322

31 −+

+; 2)

612

4235 −−

+;

3) 15

5533225

2353

532 −−−

+−+

−+;

4) 12

155646

25368

15263 −+−

−−−

+−.

Page 207: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

207

TfbtsvmfU!hbzpgb!)$$5/35`5/37*;!

4.24. 1) 5,25,0:10 ; 2) 33125

231:

254

;

3) ( ) 33 3:35910 + ; 4) ( ) 443 22:32644122 −+ .

4.25. 1) ( ) 75:126278 − ; 2) ( ) 333 23:5422503 − ;

3) 283:

1435615

−; 4)

6508:

20701035 −

−.

4.26. 1) 33 4 2:6 aa ; 2) 3 2: aa ;

3) xyxyyx :33 ⎟⎠⎞⎜

⎝⎛ + ; 4)

335335 : bababa ⎟⎠⎞⎜

⎝⎛ − .

ebTbmfU!nbnsbwmfcbe!)$$5/38.5/42*;!

4.27. 1) 36 + ; 2) 1015 − ; 3) 1421 + ; 4) 3020 − .

4.28. 1) acab − ; 2) 3 23 2 ybya − ;

3) 3 23 2 abba − ; 4)

22 baba −−+ .

4.29. 1) 55+ ; 2) 22− ; 3) aa + ; 4) aab − .

4.30. 1) baba +++ ; 2) 22 baba −−+ ;

3) baba −+− 33; 4)

2233 baba −++ .

4.31. 1) aybxbyax −+− ; 2) 2233 xyyxyx −+− ;

3) 34 ++ xx ; 4) 45 ++ aa .

TflwfdfU!xjmbefcj!)$$5/43<!5/44*;!

4.32. 1) 1435615

−; 2)

1281510

+

+; 3)

abbaba

+

+; 4)

33

3 23 2

ayaxxyyx

−.

4.33. 1) 33

3 23 2

3294nmnm

+

−; 2)

33

3 23 2

451625baba

−;

3)

2 2 33 3 3

3 3

16 42

x y xy yx y

− +

−; 4)

xyxxxyyx

−−

228 2

.

Page 208: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

208

4.34. aaxarisxeT fesvebi:

1) 4

3 2 ⎟⎠⎞⎜

⎝⎛ m ;

43 2 ⎟

⎠⎞⎜

⎝⎛− m ;

25 3 ⎟

⎠⎞⎜

⎝⎛ a ;

27 3 ⎟

⎠⎞⎜

⎝⎛− n ;

2) 3

4 3 ⎟⎠⎞⎜

⎝⎛ x ;

35 2 ⎟

⎠⎞⎜

⎝⎛− y ;

53 2 ⎟

⎠⎞⎜

⎝⎛− a ;

76 5 ⎟

⎠⎞⎜

⎝⎛− n ;

3) ( )32 a− ; 3

4 33 ⎟⎠⎞⎜

⎝⎛− a ;

23 2

21

⎟⎠⎞⎜

⎝⎛ m ;

35 2

32

⎟⎠⎞

⎜⎝⎛− x ;

4)

4

2 ⎟⎟⎠

⎞⎜⎜⎝

⎛−

xy

yx

; 5

4 23 ⎟⎠⎞⎜

⎝⎛− yxx .

4.35. romelia meti:

3 3 Tu 2 ? 5 Tu 3 11 ? 7 5 Tu 3 2 ? 3 4 Tu 4 5 ?

TfbtsvmfU!nprnfefcboj!)$$5/47.5/52*;!

4.36. 1) ( )2ba − ; 2)

2

212 ⎟

⎠⎞

⎜⎝⎛ − ba ;

3) ( )22352 − ; 4)

2

34221

⎟⎠⎞

⎜⎝⎛ + .

4.37. 1)

22

12

1⎟⎠⎞

⎜⎝⎛ + ba ; 2)

23

13

1⎟⎠⎞

⎜⎝⎛ − yx ;

3)

23

23

1⎟⎠⎞

⎜⎝⎛ −

−nm ; 4)

23

23

2⎟⎠⎞

⎜⎝⎛ + ba .

4.38. 1) ( )262 + ; 2) ( )2105153 − ;

3) 2

137137 ⎟⎠⎞⎜

⎝⎛ −++ ; 4)

2324324 ⎟⎠⎞⎜

⎝⎛ −−+ .

4.39. 1) a ; 3 2x ;

3 4 3m ; 4 5 4y ;

2) 32 ; 3 52 ;

3 23 ; 4 25 ;

3) xy

yx

; 3mn

nm

; 4) 422

ab

ba

; baba

baba

+−

−+

.

4.40. 1) 63

51652 ⋅ ; 2) 63

257125 ⋅ ;

Page 209: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

209

3) 8 2222 ⋅ ; 4) 1233 33333 ⋅⋅ .

4.41. 1) aaa ; 2) 3 3 mmm ;

3) nm

mn

nm

; 4) 32

2 1aa

bba

.

nptqfU!jsbdjpobmpcb!xjmbejt!nojTwofmTj!)$$5/53.5/5:*;!

4.42. 1) 2

8; 2)

3 49

; 3) 3 2525

; 4) 8 816

.

4.43. 1) a

a; 2)

7 4x

a; 3)

6 abb

; 4) n nx

a1−.

4.44. 1) 22

2+

; 2) 33

12−

; 3) 17

18−

; 4) 15

8+

.

4.45. 1) 23

1+

; 2) 37

4−

; 3) 423

6+

; 4) 7253

17−

.

4.46. 1) 1+m

m; 2)

yxyx

+

−; 3)

yxyx

+

−; 4)

yxyx

+.

4.47. 1) 753

1++

; 2) 532

1−+

;

3) 21141510

1−+−

; 4) 263222

62−−+

− .

4.48. 1) 33 ba

n+

; 2) 33 ba

n−

; 3) 33 47

6−

; 4) 14

23 +

.

4.49. 1) 3 233 2 baba

n

+−; 2)

3 233 2 baba

n

++;

3) 333 469

1+−

; 4) 333 253549

1++

.

hbbnbsujwfU!eb!hbnpUwbmfU!)$$5/61.5/7:*;!

4.50. 1) 24

24−

+−

xx

xx

, Tu 8=x ;

Page 210: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

210

2) ( )

abab

ba⋅⎟⎟⎟

⎜⎜⎜

⎛−

+ 12

2

, Tu 24 ,22 −=+= ba ;

3) ( )

aa

a⋅⎟⎟⎟

⎜⎜⎜

⎛−

+ 12

12

, Tu 7=a ;

4) aa

aa ⎟⎟⎠

⎞⎜⎜⎝

⎛ −+

44 1

, Tu 4=a .

4.51. 1) ( )

21

2

2

82−

−+

xx

xx, Tu 5=x ;

2)4

82

8 4

4 −

−+

+ xxx

x, Tu 9=x ;

3)

2

21

212

32

3

22

2⎟⎟

⎜⎜

⎛+−

− aa

a, Tu 2=a ;

4) 8

2124−

−⋅⎟⎟⎠

⎞⎜⎜⎝

⎛++

aaa

aa, Tu

52

=a .

4.52. 1) abbabbaa 3−

−, Tu 25,2 ,25,6 == ba ;

2) xx

xxx

x−

++

11:

11

, Tu 13 +=x ;

3)

2

4

44 3 11

⎟⎟

⎜⎜

⎛ ++

xx

xxx

, Tu 4=x ;

4) abba

ba−

− 23

23

, Tu 23 ,22 −=+= ba .

4.53. 1) ( )

1

312

3

2

+−

a

aa, Tu 25,2=a ;

2) a

aaa−

−−

224

, Tu 25,6=a ;

Page 211: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

211

3) ⎟⎟⎠

⎞⎜⎜⎝

⎛−−

+⋅

−33

9a

aa

aa

, Tu 25,6=a ;

4) ( )

⎟⎟

⎜⎜

⎛−

+⋅

+−1

82

444

2

xx

xxx

, Tu 44,1=x .

4.54. 1) 4

2 babaaabba +

⋅⎟⎟⎠

⎞⎜⎜⎝

+

−+− , Tu 8 ,2 == ba ;

2)

3

33

6 2

⎟⎟

⎜⎜

+

+

axxax

, Tu 2 ,64 == ax ;

3) ( ) abbaba 5436323

−+− , Tu 33 9b ,4 ==a ;

4)

21

44

4 33

⎟⎟

⎜⎜

⎛⋅−

++ xa

xaxa

, Tu 1024 ,18 == xa .

4.55. 1) 41

31

265

43

21 −−−

bababa , Tu 32b ,3 ==a ;

2) 61

34

31

31

−−−⋅ xyxyxx , Tu 2 ,22 == yx ;

3) 4 3 23 4 3 mmmm ⋅⋅ , Tu 144=m ;

4) 3 45 2 aaaa ⋅ , Tu 8=a .

4.56. 1) yx

yx+

+−−

21

21

, Tu 18 ,2 == yx ;

2) xxxxx 2

11

2

−⎟⎟⎠

⎞⎜⎜⎝

+

+−−

, Tu 187=x ;

3)

2

4

2

21

11

−−

⎟⎟⎠

⎞⎜⎜⎝

⎛ ++⎟

⎟⎠

⎞⎜⎜⎝

−+

aa

aa

, Tu 13=a ;

4)

2

44

5515

⎟⎟⎠

⎞⎜⎜⎝

⎛ −+

aaa , Tu

45

=a .

4.57. 1) abab

abab

abab

2−

⋅⎟⎟⎠

⎞⎜⎜⎝

+−

−, Tu 10 ,5 == ba ;

Page 212: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

212

2) yx

xyx

yxy

xy+

⋅⎟⎟⎠

⎞⎜⎜⎝

⎛ −−

+, Tu 27 ,3 == yx ;

3) ( ) 1

121

2

2

2:34−

−−

+

−⎟⎟⎠

⎞⎜⎜⎝

⎛−

a

aaa

a, Tu 21=a ;

4) a

aa

aa−

−⋅⎟⎟⎠

⎞⎜⎜⎝

+

−+

77

777

, Tu 13=a .

4.58. 1)

3

333

3 23 2 11:⎟⎟

⎜⎜

⎛−

−−

xxaxa

, Tu 2 ,16 == xa ;

2) 44

4 3ax

axaaxa

xaxa

++

+−

−, Tu 8 ,2 == xa ;

3)

124 34

4 11

⎟⎟

⎜⎜

−+

+

xxx

xx

, Tu 3 7=x ;

4) 1

412

1++

⋅⎟⎟⎠

⎞⎜⎜⎝

⎛+

−+

cbbc

bccb

, Tu 5 ,1 == cb .

4.59. 1) abbabbaa

bbaa22 +++

−, Tu 2 ,8 == ba ;

2) xaxax

axa

−+

+++

22

22, Tu 3 7 ,4 == xa ;

3) nm

mmmnm

mnmn+

++

− , Tu 31 ,25 == mn ;

4) 44

44

nmm

nmnmn

++

−, Tu 5 ,10 == nm .

4.60. 1)

5

421

43

41

39

333

⎥⎥⎥⎥

⎢⎢⎢⎢

++

⎟⎠⎞

⎜⎝⎛ −⎟⎠⎞

⎜⎝⎛ +

yy

yy, Tu ( )25 73+=y ;

2) 3 3

22

32

3 1 aaxx

xa⋅⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⋅

−−

, Tu 32

1 ,43

== xa ;

Page 213: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

213

3) ( )

2

223

21

31:

1

⎥⎥⎥

⎢⎢⎢

+−− aa

a

a

a, Tu ( )213 +=a ;

4) ( ) 41

4 34 3

abba

bababaab +⋅

⋅−−

−, Tu 6 ,12 == ba .

4.61. 1) ( )

12

3249

1812

1812

⎟⎟⎠

⎞⎜⎜⎝

+⋅⎟⎟⎠

⎞⎜⎜⎝

+

−+

+

aaaa

aaa

aaa

, Tu 116=a ;

2) ( ) ( ) ababa

bababa 1631212

2

14

2

2

122

++⋅⎟⎟

⎜⎜

++

−+

−, Tu

9 ,4 == ba ;

3) ( )12433

234

1−

⎟⎟

⎜⎜

−−+

+−

+−

− xyxxyx

yxxx

x,

Tu 17,0 ,17,0 == yx ;

4)

131:931

27

⎟⎟

⎜⎜

⎛−

⎟⎟

⎜⎜

⎛++

− yyyyyy

, Tu 72

=y .

4.62. 1) ⎟⎟⎠

⎞⎜⎜⎝

⎛−−

+⎟⎟⎠

⎞⎜⎜⎝

−+

−− 2

28:

2424 x

xx

xx

xx

, Tu 144=x ;

2) xx

xxx

⋅⎟⎟⎠

⎞⎜⎜⎝

⎛+−⋅⎟

⎟⎠

⎞⎜⎜⎝

+−−

++++ 22

3113

3113

, Tu 3=x ;

3)

1

21

1

11

15

− ⎟⎟

⎜⎜

+−⋅

+

−−

+ x

xxxx

xxx

, Tu 25,0=x ;

4) ( ) ( ) ( )1

44

1

12

121

1211

−−

⎟⎟⎠

⎞⎜⎜⎝

+−

−−

+−

bbb

bbbb , Tu

361

=b .

4.63. 1)

11

279

933

:27

1−−

⎟⎟⎠

⎞⎜⎜⎝

+

−−

+−

−⎟⎟⎠

⎞⎜⎜⎝

+

qqq

qqq

qqq

, Tu 25,2=q ;

2) ⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−−⋅

⎟⎟⎟

⎜⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

+

−−⎟

⎟⎠

⎞⎜⎜⎝

+−−− 111

44

121

11

11

bbbb

bb

,

Page 214: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

214

Tu 94

=b ;

3) ⎟⎟⎠

⎞⎜⎜⎝

+−

−−

+

+

933

27186:

10843

xxx

xxx

xxx

, Tu 64=x ;

4) ( ) 42

44

4 34

34

xyyx

xyxxyx

+−

−−− , Tu 3 ,27 == yx .

4.64. 1)

( )2

1

2

2

1

212

22

14:

11

11 −

− ⎟⎟⎠

⎞⎜⎜⎝

+⎟⎟⎟⎟

⎜⎜⎜⎜

++

−⎟⎠⎞⎜

⎝⎛ ++

xx

xx

xx, Tu 4 25,2=x ;

2)

3

33

6 26

3 2

1⎟⎟⎟

⎜⎜⎜

+

++

− yxxxy

xy

, Tu 125,0 ,16,0 == yx ;

3)

244 3

4

21

11121

⎟⎟⎟

⎜⎜⎜

−+

+⎟⎟⎠

⎞⎜⎜⎝

⎛++

ppp

pp

pp, Tu

811

=p ;

4)

3

33 2

33

21

4

22−

⎟⎟

⎜⎜

⎛−

+

xx

x, Tu 2,0=x .

4.65. 1) ( ) ab

babab

bbaababa

+−−

++

++− 332 23

233

,

Tu 2 ,125,0 == ba ;

2) ( )

2

2

2

12

2

2 1:12

11

12 xx

xx

xx

x

x −

⎟⎟⎟⎟

⎜⎜⎜⎜

⎟⎠⎞⎜

⎝⎛ −+

−+−

, Tu 7,0=x ;

3) 33333

33 2

2542

10542 xx

xxx

⎟⎟⎠

⎞⎜⎜⎝

⎛−+

−, Tu 77=x ;

4) a

aaaaa

aaaa 1:

1111

1111 +

⎟⎟⎠

⎞⎜⎜⎝

−++

−−+−

−−+

−++, Tu 9=a .

4.66. 1)

4

24

4 332 ⎟

⎜⎜

⎛++−

+

+ xxaaxaxa

, Tu 5 ,234 == xa ;

Page 215: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

215

2) ( ) ( )211

3

21

21

2

yx

yx

yx

yx

+

++

+

⎟⎠⎞

⎜⎝⎛ + −−

−−

, Tu 2 ,395

== yx ;

3) ( )

⎟⎠⎞

⎜⎝⎛ +⎟⎟⎟

⎜⎜⎜

−−

+−− 2

12

1

22

2

yxyx

yxyyx

x, Tu 14 ,

27

== yx ;

4) ⎟⎟⎠

⎞⎜⎜⎝

++

−+

−⎟⎟⎠

⎞⎜⎜⎝

+

−+−

baabbaa

baabba 12:4

,

Tu 5,0 ,18 == ba .

4.67. 1) 320

20

2010

105 111

1212

ccc

cccc

++

−⋅

+−

+−, Tu

3 421

=c ;

2) ab

baabaabaab

bbab

a −⎟⎟⎠

⎞⎜⎜⎝

−+−+

−:1:

2, Tu 676 ,625 == ba ;

3) ( )

aaa

aa

3323:

3321

42441−+

⎟⎟⎟

⎜⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

++

, Tu ( )238−=a ;

4) ( ) ( )

xyxyx

yx

xyyx+

+⋅

+

−+−

2

1

2

1

4, Tu 16 ,64 == yx .

4.68. 1)

6

3

3 26 11

⎟⎟

⎜⎜

⎛ ++

bb

bbb

, Tu 5,0=b ;

2)

( )( )

( ) ( )11

1123

13 22

3

++−

−⋅

+

aaa

aaa

aa

a, Tu 64=a ;

3) ( ) ⎟

⎟⎠

⎞⎜⎜⎝

⎛+⋅

−−

−44

2

4 333

273a

aaa

aaa, Tu 5,0=a ;

4) 9

63

1:693

93 −⋅⎟⎟⎠

⎞⎜⎜⎝

−+−+

− aa

aaaaaaa

, Tu 9

100=a .

4.69.1) 12

2

22−

⎟⎟

⎜⎜

−++

−+

+−−

−ax

axaxax

axax

ax, Tu 17=a , 717=x ;

Page 216: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

216

2) ( ) ( )( ) 33

3 51

111 abababababab +

+

−−−− , Tu 27 ,8 == ba ;

3) 66

65

61

363

663

2 babab

bababa

baa

−⋅⎟⎟⎠

⎞⎜⎜⎝

++

−−

, Tu 9 ,25 == ba ;

4) 1

34

4 321

44

4 3

11

11 −

⎟⎠⎞⎜

⎝⎛ −⎟⎟

⎜⎜

⎛−

+

+⎟⎟

⎜⎜

⎛+

− aaaaaa

aa

, Tu 38=a .

4.70. gaamartiveT:

1) 29962 +−−+− yyy ; 2) 12 1 −+

++ −x

xxx

;

3) ( ) ( )

xxxxx

21411

2

2

++

+−⋅−; 4)

( ) ( )14

8222

2

−−

−+⋅+

xxxxx.

hbnpUwbmfU!)$$5/82.5/85*;!

4.71. 1) 324323 −+− ; 2) 12

12215

125−

−+−

−;

3) 13

13221

3232

−−

−−−

; 4) 13

45315

755−

−−−

−.

4.72. 1) 26112611 −++ ; 2) 2121721217 −++ ;

3) 28122812 −−+ ; 4) 3305233052 −−+ .

4.73. 1) 63 62523 +− ; 2)

1254925

64549254

4

++−

+−+;

3)

11

1625

11625

1−−

⎟⎟⎠

⎞⎜⎜⎝

⎛+

−+⎟⎟

⎞⎜⎜⎝

⎛+

+; 4)

11

132

1132

1−−

⎟⎟⎠

⎞⎜⎜⎝

⎛+

−+⎟⎟

⎞⎜⎜⎝

⎛+

+.

4.74. 1) ( )( )210532

15−+

−;

2) 2

551515

3535

3535 +

+−

+−

++

+

−;

3) ⎟⎟⎠

⎞⎜⎜⎝

−+

++−

3471

3471

73327 ;

Page 217: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

217

4) ( )( ) 154610 154 −⋅−+ .

$5. xsgjwj-!lwbesbuvmj!eb!nbUf!ebzwbobej!hboupmfcfcj!

bnpytfojU!hboupmfcfcj!)$$6/2.6/21*;!

5.1. 1) 25 −=+x ; 2) 37 =+ x ; 3) 5)2( −=−+x ; 4) 0)6( =+− x .

5.2. 1) 1723 −=−x ; 2) 1334 −=+a ; 3) 20334 −=− x ; 4) 735

−=+a

.

5.3. 1) 1272

514

653 −=− x ; 2)

216

835

411 −=−x ;

3) 13,003,124,0 =−x ; 4) 101,01,0 −=− x .

5.4. 1) 8,05,212,0 −=− x ; 2) )5,3(2,45,08,4 −⋅=−x ;

3) ⎟⎠⎞

⎜⎝⎛−=−

323:

4325

431 x ; 4) ⎟

⎠⎞

⎜⎝⎛−=⎟

⎠⎞

⎜⎝⎛−⋅+

41:

324

4164,020x .

5.5. 1) 1742108 =−++− aaa ; 2) 136875 =+−+ xxx ;

3) 22513593 =−++− yy ; 4) 1318826 =+−−+− xxx .

5.6.1) 5775

432 =⎟

⎠⎞

⎜⎝⎛ −+ xxx ; 2) ( ) ( ) 5,65,07,22,0525 =+−+− xxxx ;

3) xxx 4,0526,225,23 ++=++ ; 4) 5,06,09275,0 −+=− xxx .

5.7. 1) 192

53

2=+

xx; 2) 1

125

94

=−xx

;

3) 1392

623

=−+xxx

; 4) 43

3=

−x.

5.8. 1) 7

1162

45 +=

− xx; 2)

12518

85 zz −

=−

;

3) 8

319591 yy +

=−

; 4) 14

1721

334 tt +=

+.

5.9. 1) 8

3537

76 −=−

+ xx; 2)

9412

54 −=

− xx;

3) 11

362

1310 +=

−−

xx; 4) 0

517

4732 =

++

−−

xx.

5.10. 1) 2

65

513

272 +

−=+

−−

+xxx

x ;

Page 218: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

218

2) xxxxx−

−−

−=

++

−476

325

42

652

;

3) 73

1210

235

4−

+=

−+

− xxx;

4) 2

54

173173

4 +=

−+−

xxx.

bnpytfojU!hboupmfcfcj! x .jt!njnbsU)$$6/22<!6/23*;!

5.11. 1) ( ) ( )bxax +=− 35 ; 2) ( ) ( )xbxa −=− 76 ;

3) ( ) xnxm −=+1 ; 4) ( ) ( )xnxn +=− 21 .

5.12. 1) ( ) ( ) abxbabxa ++=−+ 1 ; 2) ( ) ( )xnmxnmm −=+−2 ;

3) ( ) ( )dcxabxdc −−=+ ; 4) ( ) ( ) ( )xabxbaxcbcx −−−=−− .

5.13. aCveneT, rom Semdeg magaliTebSi gantolebis mTel

saxeze dayvanas gareSe fesvi Semoaqvs:

1) 2

332

1−−

=+− x

xx

; 2) 4

54

15−−

=−

+x

xx

;

3) 5

665

1−−

=+− x

xx

; 4) 7

187

8−

+=−−

xxx

.

5.14. aCveneT, rom Semdeg magaliTebSi gantolebis mTel

saxeze dayvana ar arRvevs gantolebaTa tolfasobas:

1) 1313

332

+−

=+−

−xx

xx

; 2) 23735

5258

++

−=+−

xx

xx

.

bnpytfojU!hboupmfcfcj!)$$6/26<!6/27*;!

5.15. 1) 1

21

1+

=− xx

; 2) 3

22

3−

=− yy

;

3) 332

1313

+−

−=+−

tt

tt

; 4) 1252

153

=−−

−−−

xx

xx

.

5.16. 1) 185

225

12

338

−−

=−+

−− tt

tt

;

2) 65

283

42

12314

−−

=−+

−− zz

zz

;

3) 2418

1212

1212

xxx

xx

−+

−+

=+−

; 4) 13

313131

9112

2 −+

++−

=− x

xxx

x.

Page 219: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

219

Tfnefh! hboupmfcbUb! bnpvytofmbe! hbnpbslwjfU-! spnfm!

nbUhbot! brwt! psj! gftwj-! fsUj! gftwj! bo! bsb! brwt! gftwfcj!

)$$6/28.6/2:*;!

5.17. 1) 0252 =+x ; 2) 0362 =−x ;

3) 0122 =+− xx ; 4) 052 =+ xx .

5.18. 1) 0442 =+− xx ; 2) 0342 =+− xx ;

3) 01572 =++ xx ; 4) 0522 =+− xx .

5.19. 1) 0842 =−− xx ; 2) 0964 2 =++ xx ;

3) 017 2 =−− xx ; 4) 0132 2 =+− xx .

bnpytfojU!hboupmfcfcj!)$$6/31.6/3:*;!

5.20. 1) 0362 =−x ; 2) 0254 2 =−x ;

3) 382021 2 =+x ; 4) 571913 22 +=− xx .

5.21. 1) 032 =+ xx ; 2) xx 52 = ;

3) 072 2 =− xx ; 4) 053 2 =+− xx .

5.22. 1) xxxx 15964 22 −=+ ; 2) xxxx 79512 22 +=− ;

3) 35

946

95 22=

−−

+ xx; 4) 2

459

538 22

=−

+− xx

.

5.23. 1) 0232 =+− xx ; 2) 0652 =++ xx ;

3) 0342 =+− xx ; 4) 0762 =−− xx .

5.24. 1) 2082 =− xx ; 2) xx 11302 =+ ;

3) 202 += xx ; 4) 127 2 += xx .

5.25. 1) 0672 2 =+− xx ; 2) 0385 2 =+− xx ;

3) 0823 2 =−+ xx ; 4) 06113 2 =++ xx .

5.26. 1) 026352 =−− xx ; 2) 05,45,42 =+− xx ;

3) 0212532 =++ xx ; 4) 04,66,52 =+− xx .

5.27. 1) x

xx

x−+

=−

+7

3334

25; 2)

13415

125

+−

=−−

xx

xx

;

3) ( )

34

10111

37 −

−=−− xxxx

; 4) 0118765217

=+++

− xxx

.

Page 220: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

220

5.28. 1) ( ) ( )

279

4113

35 222 xxxx −

−=−

−−

;

2) ( ) ( ) ( ) 5

214

189

9612 22

+−

=−

+−− xxxxx

;

3) 125

139

15−+=

−+

− xx

xx;

4) ( ) ( ) ( )( )

462

24

367

22 ++−

+=

−+−

xxxxx .

5.29. 1) 022342 2 =−+ zz ; 2) ( ) 0321322 =+++ zz ;

3) 35

252

5−

=− x

xxx

; 4) 32

353

2−

=− x

xx

x.

5.30. tolfasia Tu ara gantolebebi:

1) ( )( ) ( )4524 −=+− xxx da 52 =+x ?

2) ( )( ) ( )( )1213 −+=−− xxxx da 23 +=− xx ?

3) xx −= 2 da ( ) ( )( )121 −−=− xxxx ?

4) 1

311

−−

=−+

xx

xx

da xx −=+ 31 ?

5.31. amoxseniT asoiTkoeficientebiani kvadratuli

gantolebebi:

1) 06011 22 =−− aaxx ; 2) 222 44 baaxx =+− ;

3) 2

2

ax

babx=

−−

; 4) xx

bxb

1231

2 −=+

.

Tfnefh! hboupmfcbUb! bnpvytofmbe! jqpwfU! nbUj! gftwfcjt!

kbnj!eb!obnsbwmj!)$$6/43<!6/44*;!

5.32. 1) 0862 =+− xx ; 2) 0652 =+− xx ;

3) 0328 2 =−+ xx ; 4) 0273 2 =+− xx .

5.33. 1) 0254 2 =−x ; 2) 035 2 =+ xx ;

3) 0649 2 =−x ; 4) 072 2 =− xx .

TfbehjofU! lwbesbuvmj! hboupmfcb! npdfnvmj! gftwfcjt!

njyfewjU!)$$6/45.6/47*;!

5.34. 1) 2 da 3; 2) 6 da –2; 3) 21 da

41

− ; 4) 0,4 da –0,25.

Page 221: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

221

5.35. 1) 32 da 33 ; 2) 53 da 52− ;

3) 32 + da 32 − ; 4) 2

51+ da

251−.

5.36. 1) 0 da 3; 2) 0 da 5 ; 3) –2 da 2; 4) 3 da 3− .

Tfnefh! hboupmfcbUb! bnpvytofmbe! hbotbSwsfU! gftwfcjt! ojTofcj!

)$$6/48<!6/49*;!

5.37. 1) 0562 =+− xx ; 2) 0542 =−+ xx ;

3) 019202 =++ xx ; 4) 0132 =++ xx .

5.38. 1) 02292 =−+ xx ; 2) 0300202 =−− xx ;

3) 252 2 −=+ xx ; 4) 483 2 =+ xx .

5.39. daSaleT mamravlebad Semdegi samwevrebi:

1) 1072 ++ xx ; 2) 4073 2 −− xx ;

3) 9204 2 +− xx ; 4) 252 2 +− xx .

5.40. SekveceT wiladebi:

1) 1058916

2

2

−+−+

aaaa

; 2) 1053639082

2

2

+−−+

aaaa

;

3) 22

22

2149babababa

−−+−

; 4) 22

22

35232

babababa

+−−−

.

5.41. 1) ra mniSvnelobebi unda hqondes x -s, rom

1072 ++= xxy funqcia: a) iqces nulad; b) gaxdes 4-is

toli. SeiZleba Tu ara rom funqcia gaxdes (-5)-is

toli?

2) 672 ++= xxy da 1+= xy funqciebi x -is romeli

mniSvnelobebisaTvis Rebuloben tol mniSvnelobebs,

da saxeldobr rogors?

jqpwfU! a ! qbsbnfusjt! zwfmb! nojTwofmpcb-! spnmjtUwjtbd!

npdfnvm!hboupmfcbt!bsb!brwt!bnpobytoj!)$$6/53<!6/54*;!

5.42. 1) ( ) 51 =− xa ; 2) ( ) 42 2 +=+ axa ;

3) ( ) 73 =− xaa ; 4) ( )2112 −=− axaa .

5.43. 1) ( )( ) 221 +=+− axaa ; 2) ( ) 341 22 +−=− aaxa ;

Page 222: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

222

3) ( ) 1342 −=+− axaa ; 4) 1

74

2−

=− axax

.

5.44. ipoveT a parametris yvela mniSvneloba, romlisTvi-

sac mocemul gantolebas aqvs uamravi amonaxsni:

1) ( ) 42 2 −=+ axaa ; 2) ( ) 329 22 −−=− aaxa ;

3) aax

ax=

−−−

326

; 4) ( )aaxxxa 324412 +−

=+− .

5.45. rogori mniSvneloba unda hqondes k -s, rom

gantolebas:

1) 0152 =++ kxx hqondes 5-is toli fesvi?

2) 0242 =−+ kxx hqondes –3-is toli fesvi?

3) 07152 =−− xkx hqondes 7-is toli fesvi?

4) 03122 =−+ xkx hqondes 51-is toli fesvi?

jqpwfU! a .t! jt! nojTwofmpcb-! spnmjtUwjtbd! hboupmfcbt! brwt!

fsUj!gftwj!)$$6/57.6/5:*;!

5.46. 1) 0124 2 =+− axx ; 2) 042 =+− axx ;

3) 024025 2 =−− axx ; 4) 042849 2 =++ axx .

5.47. 1) 019 2 =+− axx ; 2) 094 2 =+− axx ;

3) 04823 2 =++ axx ; 4) 01832 2 =+− axx .

5.48. 1) ( ) 09822 =++− xax ;

2) ( ) 015222 =+++− axax ;

3) ( ) 02122 =−+++ axaax ;

4) ( ) ( ) 02121 2 =−++−− axaxa .

5.49. 1) 0432=

−−+

axxx

; 2) 01072=

++−

axxx

;

3) 06

652=

++−

axxx

; 4) 012

22

2=

++−−

axaxx

.

5.50. ipoveT a parametris im mTel mniSvnelobebs Soris

umciresi, romlisTvisac mocemul gantolebas aqvs

mTeli amonaxsni:

1) ( ) 63 =+ xa ; 2) xax =− 8 ;

3) ( ) 626 −=− axa ; 4) ( ) 432 +=+ axa .

Page 223: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

223

5.51. 1) moZebneT m -is mniSvneloba, romlisTvisac

( ) 0399122 22 =+−++− mmxmx gantolebis erTi fesvi

orjer metia meoreze.

2) p -s ra mniSvnelobisaTvis iqneba 0162 =−+ pxx

gantolebis fesvebis Sefardeba –4-is toli.

3) k -s ra mniSvnelobisaTvis akmayofileben

045321362 =+

−+

+ xkkx

gantolebis 1x da 2x fesvebi pirobas 21 5xx = .

4) k -s ra mniSvnelobisaTvis akmayofileben

0125

342 =−−−

+ xk

kx

gantolebis 1x da 2x fesvebi pirobas 21 3xx −= .

5.52. 1) ra mniSvneloba unda hqondes q -s, rom 032 =++ qxx

gantolebis fesvebis sxvaoba iyos 6-is toli.

2) 0122 =++ pxx gantolebis 1x da 2x fesvebi

akmayofileben pirobas 121 =− xx . ipoveT p koeficien-ti.

3) ipoveT q , Tu 062 =+− qxx gantolebis 1x da 2x

fesvebi akmayofileben pirobas: 2023 21 =+ xx .

4) ipoveT k , Tu 053 2 =+− kxx gantolebis 1x da 2x

fesvebi akmayofileben pirobas: 06 21 =+ xx .

5.53. SeadgineT kvadratuli gantoleba, romlis: 1) fesvebi orjer meti iqneba 0652 =+− xx gantolebis

fesvebze.

2) meore koeficienti tolia (-15)-is da erTi fesvi

orjer metia meoreze.

3) TiToeuli fesvi 2p-iT metia 02 =++ qpxx

gantolebis fesvebze.

4) fesvebi 02 =++ qpxx gantolebis fesvebis Sebrune-

buli iqneba.

5.54. 1) 02 =++ qpxx gantolebis amouxsnelad gamosaxeT

p da q -s saSualebiT misi fesvebis kvadratebis jami

da kubebis jami.

Page 224: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

224

2) SeadgineT kvadratuli gantoleba, romlis

fesvebia 02 =++ qpxx gantolebis fesvebis kubebi.

3) SeadgineT 02 =++ baxx saxis yvela kvadratuli

gantoleba, romlis a koeficienti misi erT-erTi

fesvisa da 3-is namravlia, xolo b _meore fesvisa da

5-is namravli.

4) SeadgineT 02 =++ baxx saxis yvela kvadratuli

gantoleba, romlis a koeficienti erT-erTi fesvis

tolia, xolo b _meore fesvisa da 32-is namravlia.

5.55. 1) c -s ra dadebiTi mniSvnelobisaTvis iqneba

0968 22 =+− cxx gantolebis erTi fesvi meore fesvis

kvadratis toli.

2) 0102 =+− qxx gantolebaSi ipoveT q -s mniSvneloba,

romlisTvisac misi fesvebis kvadratebis jami tolia

68-is.

3) ( ) 717 2 =−− xax gantolebaSi ipoveT a -s mniSvne-

loba, romlisTvisac misi 1x da 2x fesvebi

akmayofileben pirobas 22

2121 xxxx +=+ .

4) 02 =−− qxx gantolebaSi ipoveT q -s mniSvneloba,

romlisTvisac misi 1x da 2x fesvebi akmayofileben

pirobas 1932

31 =+ xx .

5.56. 1) p da q -s ra mniSvnelobisaTvis iqneba

02 =++ qpxx gantolebis amonaxsnebi p da q .

2) p da q -s ra mniSvnelobisaTvis iqneba

02 =++ qpxx gantolebis amonaxsnebi qp +9 da qp +6 .

3) ipoveT m -is mniSvneloba, romlisTvisac

032 =+− mxx ( 0≠m ) gantolebis erT-erTi fesvi

02 =+− mxx gantolebis fesvisa da 2-is namravlia.

4) ipoveT b -s mniSvneloba, romlisTvisac

0852 =+− bxx ( 0≠b ) gantolebis erT-erTi fesvi

022 =+− bxx gantolebis fesvisa da 3-is namravlia.

5.57. 1) a -s ra mniSvnelobisaTvis aqvT saerTo fesvi

082 =++ axx da 02 =++ axx

gantolebebs.

Page 225: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

225

2) b -s ra mTeli mniSvnelobisaTvis aqvT saerTo

fesvi gantolebebs:

( ) 03132 2 =−−+ xbx da ( ) 01326 2 =−−− xbx .

3) ra pirobebs unda akmayofilebdnen 0112

1 =++ cxbxa

da 0222

2 =++ cxbxa kvadratuli gantolebebis koefici-

entebi, rom gantolebebs hqondeT saerTo fesvi.

4) vTqvaT 0112 =++ qxpx da 022

2 =++ qxpx gantole-

bebs aqvT mxolod erTi saerTo fesvi. SeadgineT

kvadratuli gantoleba, romlis fesvebic mocemul

gantolebaTa gansxvavebuli fesvebia.

bnpytfojU!hboupmfcfcj!)$$6/69.6/71*;!

5.58. 1) 0910 24 =+− xx ; 2) 03613 24 =+− xx ;

3) 010029 24 =+− xx ; 4) 045 24 =+− xx .

5.59. 1) 01617 24 =+− xx ; 2) 03637 24 =+− xx ;

3) 04950 24 =+− xx ; 4) 014425 24 =+− xx .

5.60. 1) 0154 24 =+− xx ; 2) 09283 24 =+− xx ;

3) 09192 24 =+− xx ; 4) 0273 24 =+− xx .

5.61. amoxseniT gantolebebi damxmare ucnobis Semotanis

xerxiT:

1) ( ) ( ) 0152142 222 =−+−+ xxxx ;

2) ( ) ( ) 0376276 222 =−−−− xxxx ;

3) 04131 2

=−⎟⎠⎞

⎜⎝⎛ −

−⎟⎠⎞

⎜⎝⎛ −

xx

xx

;

4) 0515,41 2

=+⎟⎠⎞

⎜⎝⎛ +−⎟

⎠⎞

⎜⎝⎛ +

xx

xx .

5.62. daSaleT mamravlebad mravalwevrebi:

1) 45 24 +− xx ; 2) 3613 24 +− xx ;

3) 484125 24 +− xx ; 4) 154 24 +− xx .

5.63. SekveceT wiladebi:

1) 3613910

24

24

+−+−

xxxx

; 2) 2410209

24

24

+−+−

xxxx

;

3) 49501617

24

24

+−+−

xxxx

; 4) 271234

24

24

+−+−

xxxx

.

Page 226: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

226

5.64. daamtkiceT, rom 024 =++ qpxx bikvadratuli ganto-

lebisaTvis yvela fesvis jami udris nuls, xolo

fesvebis namravli udris q -s.

bnpytfojU!hboupmfcfcj!)$$6/76.6/82*;!

5.65. 1) ( ) ( ) 5613 33 =+−+ xx ; 2) ( ) ( ) 721 33 =−−− xx ;

3) 08648 34 =+++ xxx ; 4) 0393 34 =−+− xxx .

5.66. 1) 20642

2 =+x

x ; 2) 1472

504

4 =−

−x

x ;

3) 25

54

422 =+

++ xx

; 4) 121

31

21

33 =+

−+ xx

.

5.67. 1) 232

1582

2422 =

−+−

−+ xxxx; 2) 64

10421 2

2 =+−+−

xxxx

;

3) 122

1 2

2

2

2=

−−+−

−+−

−xxxx

xxxx

;

4) 67

3222

2212

2

2

2

2=

++++

+++++

xxxx

xxxx

.

5.68. 1) ( ) ( ) 121

11

21

2 =+

−+ xxx

; 2) ( ) ( ) 2

68

31

2 =−

−− xxx

;

3) ( )( ) ( )( ) 141

821

6=

+−+

++ xxxx;

4) ( )( ) ( )( ) 134

423

7=

−++

−+ xxxx.

5.69. 1) ( ) ( ) 81326 222 =−−− xxx ; 2) ( ) ( ) 5512 222 =+−+ xxx ;

3) ( ) ( )( ) 13227522 =−−−+− xxxx ;

4) ( )( )( ) 122016219 2 =−+−+ xxxx .

5.70. 1) 263

22

632

2=

+−+

+−xxx

xxx

;

2) 045

352

2=+

−++

−+xxx

xxx

;

3) 91217 22 =⎟

⎠⎞

⎜⎝⎛ +−⎟

⎠⎞

⎜⎝⎛ +

xx

xx ; 4) 47412124 2

2 =+++xx

xx .

5.71. 1) ( ) ( ) ( ) ( ) 43214 2222 =+++++ xxxx ;

Page 227: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

227

2) ( ) ( ) ( ) ( ) 1621323 2222 =+−++− xxxx ;

3) ( ) ( ) ( ) ( ) 4942211222222 =++−+++− xxxxxx ;

4) ( ) ( ) ( ) ( ) 256426422222222 =+−++− xxxx .

$6. jsbdjpobmvsj!hboupmfcfcj!

bytfojU-! sbupn! bs! Tfj[mfcb! irpoeft! gftwfcj! Tfnefh! hboup.

mfcfct!)$$7/2<!7/3*;!

6.1. 1) 021 =+++ xx ; 2) 512 −=−x ;

3) 3112 −=−++ xx ; 4) 121 −=−+− xx .

6.2. 1) 358 =−−− xx ; 2) 511 =−+− xx ;

3) 12 =−−− xx ; 4) 245 2 =++− xx .

bnpytfojU!hboupmfcfcj!)$$7/4.7/34*;!

6.3. 1) 21 =−x ; 2) 423 =−+ x ;

3) 312 =−x ; 4) xx −=− 692 .

6.4. 1) ( ) ( ) 31

31

3372 −=+ xx ; 2) ( ) ( ) 31

31

132 −=+ xx ;

3) ( ) 2425 51

=−+ x ; 4) ( ) 31270 41

=−+ x .

6.5. 1) 76

42

−−

=−−

xx

xx

; 2) ( ) 2332

2312

−−

=+−

xx

xx

;

3) ( ) 9453

2443

−−

=−−

xx

xx

; 4) ( ) 1416619

−=

−+

xx

xx

.

6.6. 1) 2132 −=+− xxx ; 2) 12354 2 +=−+ xxx ;

3) 3542 −=+− xxx ; 4) xxx 21423 2 −=+− .

6.7. 1) 3621 +=+⋅− xxx ; 2) 1223 +=+⋅− xxx ;

3) 53

1334−−

=−xxx ; 4) 323

8327

+=−− x

xx

.

6.8. 1) 33235 22 −+=−+ xxxx ;

Page 228: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

228

2) 22 325435 xxxx −−=−+ ;

3) 1063892 22 −−=−− xxxx ;

4) 961192 22 +−=+− xxxx .

6.9. 1) 125 −=− xx ; 2) 2413 −=− xx ;

3) 379 +=+ xx ; 4) 4514 −=− xx .

6.10. 1) 0224

=+++

− xx

x ; 2) xx

x −−

=−9

369 ;

3) xxx

−=+−−

10531015

; 4) xx

x 59363 −=−

+− .

6.11. 1) 8152 =−++ xx ; 2) 22384 =−−+ xx ;

3) 2173 =+−+ xx ; 4) 6315 =−+− xx .

6.12. 1) xxx 2443 =−++ ; 2) xxx 2312 =−++ ;

3) 62020=

−+

+x

xx

x; 4) 2

23

215

=−

−−

xx

xx

.

6.13. 1) 32652 −=−+− xxx ; 2) 1231341 +=+++ xxx ;

3) 25126552 +=+++ xxx ; 4) 12291 −=−−+ xxx .

6.14. 1) 222 =+−−++ xxxx ;

2) 41111 =+−+++ xxxx ;

3) 811 +−=−+ xxx ; 4) xxx =−++ 2411 2.

6.15. 1) 21

1

1

122

−=+−

+++ xxxx

;

2) 222

3

11

1

11

1xxx

=−+

−−−

;

3) 31122

=−+

−−− xxxxxx

.

4) xx

xxx

xx −+

=−−

−11

2.

6.16. 1) ( ) ( ) 2

353355=

−+−−−+−−

xxxxxx

;

Page 229: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

229

2) ( ) ( ) 8

251725251717

=−+−

−−+−−xx

xxxx;

3) 32442

23

2 =⎟⎠⎞⎜

⎝⎛ −+⎟

⎠⎞⎜

⎝⎛ −− xxxx ;

4) 1113

25

2 =⎟⎠⎞⎜

⎝⎛ −−⎟

⎠⎞⎜

⎝⎛ −+ xxxx .

6.17. 1) 28

942

91

36

xxxx

++=+

;

2) 32

27

34

25

++

+=

+−

++−

xx

xxx

xx

;

3) xxxx 2152

152

2=++

+;

4) ( )( ) xxxxx 2431231 −=+−+++− .

6.18. 1) 244 33 =−++ xx ; 2) 333 5255 =−++ xx ;

3) 1334 33 =−−+ xx ; 4) 112575 33 =−−+ xx .

6.19. 1) 124 =+ xx ; 2) 16161 4 =−+− xx ;

3) 4 3563 −=+− xx ; 4) 332232 4 22 =+−+ xx .

6.20. 1) 0323 23 =−+ xx ; 2) 01852 63 =−+ xx ;

3) 0443 23 =+− xxx ; 4) 13 13 253 −− =− xxx .

6.21. 1) 411

1

13

3 2

3 2

3 4=

+−

−−

−xx

x

x; 2) 5655 =− xxxx ;

3) 21922 =−+ xx ; 4) 222022 =++ xx .

6.22. 1) 7533 22 =+−+− xxxx ;

2) ( )( ) 357743 2 =+−+−− xxxx ;

3) ( ) 2122 128264 +−=−− xxxx ;

4) ( ) 2152153 2122 =++++ xxxx .

6.23. 1)

xxxx

−+−=−+

22

1

121 ;

Page 230: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

230

2) 2

2

1

121xx

xx++

+=++ ;

3) 25

33

5 77 =−+

++−

xx

xx

; 4) 5,216

11

16 55 =−

+− z

zz

z.

!!

%8/!tjtufnfcj!

bnpytfojU!tjtufnfcj!Dbtnjt!yfsyjU!)$$8/2<!8/3*;!

7.1. 1) ⎩⎨⎧

=−=+

335112

yxyx

2) ⎩⎨⎧

=+=−

232553

yxyx

3) ⎩⎨⎧

=+=+

74382

yxyx

4) ⎩⎨⎧

=−=+

6989897

yxyx

7.2. 1) ⎩⎨⎧

−=+=+

1831552

yxyx

2) ⎩⎨⎧

−=+−=+

765432

yxyx

3) ⎩⎨⎧

=−=−

3541123

yxyx

4) ⎩⎨⎧

−=+=+

11871365

yxyx

bnpytfojU!tjtufnfcj!Tflsfcjt!yfsyjU)$$8/4<!8/5*;!

7.3. 1) ⎩⎨⎧

=−=+

93112

yxyx

2) ⎩⎨⎧

−=−=+

1375

yxyx

3) ⎩⎨⎧

−=+=−

13543

yxyx

4) ⎩⎨⎧

=+=+42634

yxyx

7.4. 1) ⎩⎨⎧

=+=+

15342552

yxyx

2) ⎩⎨⎧

−=+−=+

756434

yxyx

3) ⎩⎨⎧

−=−=−

8254076

xyyx

4) ⎩⎨⎧

−=−=−

557832

yxyx

bnpytfojU!tjtufnfcj!)$$8/6.8/27*;!

7.5. 1) ( )( )⎩

⎨⎧

+=−+=−1151413

xyyx

2) ( )( )⎩

⎨⎧

−=+−=+

xyyx

23235124

Page 231: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

231

3) ( ) ( )( ) ( )⎩

⎨⎧

=−−+=−−+

275432

yxyxyxyx

4) ( ) ( )( ) ( )⎩

⎨⎧

=−−−=−−+

5201332202006835

yxyxyxyx

7.6. 1) ⎩⎨⎧

=+−−=+

5,245,0122

yxyx

2)⎩⎨⎧

−=−−=+

5,25,05,113

yxyx

3)⎩⎨⎧

−=−−=−5,765,115,05,0

yxyx

4)

⎪⎩

⎪⎨⎧

=+

=−

32

31

35,25,0

yx

yx

7.7. 1)

⎪⎪⎩

⎪⎪⎨

=+

=−

83

24

132

yx

yx

2)

⎪⎪⎩

⎪⎪⎨

=+

=+

19312

5

1149

2

yx

yx

3)

⎪⎪⎩

⎪⎪⎨

=+

=−+

022

325

32

2

yx

yyx

4)

⎪⎪⎩

⎪⎪⎨

=−−

−=++

23

43

32

253

xyx

yyx

7.8. 1) ( ) ( )⎪⎩

⎪⎨

+=+−−

=−+

123252

12332

xxyyxyx

2)

( )

⎪⎪⎩

⎪⎪⎨

−=−

−−

−=

+−

+

xyyx

yxyx

23

34

35

24

23

1

3) ( )( ) ( )( )( )( ) ( )( )⎩⎨⎧

+−=+−++=++

165275328153

yxyxyxyx

4)

⎪⎪⎩

⎪⎪⎨

−−

=−

+−

=+−

14326

151

yy

xx

yy

xx

7.9. 1)

⎪⎪⎩

⎪⎪⎨

=−

=+

61116511

yx

yx 2)

⎪⎪⎩

⎪⎪⎨

=+

=−

5145

881

yx

yx

3)

⎪⎪⎩

⎪⎪⎨

=+

=+

3143

3052

yx

yx 4)

⎪⎪⎩

⎪⎪⎨

=+

=−

3594

9715

yx

yx

Page 232: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

232

7.10. 1)

⎪⎪⎩

⎪⎪⎨

=+

−−

=−

++

83118511

yxyx

yxyx 2)

⎪⎪⎩

⎪⎪⎨

=+

+−

=+

+−

22

35

25

12

15

10

yx

yx

3)

⎪⎪⎩

⎪⎪⎨

=+

−−

=+

+−

1,094

1,162

yxyx

yxyx 4)

⎪⎪⎩

⎪⎪⎨

−=+

−−

=+

+−

13

482

45

73

322

27

yxyx

yxyx

7.11. 1)

⎪⎪⎩

⎪⎪⎨

=−

−−

=−

+−

132

223

27

1323

1832

11

yxyx

yxyx 2)

⎪⎪⎩

⎪⎪⎨

=−

++

=−

−+

12

32

20

12

12

4

yxyx

yxyx

3)

⎪⎪⎩

⎪⎪⎨

=−+

++−

=−−

++−

3,01

12

1

1,01

12

1

yxyx

yxyx 4)

⎪⎪⎩

⎪⎪⎨

=+−

+++

−=−−

+++

112

332

3

112

1232

6

yxyx

xyyx

7.12. 1) ⎪⎩

⎪⎨⎧

=−=−

122 2

yxyx

2) ⎩⎨⎧

=−=

7215yx

xy

3) ⎪⎩

⎪⎨⎧

=−=+4

822

yxyx

4) ⎪⎩

⎪⎨⎧

=+=+

84022

yxyx

7.13. 1) ⎪⎩

⎪⎨⎧

=−=+7322

xyxyx

2) ⎪⎩

⎪⎨⎧

=−=−−

71922

yxyxyx

3) ⎪⎩

⎪⎨⎧

=+=−+

020622

xyyyx

4) ⎪⎩

⎪⎨⎧

−=−=+−

36322

yxyxyx

7.14. 1) ⎪⎩

⎪⎨

=+

=+

128311

yxyx 2)

⎪⎩

⎪⎨

=−

−=−

45411

yxyx

3) ( )( )⎩⎨⎧

=+=−−

5211

yxyx

4) ( )( )⎩⎨⎧

=−=+−

3112

yxyx

Page 233: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

233

7.15. 1)

⎪⎪⎩

⎪⎪⎨

=+

=+

−−

yx

yx2

33

11

51

4

2)

⎪⎪⎩

⎪⎪⎨

−=

=−

++

61

24

23

25

3

yx

yx

3)

⎪⎩

⎪⎨

=+

=++++

6

311

2

2

yxyyxx

4)

⎪⎩

⎪⎨

=−

=++++

123

11

2

2

yxxyyx

7.16. 1) ( )( )

⎪⎩

⎪⎨

=−−

=−−

132

132

yx

yx 2)

( )( )

⎪⎪⎩

⎪⎪⎨

=+−

=−−

+

52

21

333

yxyx

xyyxy

3)

⎪⎩

⎪⎨

=−

=++−

4

2523

yxxy

yx

4)

⎪⎩

⎪⎨

=−

=−−

+−−

143

4132

252

yxyy

xx

bnpytfojU! tjtufnfcj! wjfujt! Ufpsfnjt! hbnpzfofcjU! )$$8/28.

8/2:*;!

7.17. 1) ⎩⎨⎧

==+

45

xyyx

2) ⎩⎨⎧

==+

78

xyyx

3) ⎩⎨⎧

−==+15

2xy

yx 4)

⎩⎨⎧

−=−=+

365

xyyx

7.18. 1) ⎩⎨⎧

==−

187

xyyx

2) ⎩⎨⎧

==−

152

xyyx

3) ⎩⎨⎧

−==−4816

xyyx

4) ⎩⎨⎧

−==−23

xyyx

7.19. 1) ⎪⎩

⎪⎨⎧

==+

61322

xyyx

2) ⎪⎩

⎪⎨⎧

−=

=+

8

733

33

yx

yx

3) ( )⎪⎪⎩

⎪⎪⎨

=+

=++

20

9

yxyxyxyx

4) ⎪⎩

⎪⎨⎧

=++=+

5622

yxxyxyyx

Page 234: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

234

bnpytfojU!hboupmfcbUb!tjtufnfcj-!spnfmUb!nbsdyfob!obxjmfcj!

fsUhwbspwbojb! x .jtb!eb! y .jt!njnbsU!)$$8/31<!8/32*;!

7.20. 1) ⎪⎩

⎪⎨⎧

=+

−=−

173

152

22

yxy

yx 2)

⎪⎩

⎪⎨⎧

=−−

=−

823

1602322

2

xxyy

xyy

3) ⎪⎩

⎪⎨⎧

=+−

−=+−

1333

1322

22

yxyx

yxyx 4)

⎪⎩

⎪⎨⎧

−=−

=+−

16

1724322

22

yx

yxyx

7.21. 1) ⎪⎩

⎪⎨⎧

=+

=−−

4

222

22

yxy

yxyx 2)

⎪⎩

⎪⎨⎧

=+

=++

1483

6422

22

yx

yxyx

3) ⎪⎩

⎪⎨⎧

=+−

=+−

43787

2956522

22

yxyx

yxyx 4)

⎪⎩

⎪⎨⎧

=−−

=−+

15395

3845322

22

yxyx

yxyx

bnpytfojU!tjtufnfcj!)$$8/33.8/3:*;!

7.22. 1) ⎩⎨⎧

=−+=++

15

xyyxxyyx

2) ⎩⎨⎧

−=+−=++

22102

yxyxyxyx

3) ⎩⎨⎧

=−+=+−

137

yxxyyxxy

4) ( )⎩⎨⎧

=+−=++

2229

yxxyyxxy

7.23. 1) ⎪⎩

⎪⎨⎧

=−+−

=+++

6

1822

22

yxyx

yxyx 2)

⎪⎩

⎪⎨⎧

=−=+xyyx

xyyx44

522 22

3) ⎪⎩

⎪⎨⎧

=−+

=+−

5

1423222

22

yxyx

yxyx 4)

⎪⎩

⎪⎨⎧

=−+−

=−+−

108725

1023522

2

yxxxy

yxxyx

7.24. 1) ( )( )( )( )⎩⎨⎧

=−+=−+

205108

yyxxyx

2) ( )( )⎪⎩

⎪⎨⎧

=−−=−+−

01205532 2

yxyxyx

3) ( )( )⎪⎩

⎪⎨⎧

+−=−−

=+−−−

2323

022352

22

yyyx

yxyx 4)

( ) ( )( ) ( )⎪⎩

⎪⎨⎧

=−−−

=+−+

32

4542

2

yxyx

yxyx

7.25. 1) ⎪⎩

⎪⎨

=+

=+

34

1534

22 yx

xy

yx

2)

⎪⎩

⎪⎨

=−

=−

9

209

22 yx

xy

yx

Page 235: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

235

3)

⎪⎩

⎪⎨

=+

=+

1025

yxxy

yx

4)

⎪⎩

⎪⎨

=−

=−

565

yxxy

yx

7.26. 1) ⎪⎩

⎪⎨⎧

=

=+

6

5

xy

yx 2)

⎪⎩

⎪⎨

=+

=+

25

25

yxxy

yx

3) ⎪⎩

⎪⎨⎧

=++

=+++

19

1822

22

yxxy

yxyx 4)

⎪⎩

⎪⎨⎧

=++

=+++

12

1822

22

yxxy

yxyx

7.27. 1) ⎪⎩

⎪⎨⎧

=+−

=+

12

7222

33

yxyx

yx 2)

⎪⎩

⎪⎨⎧

=++

=−

109

21822

33

yxyx

yx

3) ⎪⎩

⎪⎨⎧

=−=−7

13333

yxyx

4) ⎪⎩

⎪⎨⎧

−=+−=+

721733

yxyx

7.28. 1)

⎪⎪⎩

⎪⎪⎨

=+

=+

4511

2311

22 yx

yx 2)

⎪⎩

⎪⎨

=+

=+

160

3111

22 yx

yx

3) ⎪⎩

⎪⎨⎧

==+

38244

xyyx

4) ⎪⎩

⎪⎨⎧

=+=+5

3533

yxyx

7.29. 1) ⎪⎩

⎪⎨⎧

−=+−

=−+

222

11

yyx

yx 2)

⎪⎩

⎪⎨⎧

−=+−

=++

6722

213

yyx

yx

3)

⎪⎩

⎪⎨⎧

=−

=−+−

04

24225

22

yxx

yxyx 4)

⎪⎩

⎪⎨⎧

=−

+=−+

1134 22

yxxyxyx

7.30. amouxsnelad gansazRvreT, aqvs Tu ara mocemul sistemas:

a) erTi amonaxsni, b) amonaxsnebis usasrulo simravle, g)

ara aqvs amonaxsni:

1) ⎩⎨⎧

=−=+

06101535

yxyx

2) ⎩⎨⎧

=+=+

3220616103

yxyx

3) ⎩⎨⎧

=+=+

183112

yxyx

4) ⎩⎨⎧

=−=−

964496

yxyx

Page 236: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

236

7.31. ipoveT a -s mniSvnelobebi, romelTaTvisac sistemebs

ara aqvs amonaxsni:

1) ⎩⎨⎧

=+=+

521234

ayxyx

2) ⎩⎨⎧

=−=+71083

ayxyx

3) ⎩⎨⎧

=−=−

153295

yxyax

4) ( )⎩⎨⎧

=−−=+

113123ayxa

ayx

7.32. ipoveT m -isa da n -is mniSvnelobebi, romelTaTvisac

sistemebs aqvT amonaxsnTa usasrulo simravle:

1) ⎩⎨⎧

=+=+

4358

yxnymx

2) ( )

⎩⎨⎧

−=+=−+

110321

yxynmx

3) ⎩⎨⎧

=+=+nymx

yx 832 4) ( )⎪⎩

⎪⎨⎧

+=++

=+

mnyn

xn

yx

211

106

7.33. ipoveT m -is mniSvnelobebi, romelTaTvisac sistemebs: a)

aqvs amonaxsnebis usasrulo simravle, b) ara aqvs

amonaxsni:

1) ( )

( )⎩⎨⎧

=++−=++

8523543

ymxmyxm 2)

( ) ( )( ) ( )⎩⎨⎧

=+++=+++

16651037325

ymxmymxm

3) ( )⎩⎨⎧

=+=++

42822

ymxmyxm

4) ( )

( )⎩⎨⎧

=−+−=++

mymxyxm

311285

bnpytfojU!tjtufnfcj!)$$8/45<!8/46*;!

7.34. 1) ⎪⎩

⎪⎨

−=−+−=−+

=+−

434545

232

zyxzyxzyx

2)

⎪⎩

⎪⎨

=−+=+−

=++

8721353

42

zyxzyx

zyx

3)

⎪⎩

⎪⎨

=−−=−+=−+

01050163

052

zyzxyx

4)

⎪⎩

⎪⎨

=+−=+−=−+

3623

82

zyyx

zyx

7.35. 1) ⎪⎩

⎪⎨

==+=+

621

xzzyyx

2)

⎪⎩

⎪⎨

=+

=+=−

41

72

22 zx

zyyx

3)

⎪⎩

⎪⎨

===

362

xzyzxy

4)

⎪⎩

⎪⎨

===

8126

xzyzxy

Page 237: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

237

$8. vupmpcfcj!

bnpytfojU!vupmpcfcj!)$$9/2.9/6*;!

8.1. 1) 4247 <−x ; 2) 12518 <− x ;

3) xx 6617 −>− ; 4) 1135,012 −≤+ xx .

8.2. 1) ( ) ( )231715 +−≤+− xx ; 2) ( ) ( ) 121784 <−−+ xx ;

3) ( ) 162,15,14 −>−− xx ; 4) ( ) ( )9,1137,1 −−<−− xx .

8.3. 1) 018

32<

+ x; 2) 4

1012

53

<−

+−

−xxx ;

3) 03

24

3≤

−+

+ xx; 4) 1

23

412

≥+

+− xx

.

8.4. 1) 83

114

1+

+<−

− xx; 2)

8512

421 xx −

<−−

;

3) 04

12

13≥

−−

− xx; 4) 1

212

313

65

≤−

+−

−xxx

.

8.5. 1) 8

14213

35 +

−<−xx

; 2) 6

3485

233 −

−>−xx

;

3) 03

2≥

−−

x; 4) 0

53

2≤

+xx

.

bnpytfojU!vupmpcbUb!tjtufnfcj!)$$9/7.9/21*;!

8.6. 1) ⎩⎨⎧

>>

;12,17

xx

2) ⎩⎨⎧

<≤

;5,1

xx

3) ⎩⎨⎧

<≥

;6,0

xx

4) ⎩⎨⎧

>−<.8

,5,3xx

8.7. 1) ⎩⎨⎧

<+−<−

;1313,921

xx

2) ⎩⎨⎧

+>++≥+

;225,2973

xxxx

3) ⎩⎨⎧

−≤−>+

;6,237,0,835

xx

4) ⎩⎨⎧

−>−<+

.21,24

xxx

8.8. 1) ( )

( )⎩⎨⎧

−<−−>−−

;2131,225

xxx

2) ( )( )⎩

⎨⎧

+−≥<−−

;18123,642

xxxx

3) ( ) ( )

( )⎩⎨⎧

−>−++>+−

;1253,15411110

xxxxx

4) ( ) ( )

⎩⎨⎧

+<−+<+−−

.10111112,421501317

xxxxx

8.9. 1) ⎪⎩

⎪⎨

>−<+<−

;13,1352

,84

xx

x 2)

⎪⎩

⎪⎨

<−−>−+<−

;03,2615

,312

xxx

xx

Page 238: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

238

3)

⎪⎪⎩

⎪⎪⎨

<−>>

<−

;11,14412

,77,723

xx

xx

4)

⎪⎪⎩

⎪⎪⎨

>−<−−>−−<−

.017,5533,4221,2445

xxx

xxxx

8.10. 1) ( ) ( )⎪

⎪⎩

⎪⎪⎨

−<−+

−+

<−−

;424535

,45433

27

xxx

xx

2)

⎪⎪⎩

⎪⎪⎨

<−−

<−

;103

14

,103

14

xx

xx

3)

⎪⎪⎩

⎪⎪⎨

>−+

<+−

;7175

,75

17

xx

xx

4)

⎪⎪⎩

⎪⎪⎨

+−

<−+

−−

<−

−−

.45

7324

65

,14

133

34

12

xxx

xxx

bnpytfojU!vupmpcfcj!)$$9/22.9/4:*;!

8.11. 1) ( ) ;05 >−xx 2) ( )( ) ;042 >−− xx

3) ( ) 0421

>−⎟⎠⎞

⎜⎝⎛ − xx ; 4) ( )( ) 0132 <−+ xx .

8.12. 1) 5321 <−<− x ; 2) 3254 <+≤−− xx ;

3) 1374 −<−< xx ; 4) 51332 +≤−<− xxx .

8.13. 1) ( )( ) 068 2 >+− xx ; 2) ( ) ( ) 032 2 <−− xx ;

3) 02

42<

−+x

x; 4)

( )0

31

2 ≥−+

xx

.

8.14. 1) 04103

<+−

xx

; 2) 023

5≤

−−

xx

; 3) 014

23≥

−−x

x; 4) 0

15

>+ xx

.

8.15. 1) 04

18<

−x

x; 2) 0

143

<+−x

x; 3) 0

4455

≥+−x

x; 4)

( )0

8214

2 >−−

xx

.

8.16. 1) 2342>

−−

xx

; 2) 223>

+−

xx

; 3) 3113

−>−+

xx ; 4) 2

534<

−−

xx

.

8.17. 1) 0342 >+− xx ; 2) 012 ≥+− xx ;

3) 0235 2 >+−− xx ; 4) 01062 ≤+− xx .

8.18. 1) 045142 ≥+− xx ; 2) 01542 >+− xx ;

3) 030112 ≥+− xx ; 4) 0342 >+− xx .

8.19. 1) 0253 2 >−− xx ; 2) 0275 2 ≤+− xx ;

3) 0673 2 <−− xx ; 4) 0523 2 ≥+− xx .

Page 239: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

239

8.20. 1) 021102 ≤+− xx ; 2) 04822 <−− xx ;

3) 016 2 <−− xx ; 4) 0165 2 ≥++ xx .

8.21. 1) 043 2 <+ xx ; 2) 092 >−x ; 3) 0102 ≤− xx ; 4) 052 ≥−x .

8.22. 1) ( ) ( ) 0375 2 <−− xx ; 2) ( ) ( ) 0432 2 >−− xx ;

3) ( )( )( ) 032413 2 ≤−−− xxx ; 4) ( )( )( ) 084162 ≥−−− xxx .

8.23. 1) ( )( ) 0523 ≤−− xxx ; 2) ( )( )( ) 015364 ≥−−− xxx ;

3) ( )( )( )( ) 09432725 >−−−− xxxx ;

4) ( )( )( )( ) 01265431 2 <−−−− xxxx .

8.24. 1) ( )( ) 03

21>

−−−

xxx

; 2) ( )( ) 0

253

>−

−−x

xx;

3) 034

12 ≤

++−xx

x; 4) 0

41862

≥−+−

xxx

.

8.25. 1) 08232

2

2≥

+−−+

xxxx

; 2) 06545

2

2<

−−++

xxxx

;

3) 01

1522≤

+−+

xxx

; 4) 0128

1662

2>

−+−−−

xxxx

.

8.26. 1) 015885

2

2≤

+−+−

xxxx

; 2) 067

22 ≥

+−+

xxx

;

3) 12

232

−−

>−−

−xx

xx

; 4) 25

51723

+−

>−−

−xx

xx

.

8.27. 1) 3

32

1−

<+ xx

; 2) 12

52

1≤

++

− xx;

3) xxx 8205 2 ≤≤− ; 4) 21

8731 2

2<

++−

<x

xx.

8.28. 1) 13415

2 >−+ xx

; 2) xx

xx 23

122≥

−−−

;

3) ( )

( )( )( ) 0431

2 2≤

++−−

xxxxx

; 4) 04

51

42

1≤

+−

++

− xxx.

8.29. 1) 21 >−x ; 2) 141 ≥− x ; 3) 1123 −>+x ; 4) 012 ≤+x .

8.30. 1) 2212 >−x ; 2) 1552 ≥++ xx ;

3) 8362 <−x ; 4) 21072 <+− xx .

8.31. 1) 342 −>− xx ; 2) 1243 +<− xx ;

Page 240: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

240

3) 374 −<+ xx ; 4) 7243 +>− xx .

8.32. 1) 3256 22 −−<+− xxxx ; 2) 5322 22 −+>−+ xxxx ;

3) 111032 +<−− xxx ;

4) 16839124 22 +−<++ xxxx .

8.33. 1) xx <− 209 ; 2) 232 −>− xx ;

3) 1212 −<+ xx ; 4) 5613 +>+ xx .

8.34. 1) 13 +>+ xx ; 2) 142 +<+ xx ;

3) 464 +<+ xx ; 4) 273 +<− xx .

8.35. 1) 11242 −<−− xxx ; 2) xxx −<− 43 2;

3) xxx >−+ 22; 4) 2452 +>++ xxx .

8.36. 1) ( ) 021 2 >−−− xxx ; 2) ( ) 023 2 <−+− xxx ;

3) ( ) 0322 2 ≥−−+ xxx ; 4) ( ) 061 2 ≤++−− xxx .

8.37. 1) 012194

72

<+−

xx

x; 2) 0

321517 2

≥+

−−x

xx;

3) ( ) 0863 ≥−−

+xxx ; 4) ( ) 0

863 ≥−−

+xxx .

8.38. 1) 17

5>

+−

xx

; 2) 1153

<−−

xx

;

3) 2224

<−−−

xx

; 4) 22323

3≥+−

+x

x.

8.39. 1) 11

5<

−+x

x; 2) 1

252 2

<−−xx

;

3) 1224 2<

−−x

xx; 4) 2342

≥−+−

xxx

.

8.40. aCveneT, rom utolobas amonaxsni ara aqvs:

1) 253 −≥−+− xx ; 2) ( ) ( )1

25375 2

22

+−+

>−−−x

xxxx ;

3) ( )2345321 22 <+−+−+ xxx ;

Page 241: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

241

4) 21

112

2 <+

++x

x .

8.41. ipoveT a parametris yvela mniSvneloba, romlisTvi-

sac gantolebas aqvs dadebiTi amonaxsni:

1) xax 542 −=− ; 2) ( ) ( )xax −=− 423 ;

3) ( ) xaax +−=+ 82 ; 4) ( ) xaax +−=− 543 .

8.42. ipoveT a parametris yvela mniSvneloba, romlisTvi-

sac gantolebas aqvs uaryofiTi amonaxsni:

1) ( ) xaxa 422 −+=− ; 2) ( ) 3223 −+=− axax ;

3) ( ) ( )xxa −=− 2745 ; 4) ( ) ( )xxa −=− 32323 .

8.43. ipoveT a parametris yvela mniSvneloba, romlisTvisac

gantolebis amonaxsni akmayofilebs miTiTebul utolo-

bas:

1) ( ) 2 ,23 >−=+ xxax ; 2) ( ) 1 ,235 <+=− xaxa ;

3) ( ) 3 ,212233 <−=− xaxa ; 4) ( ) 1 ,46325 <+=+ xaxa .

8.44. ipoveT a parametris yvela mniSvneloba, romlisTvi-

sac:

1) ( ) xax 2423 +=− gantolebis amonaxsni metia

( ) xxa −=− 622 gantolebis amonaxsnze.

2) ( ) ( )xxa 534325 −=− gantolebis amonaxsni naklebia

( ) ( )xax −=− 52323 gantolebis amonaxsnze.

3) ( ) xax 2523 −=+ gantolebis amonaxsni metia

( ) xax −=− 7232 gantolebis amonaxsnze.

4) ( ) xax 32253 +=+ gantolebis amonaxsni naklebia

( ) xxa −=− 632 gantolebis amonaxsnze.

8.45. a -s ra mniSvnelobisaTvis aqvs gantolebas amonaxsni:

1) ( ) 0610 105 2 =−+−− axxa ; 2) ( ) ( ) 067432 3 2 =−+−−− axaxa ;

3) ( ) 01045 2 =+−+ axxa ; 4) ( ) 012122 =−−++ axaax .

8.46. ipoveT a parametris yvela mniSvneloba, romlisTvi-

sac:

1) ( ) 341 22 +−=− aaxa gantolebas ara aqvs amonaxsni;

2) ( ) 329 22 −+=− aaxa gantolebas aqvs uamravi amonaxsni;

3) ( )( ) 221 +=+− axaa gantolebas aqvs uamravi amonaxsni;

4) ( ) 1342 −=+− axaa gantolebas ara aqvs amonaxsni.

Page 242: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

242

8.47. ipoveT a parametris yvela mniSvneloba, romlisTvi-

sac gantolebas:

1) ( ) 023213 2 =−++− aaxxa aqvs ori amonaxsni;

2) ( ) 02212 2 =++−+ aaxxa aqvs erTi amonaxsni mainc;

3) ( ) 03212 2 =−++− aaxxa aqvs araumetes erTi amonaxsni;

4) ( ) ( ) 0211 2 =−++−+ axaxa aqvs erTi amonaxsni.

8.48. ipoveT a parametris yvela mniSvneloba, romlisTvi-

sac gantolebas aqvs mxolod niSniT gansxvavebuli

fesvebi:

1) ( ) 012922 =+−−− axax ; 2) ( ) 05243 22 =−+−+ axax ;

3) ( ) 0322322 22 =−++−+ axaaax ; 4) ( ) 05322 22 =−−−+ xaaax .

8.49. ipoveT a parametris yvela mniSvneloba, romlisTvi-

sac mocemul gantolebas aqvs sxvadasxva niSnis

fesvebi:

1) ( ) 0532 2 =++−− aaxxa ; 2) ( ) 051 2 =−+++ aaxxa ;

3) 092 22 =−++ aaxx ; 4) 04522 =++++ aaaxx .

8.50. ipoveT m parametris yvela mniSvneloba, romlisTvi-

sac gantolebas aqvs ori (gansxvavebuli) dadebiTi

amonaxsni:

1) ( ) 0912 22 =−+−− mxmx ; 2) ( ) 0442 22 =−++− mxmx ;

3) ( ) 01362 22 =+++− mxmx ; 4) ( ) 0822 22 =−+−− mxmx .

8.51. ipoveT a parametris yvela mniSvneloba, romlisTvi-

sac gantolebas aqvs ori (gansxvavebuli) uaryofiTi

amonaxsni:

1) ( ) 01812 22 =++++ axax ; 2) ( ) 0152 22 =−+−− axax ;

3) ( ) 04122 =+−+ xax ; 4) ( ) 018

122

2 =−+++axax .

a .t!sb! nojTwofmpcjtbUwjt! Tftsvmefcb! ! vupmpcb! ofcjtnjfsj!

x .jtbUwjt!)$$9/63.9/65*;!

8.52. 1) 022 >++ axx ; 2) 1022 >++ axx ;

3) ( )( ) 011562 >−−++ aaxx ; 4) ( ) 01822 >++++ axax .

8.53. 1) 05122 <−+ xax ; 2) ( ) 014142 <−+++ axaax ;

3) ( ) ( ) 01122 2 >+−+−− axaxa ; 4) ( ) 096103 2 <−−− axxa .

Page 243: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

243

8.54. 1) 1322

12

2<

+−−+

xxaxx

; 2) 1432

2

2−>

+−−−

xxaxx

;

3) 41426 2

2<

+−−+

<−xxaxx

; 4) 61639 2

2<

+−−+

<−xxaxx

.

8.55. ipoveT a -s yvela mniSvneloba, romlisTvisac mocemul

gamosaxulebas azri ara aqvs x -is arcerTi

mniSvnelobisaTvis:

1) ( ) 22 2 ++−− aaxxa ; 2) ( ) 1122 +−−+− axax .

jqpwfU! m .jt! zwfmb! nojTwofmpcb-! spnmjtUwjtbd! npdfnvm!

hboupmfcbt!brwt!hbotywbwfcvmj!gftwfcj!eb!jtjoj!blnbzpgjmfcfo!

njUjUfcvm!qjspcbt;!)$$9/67<!9/68*;!

8.56. 1) ( ) ( ) 01332 2 =++−+ mxmxm , 021 <+ xx ;

2) ( ) 04122 =++++ mxmmx , 021 >⋅ xx ;

3) ( ) ( ) 03128 22 =−−−++ xmxmm , 021

21<+

+ xx;

4) ( ) 04312 22 =−−+−+ mmxmx , 016

21<+

xx.

8.57. 1) ( ) 06512 22 =+−++− mmxmx , 021

21 >+ xxxx

;

2) ( ) 06512 22 =++++− mmxmx , 011

21<+

xx;

3) ( ) 020769 22 =++−+− mmxmx , 21

2

2

1 −<+xx

xx

;

4) ( ) 0122 =+++− mxmx , 032

31 >+ xx .

! jqpwfU! a .t!zwfmb!nojTwofmpcb-!spnmjtUwjtbd!)9/69.9/72*;!

8.58.1) 02296 22 =+−+− aaaxx gantolebis orive fesvi metia

3–ze;

2) 02 =++ axx gantolebis orive fesvi metia a –ze;

3) 01244 22 =+−++ aaaxx gantolebis orive fesvi nak-

lebia _1-ze.

Page 244: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

244

4) ( ) 0232 2 =+−− aaxxa kvadratuli gantolebis orive

fesvi metia 21–ze;

8.59. 1) ( ) 01 22 =++− aaxax gantolebis udidesi fesvi metia

21–ze;

2) ( ) ( ) 05321 22 =−+−+++ axaxaa gantolebis erTi fesvi

naklebia 1–ze, xolo meore metia 1–ze;

3) 022 =+− axx gantolebis fesvebi moTavsebulia ] [3;0

SualedSi;

4) 024 2 =+− axx gantolebis fesvebi moTavsebulia

] [1;1− SualedSi.

8.60. 1) 0622 <+++ aaaxx utoloba sruldeba nebismieri

] [2;1∈x –saTvis;

2) 01342 >++− axax utoloba sruldeba yvela 0>x –

saTvis;

3) 22 +>− axax utolobidan gamomdinareobs 1−<x

utoloba;

4) 0123 >−+ aax utolobidan gamomdinareobs 1>x

utoloba.

8.61. 1) 012 <−+− axax utolobidan gamomdinareobs 10 << x

utoloba;

2) ( ) 01 22 >−−+ axaax utolobidan gamomdinareobs 2<x

utoloba;

3) ( ) 01 422 <++− axaax utolobidan gamomdinareobs

0342 >++ xx utoloba;

4) 0232 <+− xx utolobis yoveli amonaxsni Sedis

( ) 03132 >++− xaax utolobis amonaxsnTa simravleSi.

jqpwfU! a .t! zwfmb! nojTwofmpcb-! spnmjtUwjtbd! tjtufnjt!

bnpobytofcj!blnbzpgjmfcfo!njUjUfcvm!qjspcfct!)$$9/73<!9/74*;!

8.62. 1) ⎩⎨⎧

=+=−

,35,17ayx

yx0 ,0 >< yx ; 2)

⎩⎨⎧

>=+>=+

;0 ,2052,0 ,73

yyxxayx

Page 245: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

245

3) ⎩⎨⎧

=−=−

,25,163

ayxyx

0 ,0 << yx ; 4)( )

( )⎩⎨⎧

−=−+−=−−

,1222,142

yaxayxa

0 ,0 <> yx .

8.63. 1) ⎩⎨⎧

=−+=+

,,22

ayxayx

0<+ yx ; 2) ⎩⎨⎧

=−=+

,32,

yxayx

yx > ;

3) ⎩⎨⎧

=−=+

,52,7

yxayx

2−> yx ; 4) ⎩⎨⎧

=+=−

,453,22

yxayx 0>+ yx .

8.64. SeiZleba Tu ara erTdroulad Sesruldes utolobebi:

1) 0 ,0 ,0 >>< acbcab ; 2) 01

,01

,0 <−

<−

<a

bb

aab ;

3) 4 ,16 2244 <+≥+ baba ;

4) ( ) ( ) 0 ,0 ,411 ,

411 >>>−>− baabba .

ebbnuljdfU!vupmpcb!)$$9/76.9/82*;!

8.65. 1) abba≥

+2

22; 2) ( )( )( ) abccacbba 8≥+++ , 0 ,0 ,0 ≥≥≥ cba ;

3) 21

22

2≥

+

+

a

a; 4) 2

1

22

2≥

++

++

aa

aa.

8.66. 1) ( ) aa>

+2

1 2; 2) 0 ,44

>≥+ aa

a ; 3) 212

2 ≥+a

a ; 4) 11

22 ≤

+ aa

.

8.67. 1) ( ) 0 ,0 ,411 >>≥⎟⎠⎞

⎜⎝⎛ ++ ba

baba ; 2) 0 ,0 ,2 21

1

2

2

1 >>≥+ aaaa

aa

;

3) 222 2bca ≥+ , Tu cbba :: = ;

4) 0 ,0 ,1122 >>+≤+ ba

ba

ab

ba.

8.68. 1) ( )( )( ) ,8111 xyzzyx ≥−−− 1 ,0 ,0 ,0 =++≥≥≥ zyxzyx ;

2) ( )cbacba +≥++ 22 222; 3) acbcabcba ++≥++ 222

;

4) 022 ≥++ baba .

8.69. 1) ,11

nm

nm

>++

nmNnm <∈ ,, ;

2) ,3abcbcacab >++ 10 ,10 ,10 <<<<<< cba ;

3) ( )cbaabccba ++≥++ 444, 0 ,0 ,0 ≥≥≥ cba ;

4) 224334 622 bababbaa ≥+++ .

Page 246: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

246

8.70. 1) ,31222 ≥++ zyx Tu 1=++ zyx ;

2) ,2122 ≥+ ba Tu 1=+ ba ;

3) 91111 ≥⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟

⎠⎞

⎜⎝⎛ +

yx, Tu 1 ,0 ,0 =+>> yxyx ;

4) 1633 ≥+ ba , Tu 0 ,0 ,4 ≥≥=+ baba .

8.71. 1) ( )( )( ) abbaba 1622 ≥+++ , 0 ,0 ≥≥ ba ;

2) 8111 ≥⎟⎠⎞

⎜⎝⎛ +⎟⎠⎞

⎜⎝⎛ +⎟⎟⎠

⎞⎜⎜⎝

⎛+

xz

zy

yx

, 0 ,0 ,0 >>> zyx ;

3)

333

22⎟⎠⎞

⎜⎝⎛ +

≥+ baba

, 0≥+ ba ;

4) ,bcacabcba ++≥++ 0 ,0 ,0 ≥≥≥ cba .

5) 1,010099

87

65

43

21

<⋅⋅⋅ L ; 6) 125,06463

87

65

43

21

<⋅⋅⋅ L .

lppsejobuUb! tjcsuzff! ebTusjyfU! Tfnefhj! vupmpcjt! bo!

vupmpcbUb!tjtufnjt!bnpobytoUb!tjnsbwmf!)$$9/83.9/97*;!

8.72. 1) 0≥x ; 2) 0≤y ; 3) 4≥x ;

4) 5,3≤y ; 5) 51 << x ; 6) 05 ≤≤− x ;

7) 42 <≤− y ; 8) 50 << y .

8.73. 1) xy ≤ ; 2) xy −≥ ;

3) 32 −≤ xy ; 4) 2−−> xy .

8.74. 1) 1>+ yx ; 2) 1≤− yx ;

2) 013 >−− yx ; 3) 035 ≤−+ yx .

8.75. 1) 2xy ≥ ; 2) 22xy −≤ ;

3) 42 −> xy ; 4) 23 xy −≤ .

8.76. 1) 342 +−≥ xxy ; 2) 252 2 +−≤ xxy ;

3) 522 +−≥ xxy ; 4) 542 −−−≤ xxy .

8.77. 1) x

y 1≤ ; 2)

xy 2

−≥ ;

Page 247: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

247

3) 3xy ≥ ; 4) xy ≤ ;

5) 0≥xy ; 6) 2−≤xy ;

7) 422 ≤+ yx ; 8) 922 ≥+ yx .

8.78. 1) ⎩⎨⎧

≤≥

00

yx

2) ⎩⎨⎧

≤≤

00

yx

3) ⎩⎨⎧

−<>

12

yx

4) ⎩⎨⎧

≥−≤

.03

yx

8.79. 1) ⎩⎨⎧

≤−≥4y

xy 2)

⎩⎨⎧

−≥≤

xyxy

3) ⎩⎨⎧

−≤+≤

xyxy1

1 4)

⎩⎨⎧

+≤−≥

15,02xy

xy

8.80. 1) ⎩⎨⎧

≤≤≤≤−30

21y

x 2)

⎩⎨⎧

−≤≤−≤≤

3541

yx

3) ⎩⎨⎧

+≤−≥

6262

xyxy

4) ⎩⎨⎧

≤−+≤−−

062063

xyxy

8.81. 1) ⎩⎨⎧

≤≥

42 2

yxy

2) ⎩⎨⎧

<<≤

103 2

xxy

3)

⎪⎩

⎪⎨⎧

3

2

xx

y 4)

⎪⎩

⎪⎨⎧

−≤

2

1

yx

y

8.82. 1) ⎩⎨⎧

−≤+−≥

3342

xyxxy

2) ⎩⎨⎧

−≥−+−≤

xyxxy

31652

3) ⎪⎩

⎪⎨⎧

−≤

≥2

2

9 xy

xy 4)

⎪⎩

⎪⎨⎧

−+−≤

+−≥

6534

2

2

xxy

xxy

8.83. 1) ⎪⎩

⎪⎨⎧

−≤

xyx

y

3

2 2)

⎪⎩

⎪⎨⎧

−≥

−≤

5

3

xyx

y

3) ⎪⎩

⎪⎨⎧

xy

xy 3

4) ⎩⎨⎧

≥≤

xyxy 3

Page 248: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

248

8.84. 1) ⎪⎩

⎪⎨

<<>

42

yxy

xy 2)

⎪⎩

⎪⎨

−≥≤+>−

153

yyxyx

3)

⎪⎩

⎪⎨

>−>+<−

0442

xxyxy

4)

⎪⎩

⎪⎨

≥+−≤

02

yxyxy

8.85. 1) ⎩⎨⎧

+<<

32

xyxy

2) ⎩⎨⎧

+>>+

201

xyxy

3) ⎩⎨⎧

≥+≤+

0922

yxyx

4) ⎩⎨⎧

≤−−≥+

02422

yxyx

5) ⎪⎩

⎪⎨⎧

≤+2

22 9

xy

yx 6)

⎪⎩

⎪⎨⎧

−≤

≥+

.

12

22

xy

yx

8.86. sakoordinato sibrtyeze daStrixeT miTiTebuli sim-

ravle, Tu:

1) ,1|);( +≤= xyyxA ,3|);( xyyxB −≥= =− BA ?

2) ,2|);( ≥+= yxyxA ,2|);( ≥−= yxyxB =− AB ?

3) ,|);( 2xyyxA ≥= ,2|);( +>= xyyxB =− BA ?

4) ,|);( xyyxA ≥= ,1|);(⎭⎬⎫

⎩⎨⎧ ≥=

xyyxB =− AB ?

5) ,2|);( <+= yxyxA ,2|);( −>= xyyxB

,1|);( ≥= xyxC =CBA I)\( ?

6) ,12|);( −>= xyyxA ,3|);( xyyxB −>=

,1|);( −<= xyxC =CBA \)( I ?

7) ,|);( 2xyyxA ≥= ,|);( xyyxB <=

,1|);( >= xyxC =)(\ CBA I ?

8) ,|);( xyyxA ≤= ,21|);( xyyxB −≥=

,2|);( ≤= xyxC CBA \)( I .

Page 249: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

249

$9. npevmjt!Tfndwfmj!hboupmfcfcj!eb!vupmpcfcj!

bnpytfojU!hboupmfcb!)$$:/2.:/27*;!

9.1. 1) 5,01 =− x ; 2) 5,23 =− x ; 3) 21 =−x ; 4) 22 =+x .

9.2. 1) 321 −=− xx ; 2) xx 312 −=+ ;

3) 315 +=− xx ; 4) 3416 +=+ xx .

9.3. 1) 45 +=− xx ; 2) 4331 −=− xx ;

3) xx 2553 −=− ; 4) xx 3432 −=− .

9.4. 1) 3323 =−−− xx ; 2) 13425 =−−− xx ;

3) 4634 =+−− xx ; 4) 6347 =−+− xx .

9.5. 1) xxx 32325 −=++− ; 2) 7352 +=−− xxx ;

3) xxx =++− 3222 ; 4) xxx 21312 =−−− .

9.6. 1) 231 +=+−− xxx ; 2) 1104 −=−+− xxx ;

3) 13123 −=+−− xxx ; 4) 122 +=−+++ xxxx .

9.7. 1) 312 =−x ; 2) 452 =−x ;

3) 2542 =++ xx ; 4) 1752 =+− xx .

9.8. 1) 0234 22 =+−+− xxx ; 2) 034293 22 =−−+− xxx ;

3) 0265 22 =−−+++ xxxx ;

4) 0343862 22 =−+++− xxxx .

9.9. 1) 2082 =− xx ; 2) 0823 2 =−+ xx ;

3) 0572 2 =+− xx ; 4) 034 2 =−− xx .

9.10. 1) 05262 =++− xx ; 2) 05422 =++− xx ;

3) 0252 2 =−− xx ; 4) 0713 2 =−+− xx .

9.11. 1) 012242 =+−−− xxx ; 2) 0123462 =−+−+ xxx ;

3) 41272 −=+− xxx ; 4) 3522 −=−− xxx .

9.12. 1) ( ) 252 −=−− xxx ; 2) ( ) 0226 =−+−− xxx ;

3) ( ) 0965 22 =−+− xxx ; 4) ( ) 2282 −=−− xxx .

Page 250: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

250

9.13. 1) 122 +=− xxx ; 2) 22 23 xxx −=− ;

3) 22 23 xxx −=+ ; 4)

22 486 xxxx −=+− .

9.14. 1) 01

81 =−

−−x

x ; 2) 121

8+=

−+x

x;

3) 535

4−=

−−x

x; 4) 4

647

+=−+

xx

.

9.15. 1) 22 321 xxxx +−=−− ; 2) 594 22 =−−− xx ;

3) xxxxx −=−−+ 22 22 ;

4) 34153415 +−=−− xxxx .

9.16. 1) 121

4−=

−+x

x; 2) 3

352

−=−−

xx

;

3) 213

3+=

−+x

x; 4) 2

317

+=−−

xx

.

bnpytfojU!tjtufnb!)$$:/28.:/2:*;!

9.17. 1) ⎪⎩

⎪⎨⎧

=−

=+

1243

yxyx

2) ⎪⎩

⎪⎨⎧

=−

=−

3213

yxyx

3) ⎪⎩

⎪⎨⎧

=−

=+

3252

yxyx

4) ⎪⎩

⎪⎨⎧

=−

=−

54532

yxyx

9.18. 1) ⎪⎩

⎪⎨⎧

=−

=+

1232

yxyx

2) ⎪⎩

⎪⎨⎧

=−+−

=+

22232yx

yx

3) ⎪⎩

⎪⎨⎧

=−+−

=+

22373yx

yx 4)

⎪⎩

⎪⎨⎧

−−=

=−+−

13

1521

xy

yx

9.19. 1) ⎪⎩

⎪⎨⎧

=+

=+

532

2

yx

yx 2)

⎪⎩

⎪⎨⎧

=+

=−

115

423

yx

yx

3) ⎪⎩

⎪⎨⎧

=−+−

=−−−

4231

1212

yx

yx 4)

⎪⎩

⎪⎨⎧

=−−+

=−++

3112

5131

yx

yx

bnpytfojU!vupmpcb!)$$:/31.:/3:*;!

Page 251: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

251

9.20. 1) 32 ≤−x ; 2) 101 >− x ; 3) 34 ≤+x ; 4) 143 ≥+x .

9.21. 1) 534 −≥− xx ; 2) 2323 +<− xx ;

3) 245 +>− xx ; 4) 5223 +<− xx .

9.22. 1) 232 −>+ xx ; 2) 02314 <+−+ xx ;

3) 1572 <+−− xx ; 4) 3121 >++− xx .

9.23. 1) 362 <−x ; 2) 792 ≤−x ;

3) 652 <− xx ; 4) 1552 <+− xx .

9.24. 1) 342 >−x ; 2) 222 >−x ;

3) 6242 >−− xx ; 4) 322 >− xx .

9.25. 1) 1213<

+−

xx

; 2) 3313<

−+

xx

;

3) 2522

<++

xxx

; 4) 1113

2

2<

+++−

xxxx

.

9.26. 1) 213

1>

+−x

x; 2) 1

43

2 ≥−+

xx

;

3) 2412<

+−

xx

; 4) 14545

2

2≥

+++−

xxxx

.

9.27. 1) 4

14

34+

<−+

xx

; 2) 2

16

52+

<−+

xx

;

3) 3

110

33−

<−−

xx

; 4) 3

13

23+

<−+

xx

.

9.28. 1) 512

8−≥

−−x

x; 2) 1

233

+≥−−

xx

;

3) 132

4−≥

−+x

x; 4) 1

214

+≥−−

xx

.

9.29. 1) 52152

6−−>

−−−x

x; 2) 11

1112

−−>+−−

xx

;

3) 31431

5−+>

−−+x

x; 4) 42

2428

−−>−−−

xx

.

Page 252: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

252

%21/!bmhfcsvmj!bnpdbofcj!!

I. bnpdbofcjt!bnpytob!xsgjwj!hboupmfcfcjt!hbnpzfofcjU

10.1. sam klasSi sul 119 moswavlea. pirvel klasSi

moswavleTa ricxvi 4-iT metia, vidre meore klasSi da 3-iT

naklebia, vidre mesame klasSi. ramdeni moswavle yofila

TiToeul klasSi?

10.2. traqtoristTa samma brigadam erTad 720 heqtari

moxna. pirvelma brigadam 60 heqtariT meti moxna, vidre

meorem, da 60 heqtariT naklebi, vidre mesame brigadam.

ramdeni heqtari moxna TiToeulma brigadam?

10.3. moswavleebis 3 jgufma skolis nakveTze dargo 65

xe. meore jgufma dargo 10 xiT meti, vidre mesamem da 2-

jer meti, vidre pirvelma jgufma. ramdeni xe dargo

TiToeulma jgufma?

10.4. skolis nakveTidan Seagroves 1800 kg bostneuli;

kartofili iyo Segrovili 5-jer meti, vidre Warxali,

xolo kombosto 120 kg-iT meti, vidre Warxali. TiToeuli

kulturis ramdeni kilogrami bostneuli iyo Segrovili?

10.5. sami momdevno mTeli ricxvis jamia 180. ipoveT es

ricxvebi.

10.6. ori momdevno mTeli ricxvis namravli 38-iT

naklebia Semdegi ori momdevno mTeli ricxvis namravlze.

ipoveT am ricxvebs Soris umciresi.

10.7. oTx momdevno mTel ricxvebs Soris umciresi

ricxvi warmoadgens udidesi ricxvis 32 nawils. ipoveT es

ricxvebi.

10.8. oTx momdevno mTel ricxvebs Soris umciresi

ricxvi warmoadgens udidesi ricxvis 80%-s. ipoveT am

ricxvebs Soris umciresi.

10.9. marTkuTxedis sigrZe orjer metia mis siganeze.

marTkuTxedis perimetri udris 144 sm-s. ipoveT

marTkuTxedis sigrZe da sigane.

10.10. Tu marTkuTxedis sigrZes SevamcirebT 4sm-iT,

xolo mis siganes gavadidebT 7 sm-iT, maSin miviRebT

kvadrats, romlis farTobi 100 kv. sm-iT meti iqneba

marTkuTxedis farTobze. ipoveT kvadratis gverdi.

Page 253: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

253

10.11. marTkuTxedis sigrZe orjer metia mis siganeze. Tu

marTkuTxedis TiToeul gverds gavadidebT 1 metriT, maSin

misi farTobi gadiddeba 16 kv. metriT. ipoveT

marTkuTxedis gverdebi.

10.12. marTkuTxedis sigrZe 3-jer metia mis siganeze. Tu

marTkuTxedis siganes gavadidebT 4 m-iT, xolo mis sigrZes

SevamcirebT 5 m-iT, maSin marTkuTxedis farTobi 15 kv. m-iT

gadiddeba. ipoveT marTkuTxedis gverdebi.

10.13. erT avzSi orjer meti benzinia, vidre meoreSi. Tu

pirveli avzidan meoreSi gadavasxamT 25 l benzins, maSin

orive avzSi benzinis raodenoba gaTanabrdeba. ramdeni

litri benzini iyo TiToeul avzSi Tavdapirvelad?

10.14. erT sawyobSi orjer meti xorbali iyo, vidre

meoreSi. pirveli sawyobidan gaitanes 750 t xorbali,

meore sawyobSi ki miitanes 350 t; amis Semdeg orive

sawyobSi xorblis raodenoba gaTanabrda. ramdeni tona

xorbali iyo Tavdapirvelad TiToeul sawyobSi?

10.15. erT tomaraSi 60 kg Saqari iyo, meoreSi ki 80 kg.

imis Semdeg rac meore tomridan amiRes 3-jer meti Saqari,

vidre pirvelidan, pirvelSi darCa 2-jer meti Saqari,

vidre meore tomaraSi. ramdeni kilogrami Saqari amoiRes

TiToeuli tomridan?

10.16. pirvel ormoSi Caawyves 55 t silosi, meoreSi

ki_63 t. imis Semdeg, rac meore ormodan waiRes orjer

meti silosi, vidre pirveli ormodan, masSi darCa 5 t-iT

naklebi, vidre pirvel ormoSi. ramdeni tona silosi

wauRiaT TiToeuli ormodan?

10.17. erT auzSi 200 m3 wyalia, xolo meoreSi_112 m

3.

aReben onkanebs, romelTa saSualebiT ivseba auzebi.

ramdeni saaTis Semdeg iqneba orive auzSi erTnairi

raodenobis wyali, Tu meore auzSi yovel saaTSi isxmeba

22 m3-iT meti wyali, vidre pirvel auzSi?

10.18. erT auzSi 160 m3 wyalia, xolo meoreSi_117 m

3,

aReben onkanebs, romelTa saSualebiT ivseba auzebi.

ramdeni saaTis Semdeg iqneba meore auzSi 13 m3-iT meti

wyali, vidre pirvelSi, Tu meore auzSi yovel saaTSi

isxmeba 14 m3-iT meti wyali, vidre pirvel auzSi?

10.19. or fardulSi awyvia Tiva. pirvel fardulSi 3-

jer meti Tivaa, vidre meoreSi. imis Semdeg, rac pirveli

fardulidan meoreSi gadaitanes 20 t Tiva, aRmoCnda, rom

Page 254: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

254

meore fardulSi Tivis raodenoba udrida im Tivis

raodenobis 75-s, rac darCa pirvel fardulSi. ramdeni

tona Tiva yofila Tavdapirvelad TiToeul fardulSi?

10.20. fermers bostneulis dasargavad aqvs ori

mosazRvre nakveTi: pirveli nakveTis farTobi 4-jer metia

meoris farTobze. Tu pirveli nakveTidan CamovWriT 10

heqtars da SevuerTebT meore nakveTs, maSin meore nakveTi

Seadgens pirveli nakveTis darCenili nawilis 32-s. ipoveT

TiToeuli nakveTis farTobi.

10.21. erT sawyobSi 185 t naxSiria, meoreSi 237 t.

pirveli sawyobidan yoveldRe gahqondaT 15 t naxSiri,

meoredan ki 18 tona. ramdeni dRis Semdeg iqneba meore

sawyobSi 211 -jer meti naxSiri, vidre pirvelSi?

10.22. erT bostneulsacavSi 21 t kartofilia, meoreSi ki

18 t. pirvel bostneulsacavSi yoveldRiurad mihqondaT 9

t kartofili, meoreSi ki 12t. ramdeni dRis Semdeg iqneba

pirvel bostneulsacavSi 1,2-jer naklebi kartofili,

vidre meoreSi?

10.23. erT sawyobSi 200 tona naxSiria, meoreSi ki 60

tona. yoveldRiurad TiToeul sawyobSi SeaqvT 20 tona

naxSiri. ramdeni dRis Semdeg iqneba pirvel sawyobSi 2-jer

meti naxSiri, vidre meoreSi?

10.24. erT sawyobSi 120 t xorbalia, meoreSi ki 150 t.

pirveli sawyobidan yoveldRiurad gahqondaT 8 t

xorbali, meoredan ki 12 t. ramdeni dRis Semdeg iqneba

meore sawyobSi xorblis raodenoba pirvelSi darCenili

xorblis 43 nawili.

10.25. simindiT daTesili ori nakveTis saerTo farTobi

udris 120 heqtars. pirveli nakveTis TiToeuli heqtaridan

aiRes 3 t simindi, meore nakveTidan ki 2 t. ipoveT

TiToeuli nakveTis farTobi, Tu pirveli nakveTidan aiRes

100 toniT meti simindi, vidre meoredan.

10.26. vagoni datvirTulia 300 cali muxis da fiWvis

moriT. cnobilia, rom muxis yvela mori 1 toniT naklebs

iwonis, vidre fiWvis yvela mori. ipoveT ramdeni iyo cal-

Page 255: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

255

calke muxisa da fiWvis mori, Tu muxis TiToeuli mori 46

kg-s iwonis, fiWvis TiToeuli mori ki 28 kg-s.

10.27. erTi skolis moswavleebma Seagroves 200 lari da

iyides Teatrisa da kinos 55 bileTi. ramdeni bileTi

uyidiaT cal-calke Teatrisa da kinosi, Tu Teatris erTi

bileTi Rirda 5 lari, xolo kinos erTi bileTi_2 lari?

10.28. 21 larad da 30 TeTrad nayidia ori xarisxis 70

fanqari. pirveli xarisxis erTi fanqari Rirda 35 TeTri,

xolo meore xarisxisa 25 TeTri. TiToeuli xarisxis

ramdeni fanqari iyo nayidi?

10.29. sami yanis saerTo farTobia 16 heqtari. mesame yanis

farTobi udris pirveli ori yanis farTobTa jams. ipoveT

TiToeuli yanis farTobi, Tu meore yanis farTobi ise

Seefardeba pirveli yanis farTobs, rogorc 1:3.

10.30. traqtoristma moxna miwis sami nakveTi. pirveli

nakveTis farTobi mTeli moxnuli farTobis 5

2 nawilia,

xolo meore nakveTis farTobi ise Seefardeba mesame

nakveTis farTobs rogorc 311:

211 . ramdeni heqtari iyo

samive nakveTSi, Tu mesame nakveTSi 16 heqtariT naklebi

iyo, vidre pirvelSi?

10.31. faifuris dasamzadeblad iyeneben Tixas, TabaSirsa

da silas, romelTa masebic proporciulia 25, 1 da 2

ricxvebisa. ramdeni Tixa, TabaSiri da silaa saWiro 350 kg

narevis dasamzadeblad?

10.32. miwis sami nakveTis farTobi ise Seefardeba

erTmaneTs, rogorc 831:

651:

432 . cnobilia, rom pirveli

nakveTidan 72 centneri marcvliT ufro metia aRebuli,

vidre meore nakveTidan. ipoveT samive nakveTis farTobi,

Tu saSualo mosavlianoba Seadgens 18 centners 1 ha

farTobze.

10.33. ori ricxvis jamia 45. erTi ricxvis meSvidedi

udris meore ricxvis merveds. ipoveT am ricxvebis

namravli.

10.34. ori ricxvis sxvaobaa 27. pirveli ricxvis mervedi

udris meore ricxvis mexuTeds. ipoveT es ricxvebi.

10.35. ori ricxvi ise Seefardeba erTmaneTs, rogorc 3:2.

Tu maT Soris umciress gavyofT 4-ze, udidess ki gavyofT

Page 256: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

256

9-ze, maSin pirveli ganayofi 4-iT meti iqneba meore

ganayofze. ipoveT es ricxvebi.

10.36. erTi ricxvi 12-iT metia meoreze. Tu umcires

ricxvs gavyofT 7-ze, udidess ki gavyofT 5-ze, maSin

pirveli ganayofi 4-iT naklebi iqneba meore ganayofze.

ipoveT es ricxvebi.

10.37. wiladis mniSvneli 4-iT metia mis mricxvelze. Tu

am wiladis mricxvelsa da mniSvnels erTiT gavadidebT,

maSin wiladi gautoldeba 21-s. ipoveT wiladi.

10.38. wiladis mricxveli 2-iT naklebia mniSvnelze. Tu

wiladis mricxvels SevamcirebT 3-jer, xolo mniSvnels

mivumatebT 3-s, maSin miviRebT 81-s. ipoveT wiladi.

10.39. wiladis mniSvneli 4-iT metia mis mricxvelze. Tu

am wiladis mricxvels mivumatebT 11-s, mniSvnels ki

gamovaklebT 1-s, maSin miviRebT mocemuli wiladis

Sebrunebul wilads. ipoveT wiladi.

10.40. wiladis mniSvneli 5-iT metia mis mricxvelze. Tu

am wiladis mricxvels mivumatebT 14-s, mniSvnels ki

gamovaklebT 1-s, maSin miviRebT mocemuli wiladis

Sebrunebul wilads. ipoveT wiladi.

10.41. gegmiT traqtoristTa brigadas unda daexna yamiri

miwa 14 dReSi. brigada xnavda yoveldRiurad 5 heqtariT

mets, vidre gegmiT iyo gaTvaliswinebuli, amitom moxvna

daamTavra 12 dReSi. ramdeni heqtari yamiri iyo daxnuli

da ramden heqtars xnavda brigada yoveldRiurad?

10.42. dadgenil vadaSi rom gegma Seesrulebina,

brigadas yoveldRiurad unda daemzadebia 48 detali. is

yoveldRiurad amzadebda 56 detals, amitom Seasrula

gegma vadaze 2 dRiT adre. ramdeni detali daamzada

brigadam da ra vadaSi?

10.43. meTevzeTa brigadas yoveldRiurad unda daeWira 6

t Tevzi. is yoveldRiurad iWerda 500kg-s gegmis zeviT,

amitom ara marto Seasrula gegma vadamde 3 dRiT adre,

aramed gegmis zeviT daiWira 12 t Tevzi. ramdeni tona

Tevzi unda daeWira brigadas gegmiT?

10.44. Tu qarxana davalebis Sesasruleblad yoveldRe

gamouSvebs 20 traqtors, maSin daniSnuli vadisaTvis igi

gamouSvebs SekveTilze 100 traqtoriT naklebs. Tu qarxana

yoveldRiurad gamouSvebs 23 traqtors, maSin daniSnuli

Page 257: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

257

vadisaTvis igi gamouSvebs 20 traqtoriT imaze mets, vidre

SekveTili iyo. ra vada iyo daniSnuli SekveTis

Sesasruleblad?

10.45. meanabrem bankidan gamoitana mTeli Tanxis 61

nawili, ris Semdeg bankSi darCa 800 lari. ramdeni lari

iyo Setanili bankSi?

10.46. qsovilis fasma daiklo 161

nawiliT, ris Semdeg

qsovilis fasi 45 lari gaxda. ramdeni lari Rirda

qsovili Tavdapirvelad?

10.47. moswavlem meore dRes waikiTxa pirvel dRes

wakiTxuli wignis gverdebis raodenobis 111 nawili.

ramdeni gverdi waukiTxavs moswavles pirvel dRes, Tu

orive dRes wakiTxuli aqvs 180 gverdi?

10.48. fermerma meore dRes moxna ra pirvel dRes

moxnuli farTobis 81 nawili, orive dRes moxnuli

farTobi gaxda 99 heqtari. ramdeni heqtari mouxnavs

fermers pirvel dRes?

10.49. Wvavis puris gamocxobisas vRebulobT namats, rac

Seadgens aRebuli fqvilis 0,3-s. ramdeni fqvili unda

aviRoT, rom 26 kg gamomcxvari Wvavis puri miviRoT?

10.50. vaSli gaSrobis dros kargavs Tavisi wonis 84%-s.

ramdeni kg vaSli unda aviRoT, rom miviRoT 16 kg Ciri?

10.51. moxalvis dros yava kargavs Tavisi wonis 12%-s.

ramdeni kilogrami nedli yava unda aviRoT, rom miviRoT

4,4 kg moxaluli?

10.52. magida skamiT Rirs 240 lari. skamis Rirebuleba

Seadgens magidis Rirebulebis 20%-s. ipoveT magidis

Rirebuleba.

10.53. qsovilis fasma daiklo 30%-iT, ris Semdeg

qsovilis fasi gaxda 42 lari. ramdeni lari Rirda

qsovili Tavdapirvelad?

10.54. ramdeni lari Seitana meanabrem bankSi erTi wlis

win, Tu mas bankSi axla aqvs 327 lari da wliuri

danaricxi Seadgens 9%-s.

Page 258: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

258

10.55. meanabrem bankSi Seitana 800 lari. ramdeni lari

eqneba mas sami wlis Semdeg, Tu wliuri danaricxia

rTuli 5%?

10.56. qalaqis mosaxleoba wlis bolos udrida 78000

kacs. vipovoT qalaqis mosaxleobis ricxvi wlis dasawyi-

sisaTvis, Tu mosaxleobis namati am xnis ganmavlobaSi Seadgenda 4%-s.

10.57. qalaqSi amJamad 48400 mcxovrebia. cnobilia, rom am

qalaqis mosaxleoba yovelwliurad izrdeba 10%-iT.

ramdeni mcxovrebi yofila am qalaqSi ori wlis winaT?

10.58. meanabres bankSi axla aqvs 5618 lari. ramdeni

lari Seitana man bankSi ori wlis win, Tu wliuri

danaricxia rTuli 6%?

10.59. meanabrem or sxvadasxva bankSi Seitana 5000 lari

da 4500 lari. pirvel bankSi Setanili Tanxis ramdeni

procenti unda gadaitanos man pirveli bankidan meore

bankSi, rom orive bankSi Tanxebis raodenobebi gaTanabrdes?

10.60. or bidonSi aris 70 litri rZe. Tu pirveli

bidonidan meoreSi gadavasxamT im rZis 12,5%-s, romelic

pirvel bidonSia, maSin orive bidonSi aRmoCndeba rZis

erTi da igive raodenoba. ramdeni litri rZea pirvel

bidonSi?

10.61. muSis xelfasma jer daiklo 20%-iT, Semdeg ki

moimata 50%-iT. ramdeni procentiT gaizarda muSis

xelfasi TavdapirvelTan SedarebiT?

10.62. qsovilis fasma jer daiklo 20%-iT, Semdeg ki isev

daiklo 25%-iT. Tavdapirveli fasis ramden procents

Seadgens qsovilis fasi axla?

10.63. qsovilis fasma jer 40%-iT daiklo, xolo Semdeg

pirvelad daklebuli Tanxis 25%-iT gaiafda, ris Semdegac

qsovilis fasi 60 lari gaxda. ra Rirda qsovili

Tavdapirvelad?

10.64. meanabrem bankidan pirvel dRes gamoitana mTeli

Tanxis 80%, meore dRes ki pirvel dRes gamotanili Tanxis

20%. amis Semdeg bankSi darCa 16 lari. ramdeni lari iyo

Setanili bankSi Tavdapirvelad?

10.65. pirveli mgzavrobisas avtomobilma daxarja im

benzinis 0,375 nawili, rac iyo avzSi da kidev 5 litri.

meore mgzavrobisas ki darCenili benzinis 80% da

ukanaskneli 4 litri. ramdeni litri benzini yofila

avzSi Tavdapirvelad?

Page 259: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

259

10.66. meanabrem bankidan pirvel dRes gamoitana mTeli

Tanxis 32 nawili. meore dRes ki darCenili Tanxis 87% da

ukanaskneli 26 lari. ramdeni lari iyo Setanili bankSi

Tavdapirvelad?

10.67. fermerma pirvel dRes aiRo mosavali farTobis

125

nawilze da kidev 3 heqtarze. meore dRes ki darCenili

farTobis 75%-ze da ukanasknel 8 heqtarze. ramden

heqtarze aiRo mosavali fermerma?

10.68. meanabrem bankidan Tavdapirvelad gamoitana Tavisi

Tanxis 41 nawili, Semdeg ki darCenili Tanxis

94 da kidev

64 lari. amis Semdeg mas bankSi darCa mTeli Tavisi

anabris 203

nawili. ramdeni lari iyo Setanili bankSi?

10.69. mTibavTa brigadam pirvel dRes gaTiba mindvris

naxevari da kidev 2 heqtari, meore dRes ki mindvris

darCenili nawilis 25% da ukanaskneli 6 heqtari. ipoveT

mindvris farTobi.

10.70. biblioTekis ucxo enaTa ganyofilebaSi aris

wignebi inglisur, frangul da germanul enebze.

inglisuri wignebi Seadgens wignebis mTeli raodenobis

36%-s, franguli_inglisuri wignebis 75%-s, danarCeni 185

wigni germanulia. ramdeni wignia biblioTekaSi ucxo

enaze?

10.71. avzidan gamouSves masSi arsebuli wylis 52

nawili, Semdeg isev gamouSves darCenili wylis 41 nawili.

ramdeni litri wyali iyo avzSi, Tu amis Semdeg masSi

darCa 450 litri wyali?

10.72. avzSi yovel wuTSi Cadis 180 l wyali. pirvelad

aavses avzis 187

nawili. darCenili nawilis asavsebad

dasWirdaT 200 l-iT meti wyali, vidre pirvelad. ra

droSi aivso avzi?

10.73. or qalaqs Soris manZili turistma gaiara 3

dReSi. pirvel dRes man gaiara mTeli manZilis 51 nawili

Page 260: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

260

da kidev 60 km, meore dRes mTeli manZilis 41 da kidev 20

km, xolo mesame dRes mTeli manZilis 8023

da darCenili 25

km. ipoveT manZili qalaqebs Soris.

10.74. erT cvlaSi orma muSam erTad 72 detali

daamzada. mas Semdeg, rac pirvelma muSam Sromis

nayofiereba 15%-iT gaadida, xolo meorem 25%-iT, isini

erT cvlaSi erTad 86 detals amzadebdnen. ramden detals

amzadebda pirveli muSa erT cvlaSi Sromis nayofierebis

gazrdis Semdeg?

10.75. or qarxanas gegmiT TveSi unda gamoeSva 360 Carxi.

pirvelma qarxanam gegma Seasrula 112%-iT, meorem ki 110%-

iT; amitom orive qarxanam TveSi gamouSva 400 Carxi.

ramdeni Carxi gamouSvia gegmis gadametebiT TiToeul

qarxanas?

10.76. fermeri ori nakveTidan 500 tona xorbals

Rebulobda. agroteqnikuri RonisZiebebis gatarebis Semdeg

mosavali pirvel nakveTze gadidda 30%-iT, xolo meoreze

20%-iT, amitom fermerma am nakveTebidan aiRo 630 t

xorbali. ramdeni xorbali aiRo fermerma TiToeuli

nakveTidan agroteqnikis gamoyenebis Semdeg?

10.77. ori velosipedisti erTdroulad gamodis A da B

adgilebidan erTmaneTis Sesaxvedrad da ori saaTis

Semdeg xvdebian erTmaneTs. ipoveT TiToeuli maTganis

moZraobis siCqare, Tu viciT, rom pirveli velosipedisti

gadioda saaTSi 3km-iT mets, vidre meore. manZili A -dan

B -mde udris 42 kilometrs.

10.78. ori qalaqidan, romelTa Soris manZili 339 km-ia,

erTdroulad erTmaneTis Sesaxvedrad ori avtomobili

gaemgzavra da 3 saaTis Semdeg Sexvdnen erTmaneTs. vipovoT

meore avtomobilis siCqare, Tu is saaTSi 5 km-iT mets

gadioda, vidre pirveli avtomobili.

10.79. ori punqtidan, romelTa Soris manZili 160 km-ia,

erTdroulad erTmaneTis Sesaxvedrad ori turisti

gamovida da 5 saaTis Semdeg Sexvdnen erTmaneTs. ipoveT

TiToeuli turistis siCqare, Tu maTi Sefardebaa 3:5.

10.80. kuriers A punqtidan B punqtSi unda Caetana

amanaTi. mTeli gza aqeT da iqiT man gaiara 2114 saaTSi;

A -dan B -mde is gadioda saaTSi 30 km-s, ukan

Page 261: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

261

mogzaurobisas B -dan A -mde ki 28 km-s. ipoveT manZili A -

dan B -mde.

10.81. A punqtidan B punqtSi kurierma amanaTi Caitana

35 wuTSi. ukan dabrunebisas man gaadida siCqare 0,6 km-iT

saaTSi da mgzavrobas mounda 30 wuTi. ipoveT manZili A

da B punqtebs Soris.

10.82. matarebeli manZils A qalaqidan B qalaqamde

gadis 10 sT 40 wuTSi. matareblis siCqare rom 10 km/sT-iT

naklebi iyos, maSin is B qalaqSi Cava 2sT 8wuTiT gvian.

ipoveT manZili qalaqebs Soris da matareblis siCqare.

10.83. manZils or sadgurs Soris matarebeli gadis 1

saaTSi da 30 wuTSi. Tu misi siCqare gadiddeba 10 km/sT-iT,

maSin imave manZils matarebeli gaivlis 1 sT 20 wuTSi.

ipoveT manZili sadgurebs Soris.

10.84. A qalaqidan B qalaqisken gaemgzavra velosipedi-

sti 15 km/sT siCqariT. 2 saaTis Semdeg mis kvaldakval

gaemgzavra motociklisti, romelic B qalaqSi velosipe-

distTan erTdroulad Cavida. ipoveT motociklistis siC-

qare, Tu manZili A da B qalaqebs Soris aris 180 km.

10.85. navsadgomidan qalaqisken gaemgzavra navi 12 km/sT

siCqariT, xolo 0,5 saaTis Semdeg imave mimarTulebiT

gavida gemi, romlis siCqare iyo 20 km/sT. ra manZilia

navsadgomidan qalaqamde, Tu gemi qalaqSi 1,5 saaTiT adre

Cavida, vidre navi?

10.86. manZili A da B qalaqebs Soris udris 50 km-s. A

qalaqidan B qalaqSi gaemgzavra velosipedisti, xolo 1

sT 30 wuTis Semdeg mis kvaldakval gaemgzavra

motociklisti, romelmac gaaswro velosipedists da

Cavida B qalaqSi masze erTi saaTiT adre. ipoveT

TiToeulis siCqare, Tu viciT, rom motociklistis siCqare

velosipedistis siCqareze 2,5-jer metia.

10.87. manZili A da B qalaqebs Soris 350 km-ia. A qa-

laqidan B qalaqisaken gaemgzavra turisti, xolo 3 saaT-

is Semdeg mis kvaldakval gaemgzavra meore turisti, rome-

lic B qalaqSi Cavida 1 saaTiT gvian, vidre pirveli. ipo-

veT TiToeuli turistis siCqare, Tu maTi Sefardebaa 5:7.

10.88. A punqtidan B punqtSi, romelTa Soris manZili

160 kilometria, gaemgzavra avtobusi; ori saaTis Semdeg

mis kvaldakval gavida msubuqi avtomobili, romlis

siCqare ise Seefardeboda avtobusis siCqares, rogorc 3:1.

ipoveT avtobusisa da avtomobilis siCqare, Tu

Page 262: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

262

avtomobili B punqtSi 40 wuTiT adre Cavida, vidre

avtobusi.

10.89. ori matarebeli gavida erTi da imave qalaqidan

erTimeoris miyolebiT; pirveli matarebeli saaTSi gadis

36 kilometrs, xolo meore_48 km-s. ramdeni saaTis Semdeg

daeweva meore matarebeli pirvels, Tu viciT, rom pirveli

matarebeli gasuli iyo 2 saaTiT adre meoreze?

10.90. gza A qalaqidan B qalaqamde zRviT 16

kilometriT naklebia, vidre SaragziT. gemi manZils A -dan

B -mde gadis 4 saaTSi, avtomobili ki 2 saaTSi. ipoveT

gemis siCqare, Tu is 44 km/sT-iT naklebia avtomobilis

siCqareze.

10.91. manZils A qalaqidan B qalaqamde ganrigiT

avtobusi gadis saSualo siCqariT 40 km/sT. erTxel

gzatkecilis SekeTebis gamo avtobusma gaiara gzis

pirveli naxevari 20 wT-is dagvianebiT. rom misuliyo B -Si

ganrigiT, avtobusma gzis darCenili nawili gaiara 45

km/sT siCqariT. ipoveT manZili A -dan B -mde.

10.92. ori aerodromidan, romelTa Soris manZili 950 km-

ia, erTdroulad erTmaneTis Sesaxvedrad vertmfreni da

TviTmfrinavi gamovida. naxevari saaTis Semdeg manZili maT

Soris udrida 150 km-s. ipoveT TiToeulis siCqare, Tu

TviTmfrinavis siCqare 3-jer metia vertmfrenis siCqareze.

10.93. dilis 8 saaTze soflidan qalaqSi gaemgzavra

velosipedisti. qalaqSi man dahyo 414 saaTi, gaemgzavra

ukan da dRis 3 saaTze sofelSi dabrunda. ipoveT manZili

soflidan qalaqamde, Tu qalaqSi velosipedisti midioda

siCqariT 12 km/sT, ukan ki siCqariT 10 km/sT.

10.94. dRis 12 saaTze A navsadgomidan B

navmisadgomisaken gavida katarRa siCqariT 12 km/sT.

daxarja ra SeCerebaze B navmisadgomTan 2,5 saaTi,

katarRa gamoemgzavra ukan siCqariT 15 km/sT da Cavida A

navmisadgomSi imave dRis 19 saaTze. ipoveT manZili A -dan

B -mde.

10.95. A qalaqidan B qalaqisaken 4 sT 30 wuTze gavida

vertmfreni siCqariT 250 km/sT. B qalaqSi 30 wuTiT daeSva

da dabrunda ukan A qalaqSi 11 sT 45 wuTze; ukan

mgzavrobisas gadioda 200 km-s saaTSi. ipoveT manZili A qalaqidan B qalaqamde.

Page 263: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

263

10.96. avtomobilma manZili qalaqidan soflamde gaiara

siCqariT 60 km/sT. ukan dabrunebisas manZilis 75% man

gaiara pirvandeli siCqariT, xolo danarCeni gza siCqariT

40 km/sT, amitom ukan mgzavrobisas mas dasWirda 10 wuTiT

meti dro, vidre mgzavrobisas qalaqidan soflamde. ipoveT

manZili qalaqidan soflamde.

10.97. studentTa jgufma moawyo eqskursia. pirveli 30 km

fexiT gaiares, gzis danarCeni nawilis 20% gacures

mdinareze tiviT, xolo Semdeg isev iares fexiT 1,5-jer

met manZilze, vidre mdinareze icures. mTeli gzis

darCenili nawili studentebma 1 saaTsa da 30 wuTSi

gaiares avtomanqaniT, romelic midioda 40 km/sT siCqariT.

ra sigrZisaa mTeli gza?

10.98. mgzavrma, romelic matarebliT midioda siCqariT

40 km/sT, SeniSna, rom Semxvedrma matarebelma mis gverdiT

gavlas moandoma 3 wami. ipoveT Semxvedri matareblis

siCqare, Tu cnobilia, rom misi sigrZe aris 75 m.

10.99. demonstrantTa kolona quCaSi moZraobs siCqariT 3

km/sT. Semxvedrma velosipedistma, romelic midioda

siCqariT 15 km/sT, 2 wuTi daxarja imisaTvis, rom gaevlo

kolonis Tavidan bolomde. ipoveT demonstrantTa

kolonis sigrZe.

10.100. avtomobilSi mjdomma mgzavrma, romelic

moZraobda 80 km/sT siCqariT, SeniSna, rom avtomobilis

mimarTulebiT moZravi matareblis gverdis avlas moandoma

3 wT. ramden kilometrs gadis matarebeli saaTSi, Tu misi

sigrZea 400 m.

10.101. ipoveT matareblis sigrZe da siCqare, Tu is uZrav

damkvirebels gverds uvlis 7 wm-Si, xolo 306 m sigrZis

platformas 25 wm-Si.

10.102. avtomobili manZils or qalaqs Soris gadis 5

saaTSi. Tu is yovel kilometrs gaivlis 73 wT-iT ufro

Cqara, maSin mTeli manZilis gavlas moandomebs 3 saaTs.

ipoveT avtomobilis siCqare.

10.103. matarebeli gamovida A qalaqidan da

gansazRvrul droSi Cavida B qalaqSi. matarebels rom

yoveli kilometri gaevlo 0,3 wT-iT ufro nela, maSin B

qalaqSi Casvlas moandomebda 4 sT-s. ipoveT matareblis

siCqare, Tu manZili A da B qalaqebs Soris 160 km-ia.

Page 264: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

264

10.104. Tbomavalma manZili or navmisadgoms Soris

gaiara mdinaris dinebis mimarTulebiT 4 saaTSi, xolo

mdinaris dinebis sawinaaRmdego mimarTulebiT_5 saaTSi.

ipoveT manZili navmisadgomebs Soris, Tu mdinaris dinebis

siCqarea 2 km/sT.

10.105. TviTmfrinavma manZili or qalaqs Soris zurgis

qaris dros 5 sT 30 wuTSi gaiara, xolo pirqaris dros_6

saaTSi. ipoveT manZili qalaqebs Soris da TviTmfrinavis

sakuTari siCqare, Tu qaris siCqare iyo 10 km/sT.

10.106. katerma mdinaris dinebis mimarTulebiT 5 saaTSi

imdeni kilometri gacura, ramdenic 6 sT 15 wT-Si mdinaris

dinebis sawinaaRmdego mimarTulebiT. ipoveT kateris

siCqare mdgar wyalSi, Tu mdinaris dinebis siCqarea 2,4

km/sT.

10.107. menave dinebis mimarulebiT 3 saaTSi imden

kilometrs micuravda, ramdensac 3 sT 40 wT-Si dinebis

sawinaaRmdegod. ipoveT dinebis siCqare, Tu navis siCqare

mdgar wyalSi 5 km/sT-ia.

10.108. moswavleTa jgufi gaemgzavra navmisadgomidan

naviT mdinaris dinebis mimarTulebiT im pirobiT, rom

ukan dabrunebuliyvnen 4 saaTis Semdeg. mdinaris dinebis

siCqarea 2 km/sT; siCqare, romelsac meniCbeebi aZleven navs,

aris 8 km/sT. ra udidesi manZiliT SeuZliaT moswavleebs

daSordnen navmisadgoms, Tu ukan dabrunebamde isini unda

darCnen napirze 2 saaTi?

10.109. eqskursantebma 3 saaTiT daiqiraves navi da

gaemgzavrnen mdinaris dinebis mimarTulebiT. ramdeni

kilometriT SeuZliaT maT daSordnen navsadgurs, rom 3

saaTis Semdeg moaswron ukan dabruneba, Tu cnobilia, rom

navis siCqare mdgar wyalSi aris 7,5 km saaTSi, xolo

mdinaris dinebis siCqarea 2,5 km saaTSi?

10.110. ramdeni saaTis ganmavlobaSi SeiZleba icuro

mdinaris dinebis sawinaaRmdego mimarTulebiT naviT,

romlis siCqare mdgar wyalSi udris 7 km/sT-s, rom

moaswro gasvlis adgilas dabruneba 7 saaTis Semdeg, Tu

mdinaris dinebis siCqarea 3 km/sT?

10.111. turisti A qalaqidan B qalaqSi unda Cavides

daniSnul vadaze. Tu is saaTSi gaivlis 35 km-s, maSin

daigvianebs 2 saaTiT; Tuki saaTSi gaivlis 50 km-s, maSin is

Cava vadaze 1 saaTiT adre. gaigeT manZili A da B

Page 265: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

265

qalaqebs Soris da dro, romelic unda moendomebina

turists A qalaqidan B qalaqSi Casasvlelad.

10.112. saqonlis gasagzavnad Camoyenebuli iyo ramdenime

vagoni. Tu vagonSi CatvirTaven 15,5 t-s, maSin 4 t saqoneli

CautvirTavi darCeba; Tu vagonSi CatvirTaven 16,5 t-s, maSin

vagonebis mTlianad datvirTvisaTvis daakldeba 8 t

saqoneli. ramdeni vagoni iyo Camoyenebuli da ramdeni

tona saqoneli iyo?

10.113. ramdenime kaci eqskursiaze gaemgzavra. Tu

TiToeuli xarjebisaTvis Seitans 12 lars da 50 TeTrs,

maSin xarjebis dasafaravad daakldebaT 100 lari. Tu ki

TiToeuli Seitans 16 lars, maSin zedmeti gadarCebaT 12

lari. ramdeni kaci Rebulobs monawileobas eqskursiaSi?

10.114. skolis darbazSi dadgmulia merxebi; Tu

TiToeul merxze 5 moswavles davsvamT, maSin dagvakldeba

8 merxi; Tu ki TiToeul merxze 6 moswavles davsvamT,

maSin ori merxi darCeba Tavisufali. ramdeni merxi iyo

dadgmuli darbazSi?

10.115. wrewirze, romlis sigrZe 999 m-s udris, ori

sxeuli moZraobs erTi da imave mimarTulebiT da xvdebian

erTmaneTs yoveli 37 wuTis Semdeg. ipoveT TiToeuli

sxeulis siCqare, Tu cnobilia, rom pirvelis siCqare

oTxjer metia meoris siCqareze.

10.116. etlis wina borbalma garkveul manZilze 15

bruniT meti gaakeTa, vidre ukanam. wina borblis wrewiris

sigrZe udris 2,5 metrs, ukanasi ki 4 metrs. ramdeni bruni

gaakeTa TiToeulma borbalma da ra manZili gaiara etlma?

10.117. ori borbali RvediTaa SeerTebuli. pirveli

borblis wrewiris sigrZe udris 60 sm-s, meoresi ki 35 sm-s.

ramden bruns gaakeTebs wuTSi meore borbali, Tu pirveli

wuTSi akeTebs 84 bruns?

10.118. erT brigadas mosavlis aReba SeuZlia 20 saaTSi,

meores ki 30 saaTSi. ramden saaTSi aiRebs mosavals orive

brigada erTad?

10.119. erTi muSa samuSaos asrulebs 14 saaTSi, meore ki

21 saaTSi. ramden saaTSi Seasrulebs am samuSaos 75

nawils orive erTad muSaobiT?

10.120. sxvadasxva simZlavris orma traqtorma erTad

muSaobiT 8 saaTis ganmavlobaSi Seasrula samuSao. ramden

saaTSi Seasrulebs am samuSaos marto pirveli traqtori,

Page 266: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

266

Tu igive samuSaos marto meore traqtori asrulebs 12

saaTSi?

10.121. avzSi mierTebulia onkani da mili. gaxsnili

onkaniT carieli avzi ivseba 4 sT-Si, xolo gaxsnili

miliT savse avzi icleba 6 sT-Si. ramden sT-Si aivseba

naxevrad savse avzi, Tu onkans da mils erTdroulad

gavxsniT?

10.122. erT brigadas mTeli mosavlis aReba SeuZlia 12

dReSi, meores ki _ 9 dReSi. mas Semdeg, rac 5 dRes imuSava

marto pirvelma brigadam, mas SeuerTda meore brigada da

orivem erTad daasrula samuSao. ramdeni dRe imuSava

orive brigadam erTad?

10.123. Tovlis aRebaze muSaobs ori Tovlsawmendi

manqana. erT maTgans SeuZlia mTeli quCa gaasufTaos erT

saaTSi, meores ki _ 45 wT-Si. orive manqanam quCis gawmenda

erTdroulad daiwyo da erTad imuSava 20 wuTs, ris

Semdegac pirvelma manqanam Sewyvita muSaoba. ra droa

saWiro, rom marto meore manqanam daasrulos mTeli

samuSao?

10.124. orma eqskavatorma qvabuli amoTxara 12 dReSi.

marto pirvel eqskavators SeeZlo es samuSao Seesrulebia

211 -jer ufro Cqara, vidre marto meores. ramden dReSi

SeeZlo am samuSaos Sesruleba TiToeul eqskavators?

10.125. orma brigadam erTdrouli muSaobiT miwis

nakveTi 12 saaTis ganmavlobaSi daamuSava. ra dros

moandomebda am nakveTis damuSavebas pirveli brigada, Tu

brigadebis mier samuSaos Sesrulebis droebi ise

Seefardeba erTmaneTs, rogorc 2:3?

10.126. maRarodan wylis amosaqaCavad dadgmulia sami

tumbo. pirveli tumbo calke muSaobis dros wyals

amoqaCavs 12 saaTSi, meore 15 saaTSi da mesame 20 saaTSi.

pirveli sami saaTis ganmavlobaSi moqmedebdnen pirveli da

mesame tumboebi, Semdeg ki maT SeuerTes meore tumboc.

ramdeni dro daixarja sul maRarodan wylis amosaqaCavad?

10.127. sami milis erTdrouli moqmedebiT avzis 87

nawili ivseba 1 sT-Si. ramden saaTSi aavsebs avzs marto

pirveli mili, Tu is avzs avsebs 2-jer ufro swrafad,

vidre marto meore da 2-jer ufro nela, vidre marto

mesame mili?

Page 267: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

267

10.128. sam kalatozs erTad muSaobiT kedlis aSeneba

SeuZlia 12 sT-Si. ramden saaTSi aaSenebs am kedels

TiToeuli cal-calke, Tu es droebi ise Seefardeba

erTmaneTs, rogorc 2:3:4?

10.129. mocemuli oTxi ricxvis saSualo ariTmetikulia

30. am ricxvebidan erT-erTi udris 60-s. ipoveT danarCeni

sami ricxvis saSualo ariTmetikuli.

10.130. mocemuli aTi ricxvis saSualo ariTmetikulia 7.

am ricxvebidan eqvsis saSualo ariTmetikulia 5. ipoveT

danarCeni oTxi ricxvis saSualo ariTmetikuli.

10.131. ojaxSi (mama, deda da Svili) mamis xelfasi

Seadgens ojaxis Semosavlis 53-s, xolo Svilis

Semosavalia ojaxis Semosavlis 10%. ipoveT ojaxis

wevrebis saSualo Semosavali, Tu dedis xelfasia 360

lari.

10.132. wlis ganmavlobaSi klasis xuTma moswavlem

wonaSi moimata 5-5 kg, xolo danarCenebma 3-3 kg, ris

Sedegadac moswavleTa saSualo wona 30-dan 34 kg-mde

gaizarda. ramdeni moswavlea klasSi?

10.133. moswavleTa mesamedi abarebda Tsu-Si da maTi

saSualo qula aRmoCnda 80, naxevari_stu-Si da maTi

saSualo qula aRmoCnda 72, xolo danarCeni

moswavleebis_62. ipoveT moswavleTa saSualo qula.

10.134. brigadaSi iyo 11 kaci da maTi saSualo xelfasi

Seadgenda 720 lars. mas Semdeg, rac ramodenime wevrma

datova brigada, brigadis darCenili wevrebis saSualo

xelfasi gaxda 670 lari. ramdenma wevrma datova brigada,

Tu maTi (gadasulebis) saSualo xelfasi iyo 780 lari?

10.135. klasis moswavleebidan 18 saSualod iwonis 65

kg–s, 11 saSualod iwonis 63 kg-s, xolo darCenili ori

bavSvis saerTo wonaa 152 kg. ipoveT moswavleTa saSualo

wona.

10.136. fexburTelTa gundis (11 fexburTeli) saSualo

asaki iyo 22 weli. rodesac gundis kapitani sxva gundSi

gadavida da misi adgili 18 wlis axalgazrda

fexburTelma daikava, gundis saSualo asaki gaxda 21

weli. ipoveT kapitnis asaki. 10.137. ramdeni kilogrami wyali unda avaorTqloT 0,5

tona celulozis masidan, romelic 85% wyals Seicavs,

rom miviRoT 75% wylis Semcveli masa?

Page 268: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

268

10.138. axali soko wonis mixedviT Seicavs 90% wyals,

xolo gamxmari_12% wyals. ramdeni gamxmari soko miiReba

22 kg axali sokosagan?

10.139. xsnari Seicavs 40 g marils. mas daumates 200 g

mtknari wyali da amis Semdeg marilis koncentraciam

Seadgina 8%. ramdeni grami xsnari iyo Tavdapirvelad?

10.140. ramdeni litri wyali unda daematos 12% Saqris

Semcvel 20 litr sirofs, rom miviRoT 10% Saqris

Semcveli sirofi?

10.141. zRvis wyali masis mixedviT Seicavs 5% marils.

ramdeni kilogrami mtknari wyali unda daematos 30 kg

zRvis wyals, rom marilis koncentraciam Seadginos 1,5%?

10.142. gvaqvs oqrosa da spilenZis ori Senadnobi.

pirvel SenadnobSi am liTonebis Sefardeba Sesabamisad

aris 2:3, xolo meoreSi 3:5. am ori Senadnobidan gvinda

miviRoT 26 gr liToni, romelSic oqrosa da spilenZis

Sefardeba Sesabamisad iqneba 5:8. ramdeni gr TiToeuli

Senadnobis aRebaa saWiro amisaTvis?

10.143. tbis wyalSi marilis koncentraciaa 7%, xolo

zRvis wyalSi 2%. am ori saxis wylis SereviT gvinda

miviRoT 20l wyali, romelSic marilis koncentracia

iqneba 4%. ramdeni litri tbis da ramdeni litri zRvis

wyali unda SevurioT amisaTvis?

II. bnpdbofcjt!bnpytob!lwbesbuvmj!hboupmfcfcjt!!hbnpzfofcjU!

!10.144. marTkuTxedis formis nakveTi, romlis erTi

gverdi 10 m-iT metia meoreze, unda SemoiRobos. ipoveT

Robis sigrZe, Tu cnobilia, rom nakveTis farTobi 1200 m2-

s udris.

10.145. marTkuTxedis simaRle misive fuZis 75%-s

Seadgens. ipoveT am marTkuTxedis perimetri, Tu cnobilia,

rom marTkuTxedis farTobi 48 m2-s udris.

10.146. kvadratis formis Tunuqis furcels CamoWres 10

sm siganis zoli, ris Semdeg furclis darCenili nawilis

farTobi 5600 sm2-is toli gaxda. ipoveT mocemuli

Tunuqis furclis farTobi.

Page 269: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

269

10.147. ori avtomobili erTdroulad gaemgzavra erTi

qalaqidan meorisaken. pirvelis siCqare 10 km/sT-iT metia

meoris siCqareze, da amitom pirveli avtomobili 1 saaTiT

adre midis adgilze, vidre meore. ipoveT orive

avtomobilis siCqare, Tu cnobilia, rom manZili qalaqebs

Soris 560 km-ia.

10.148. aerodromidan 1600 km-iT daSorebuli punqtisaken

erTdroulad ori TviTmfrinavi gafrinda. erTis siCqare

meoris siCqareze 80 km/sT-iT meti iyo da amitom igi 1

saaTiT adre mifrinda daniSnulebis adgilze. ipoveT

TiToeuli TviTmfrinavis siCqare.

10.149. turistma gaiara 72 kilometri da SeniSna, rom

Tu igi am mgzavrobas 6 dRiT met dros moandomebda, maSin

mas SeeZlo dReSi 2 km-iT naklebi gaevlo, vidre gadioda.

ramden kilometrs gadioda igi dReSi?

10.150. ori qalaqidan, romelTa Soris manZili 900 km-ia,

erTmaneTis Sesaxvedrad gamodis ori matarebeli da

xvdebian erTmaneTs Sua gzaze. ipoveT TiToeuli

matareblis siCqare, Tu pirveli matarebeli 1 saaTiT gvian

gamovida meoreze da misi siCqare 5 km/sT-iT metia, vidre

meore matareblis siCqare?

10.151. matarebeli 6 wuTiT iqna SeCerebuli gzaSi da es

dagvianeba man aanazRaura 40 km-ian gadasarbenze, romelic

gaiara 20 km/sT-iT meti siCqariT, vidre ganrigiT iyo

dadgenili. ipoveT ganrigis mixedviT matareblis siCqare

am gadasarbenze.

10.152. A da B sadgurebs Soris Sua gzaze matarebeli

SeCerebul iqna 10 wuTiT. B -Si rom ganrigis mixedviT

misuliyo, memanqanem matareblis siCqare gaadida 12 km/sT-

iT. ipoveT matareblis sawyisi siCqare, Tu cnobilia, rom

manZili sadgurebs Soris 120 km-ia.

10.153. matarebels 800 km unda gaevlo. Sua gzaze igi

SeCerebuli iqna 1 saaTiT, da amitom, droze rom misuliyo

daniSnul adgilze siCqare unda gaedidebina 20 km/sT-iT.

ra dro dasWirda matarebels mTeli gzis gasavlelad?

10.154. orTqlmavali 24 km-iani pirveli gadasarbenis

gavlis Semdeg SeCerebul iqna ramdenime xniT, meore

gadasarbeni man gaiara winandelze 4 km/sT-iT meti

siCqariT. miuxedavad imisa, rom meore gadasarbeni

pirvelze 15 km-iT grZeli iyo, orTqlmavalma igi gaiara

Page 270: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

270

mxolod 20 wuTiT met droSi, vidre pirveli. ipoveT

orTqlmavlis sawyisi siCqare. 10.155. velosipedisti yovel wuTSi 500 metriT naklebs

gadis, vidre motociklisti, amitom 120 km manZilis

gasavlelad igi xarjavs ori saaTiT met dros, vidre

motociklisti. gamoTvaleT velosipedistis siCqare.

10.156. vertmfreni yovel wamSi 150 m-iT naklebs gadis,

vidre TviTmfrinavi, amitom 900 km-is gasavlelad igi

xarjavs 1 sT da 30 wT-iT met dros, vidre TviTmfrinavi. ipoveT

vertmfrenis da TviTmfrinavis siCqare.

10.157. velosipedistma 100 km gaiara 322 sT-iT adre,

vidre gaTvaliwinebuli hqonda Tavdapirvelad, radgan 12

wT-Si gadioda 2 km-iT mets , vidre hqonda navaraudevi. ra

siCqariT unda emoZrava velosipedists?

10.158. matarebels 300 km-is toli MN manZili

garkveuli siCqariT unda gaevlo. magram dasawyisSi misi

siCqare navaraudevze 8 km/sT-iT naklebi iyo da imisaTvis,

rom N -Si droze Casuliyo, M -dan 180 km-iT daSorebul

sadguridan navaraudevze 16 km/sT-iT meti siCqariT

midioda. ra dro moandoma matarebelma M -dan N -mde

manZilis gavlas?

10.159. turistma avtomanqaniT gaiara mTeli gzis 85

nawili, xolo danarCeni gaiara katarRiT, katarRis

siCqare 20 km/sT-iT naklebia avtomanqanis siCqareze.

avtomanqaniT turisti 15 wuTiT met xans mogzaurobda,

vidre katarRiT. ras udris avtomanqanis siCqare da

katarRis siCqare, Tu turistis mier gasavleli mTeli gza

160 km-ia?

10.160. gemma mdinaris dinebis mimarTulebiT gaiara 48 km

da amdenive dinebis winaaRmdeg, sul am mgzavrobas

dasWirda 5 saaTi. ipoveT gemis siCqare mdgar wyalSi, Tu

mdinaris dinebis siCqarea 4 km/sT.

10.161. manZili or navsadgurs Soris mdinariT 80 km-ia.

gemi am manZilis gavlas iqiT-aqeT 8 sT 20wT-s undeba.

ipoveT gemis siCqare mdgar wyalSi, Tu mdinaris dinebis

siCqarea 4 km/sT.

10.162. A punqtidan mdinaris dinebis mimarTulebiT tivi

gagzavnes. 5 sT 20 wuTis Semdeg imave punqtidan tivs

motoriani navi daedevna, romelmac gaiara 20 km da tivs

Page 271: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

271

daewia. ramden kilometrs gadioda saaTSi tivi, Tu

motoriani navi masze 12 km-iT Cqara moZraobda saaTSi?

10.163. manZili erTi navsadguridan meoremde mdinaris

gaswvriv 30 km-ia. motoriani navi am manZils iqiT-aqeT 6

saaTSi gadis, 40 wuTiT gzaSi gaCerebis CaTvliT. ipoveT

motoriani navis sakuTari siCqare, Tu mdinaris dinebis

siCqare 3 km-is tolia saaTSi.

10.164. ori avtomobili gamovida erTmaneTis Sesaxvedrad

A da B qalaqebidan. erTi saaTis Semdeg avtomobilebi

Sexvdnen erTmaneTs da SeuCereblad ganagrZes gza imave

siCqariT. pirveli B qalaqSi 27 wT-iT gvian mivida, vidre

meore A qalaqSi. ipoveT TiToeuli avtomobilis siCqare,

Tu cnobilia, rom manZili qalaqebs Soris 90 km-ia.

10.165. ori velosipedisti erTdroulad gamodis

erTmaneTis Sesaxvedrad A da B ori punqtidan, romelTa

Soris manZili 28 km-ia, da erTi saaTis Semdeg xvdebian

erTmaneTs. isini SeuCereblad ganagrZoben gzas imave

siCqariT da pirveli B punqtSi midis 35 wT-iT ufro

adre, vidre meore A punqtSi. ipoveT TiToeuli

velosipedistis siCqare.

10.166. A da B ori punqtidan, romelTa Soris manZili

24 km-ia erTsa da imave dros erTmaneTis Sesaxvedrad ori

avtomobili gaigzavna. maTi Sexvedris Semdeg A -dan

gamosuli avtomobili B punqtSi midis 16 wT-Si, xolo

meore avtomobili 4 wuTSi midis A -Si. ipoveT TiToeuli

avtomobilis siCqare.

10.167. ori turisti erTdroulad gamovida erTmaneTis

Sesaxvedrad A da B ori adgilidan. Sexvedrisas

aRmoCnda, rom pirvels 4 kilometriT naklebi gauvlia

meoreze. ganagrZes ra moZraoba imave siCqariT, pirveli

mivida B -Si 4 sT da 48 wT-Si Sexvedris Semdeg, xolo

meore mivida A -Si 3 sT da 20 wT-Si Sexvedris Semdeg.

ipoveT manZili A -dan B -mde.

10.168. A da C ori punqtidan B punqtisaken erTdrou-

lad ori velosipedisti gavida, pirveli A-dan meore _ C-dan. manZili C -dan B -mde 12 km-iT metia, vidre manZili

A -dan B -mde. velosipedistebi B punqtSi Cavidnen 3 sT-

Si. meore velosipedisti TiToeul kilometrs gadioda 43

wT-iT ufro Cqara, vidre pirveli. ipoveT manZili A -dan

B -mde da TiToeuli velosipedistis siCqare.

Page 272: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

272

10.169. ori gemi erTdroulad gavida navsadguridan:

erTi CrdiloeTiT, meore aRmosavleTiT. ori saaTis

Semdeg maT Soris manZili 60 km aRmoCnda. ipoveT

TiToeuli gemis siCqare, Tu cnobilia, rom erTis siCqare

saaTSi 6 km-iT metia meoris siCqareze.

10.170. A punqtidan gamomaval or gzaze orma

avtomobilma erTdroulad daiwyo moZraoba. gzebs Soris

kuTxe 60o-ia. erTi avtomobilis siCqare orjer metia

meoris siCqareze. drois garkveul momentSi avtomobilebs

Soris manZili 300 km gaxda. ra manZili hqonda gavlili

drois am momentisaTvis TiToeul avtomobils?

10.171. A punqtidan gamomaval or gzaze orma turistma

erTdroulad daiwyo moZraoba erTidaigive siCqariT. gzebs

Soris kuTxe 120o-ia. drois garkveul momentSi turistebs

Soris manZili 60 km gaxda. ra manZili hqonda gavlili

drois am momentisaTvis TiToeul turists?

10.172. or koncentrul wrewirze Tanabrad moZraobs ori

wertili. erT srul bruns erTi maTgani 5 wamiT naklebs

andomebs, vidre meore, ris gamoc igi 1 wuTSi ori bruniT

mets akeTebs. ramden bruns akeTebs wuTSi pirveli

wertili?

10.173. fermers gansazRvruli vadisaTvis unda daeTesa

200 ha, magram igi yoveldRiurad 5 ha-Ti mets Tesavda,

vidre gegmiT iyo gaTvaliswinebuli, da amitom Tesva

vadaze 2 dRiT adre daamTavra. ramden dReSi

damTavrebula Tesva?

10.174. Tivis maragi imdenia, rom SeiZleba yoveldRiurad

gaices yvela cxenisaTvis 96 kg. sinamdvileSi SeZles

TiToeuli cxenis yoveldRiuri ulufis 4 kg-iT gadideba,

radganac ori cxeni gadaiyvanes sxva TavlaSi. ramdeni

cxeni iyo Tavdapirvelad?

10.175. 15 t bostneulis gadasazidad moiTxoves

gansazRvruli tvirTmzidaobis ramdenime manqana. garaJma

gagzavna 0,5 toniT naklebi tvirTmzidaobis manqanebi,

romelTa raodenoba iyo moTxovnilze erTiT meti. ramdeni

tona bostneuli waiRo TiToeulma manqanam?

10.176. pirvelma ostatma 60 detalis damzadebaze 3

saaTiT naklebi dro daxarja vidre meorem. ramden saaTSi

daamzadebs 90 detals meore ostati, Tu erTad muSaobiT

erT saaTSi isini amzadeben 30 detals?

Page 273: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

273

10.177. simindiT daTesili erTi nakveTis farTobi 2 ha-

Ti naklebi iyo meore nakveTis farTobze. mosavlis

aRebisas TiToeuli nakveTidan miiRes 60 t simindi.

ramdeni tona simindi iyo aRebuli TiToeuli nakveTis

erTi heqtaridan, Tu pirvel nakveTze 1 t-iT meti simindi

aiRes heqtaridan, vidre meoreze?

10.178. erT nakveTze aRebuli iyo 200 c xorbali, xolo

meore nakveTze, romlis farTobi 2 ha-Ti metia, vidre

pirveli nakveTis farTobi_300 c. amasTanave, TiToeul

heqtarze 5 c-iT meti, vidre pirveli nakveTis TiToeul

heqtarze. ipoveT miwis TiToeuli nakveTis farTobi.

10.179. miwis erT nakveTze aiRes 4,8 t kartofili; meore

nakveTze, romlis farTobic 0,03 ha-Ti naklebia pirvelze,

aiRes 2 t kartofili. amasTanave meore nakveTis 1 m2-ze

aiRes 2 kg-iT naklebi, vidre pirveli nakveTis 1 m2-ze.

ipoveT TiToeuli nakveTis farTobi.

10.180. sakoncerto darbazSi 600 adgilia. imis Semdeg,

rac TiToeul rigSi adgilebis ricxvi 4-iT gaadides da

kidev ori rigi daumates, darbazSi 748 adgili gaxda.

ramdeni rigia axla darbazSi?

10.181. orma brigadam erTad muSaobiT xeebis dargva

nakveTze 4 dReSi daamTavra. ramdeni dRe dasWirdeboda am

samuSaos Sesasruleblad TiToeul brigadas cal-calke,

Tu erT maTgans SeeZlo xeebis dargvis damTavreba 6 dRiT

adre meoreze?

10.182. wyalsadenis avzi ori miliT ivseba 2 sT da 55

wuTSi. pirvel mils SeuZlia misi avseba 2 saaTiT ufro

male, vidre meores. ramden xanSi aavsebs am avzs

TiToeuli mili cal-calke moqmedebiT?

10.183. oTxi dRis erTad muSaobiT sxvadasxva

simZlavris orma traqtorma mTeli farTobis 32 nawili

moxna. ramden dReSi moxnavda mTel farTobs TiToeuli

traqtori cal-calke, Tu pirvel traqtors SeuZlia

mTeli farTobis 5 dRiT Cqara moxvna, vidre meores?

10.184. or kalatozs, romelTaganac meore 211 dRiT

gvian iwyebs muSaobas pirvelze, SeuZlia kedlis amoyvana

7 dReSi. ramden dReSi amoiyvanda am kedels TiToeuli

Page 274: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

274

maTgani cal-calke, Tu cnobilia, rom meore kalatozs

SeuZlia kedlis amoyvana 3 dRiT adre pirvelze?

10.185. erTi muSa gegmiT gaTvaliswinebul samuSaos

asrulebs 4 dRiT adre, vidre meore. Tu orive erTad 48

dRes imuSavebs, Sesruldeba 7-jer meti samuSao vidre

gegmiT iyo gaTvaliswinebuli. gegmiT gaTvaliswinebuli

samuSaos ra nawili Sesruldeba, Tu marto pirveli muSa

imuSavebs 3 dRes, xolo marto meore 4 dRes?

10.186. sam kalatozs erTad SeuZlia kedlis aSeneba 12

saaTSi. pirvels, marto muSaobiT, SeuZlia kedlis aSeneba

mesameze 971 -jer ufro swrafad da meoreze 2 saaTiT ufro

swrafad. kedlis ra nawils aaSenebs pirveli kalatozi

marto muSaobiT 5 saaTSi?

10.187. sam brigadas erTad muSaobiT samuSaos

Sesruleba SeuZlia 6 dReSi. marto meore brigadas igive

samuSaos Sesruleba SeuZlia 4-jer ufro Cqara vidre

marto mesames da 4 dRiT Cqara vidre marto pirvels.

samuSaos ra nawilis Sesruleba SeuZlia mesame brigadas 2

dReSi marto muSaobiT?

10.188. pirveli mili avzs avsebs 4 saaTiT gvian, xolo

meore mili 9 saaTiT gvian, vidre orive mili erTad. ra

droSi aavsebs avzs TiToeuli mili cal-calke?

10.189. qsovilis fasma imdeni procentiT daiklo,

ramdeni laric Rirda metri qsovili fasebis daklebamde.

ramdeni procentiT iqna daklebuli qsovilis fasi, Tu

metri qsovili 16 larad gayides?

10.190. qsovilis fasma moimata imaze orjer meti

procentiT, ramdeni laric Rirda metri qsovili fasis

momatebamde. ramdeni procentiT moimata qsovilis fasma,

Tu momatebis Semdeg misi fasi gaxda 28 lari?

10.191. procentebis erTi da imave ricxviT fasebis ori

TanmimdevrobiTi daklebis Semdeg fotoaparatis fasi 150

laridan 96 laramde daeca. ramdeni procentiT

klebulobda fotoaparatis fasi TiToeul SemTxvevaSi?

10.192. qalaqis mcxovrebTa ricxvi ori wlis

ganmavlobaSi 20000 kacidan 22050 kacamde gaizarda. ipoveT

am qalaqis mcxovrebTa zrdis saSualo yovelwliuri

procenti.

10.193. sawvavze fasebis orjer Tanmimdevruli gazrdis

Semdeg fasi sawvavze gaxda 3-jer meti Tavdapirvel fasTan

Page 275: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

275

SedarebiT. amasTan fasi pirvelad 2-jer naklebi procen-

tiT gaizarda, vidre meored. ramdeni procentiT gaizarda

fasi pirvelad?

10.194. fotoaparati, romlis fasi iyo 20 lari, jer

gaZvirda da Semdeg gaiafda. amasTan gaiafeba moxda 4-jer

meti procentiT vidre gaZvireba. ramdeni procentiT

gaiafda da ramdeni procentiT gaZvirda fotoaparati, Tu

igi axla 16 lari da 80 TeTri Rirs?

10.195. kursis studentTa saSualo qula maTi raodeno-

bis toli iyo. mas Semdeg, rac 5 studenti, saSualo

quliT 50, sxva fakultetze gadavida, kursis studentTa

saSualo qula gaxda 82. ramdeni studenti iyo Tavidan

kursze?

10.196. brigadis wevrTa saSualo yoveldRiuri Semosava-

li iyo 30 lari. Tu brigadas daemateba erTi muSa, romlis

yoveldRiuri Semosavalia 61 lari, maSin brigadis wevrTa

saSualo yoveldRiuri Semosavali larebSi ricxobrivad

gaxdeba brigadis wevrTa raodenobis toli. ramdeni wevria

brigadaSi?

10.197. pirvel da meore jgufSi studentTa raodenoba

erTi da igivea. sesiebis Sedegad miRebuli maTi saSualo

qula erTi da igive ricxvi_60 aRmoCnda. Tu pirveli

jgufidan meoreSi gadaviyvanT 42 qulis mqone erT

students, maSin pirveli jgufis studentTa saSualo

qula 1,9-iT meti iqneba meore jgufis saSualo qulaze.

ramdeni studentia TiToeul jgufSi?

10.198. Widaobis seqciis erTi wevri iwonida 63 kg-s,

xolo danarCenebis saSualo wona iyo 60 kg. mas Semdeg,

rac seqciaSi movida 57 kg wonis mqone axali moWidave,

seqciis wevrTa saSualo wonam moiklo 100 gramiT. ramdeni

moWidave iyo seqciaSi Tavdapirvelad?

10.199. fexburTSi pirvelobis gaTamaSebis dros Catarda

55 TamaSi: amasTanave, TiToeulma gundma danarCen

gundebTan mxolod TiTo TamaSi Caatara. ramdeni gundi

monawileobda gaTamaSebaSi?

10.200. Tu moWadrakeTa Sejibrebis TiToeuli monawile

danarCen monawileebTan mxolod TiTo partias iTamaSebs,

maSin sul gaTamaSebuli iqneba 231 partia. ramdeni

monawilea moWadrakeTa SejibrebaSi?

Page 276: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

276

10.201. moswavleebi erTmaneTs ucvlian Tavis

fotosuraTebs. ramdeni moswavle yofila, Tu gacvla-

gamocvlisaTvis saWiroa 870 fotosuraTi?

10.202. ramdenime wertilze, romelTagan arcerTi sami

wertili erT wrfeze ar mdebareobs, gavlebulia am

wertilebis wyvil-wyvilad SemaerTebeli yvela wrfe.

gansazRvreT, ramdeni wertili iyo aRebuli, Tu

gatarebuli wrfeebis ricxvi aRmoCnda 45?

10.203. amozneqil mravalkuTxedSi gavlebulia yvela

SesaZlo diagonali; maTi ricxvi 14 aRmoCnda. ramdeni

gverdi aqvs am mravalkuTxeds?

10.204. romel mravalkuTxeds aqvs diagonalebis ricxvi

12-iT meti gverdebis ricxvze?

10.205. yuTis saxuravSi, romelsac marTkuTxedis forma

aqvs sigrZiT 30 sm da siganiT 20 sm, unda amoiWras 200 sm2

farTobis marTkuTxa naxvreti ise, rom am naxvretis

napirebi yvelgan erTnair manZilze iyos saxuravis

napirebidan. ra manZiliT unda iyos daSorebuli naxvretis

napiri saxuravis napiridan?

10.206. fotografiul suraTs, zomiT 12 sm× 18 sm,

erTnairi siganis CarCo aqvs. ipoveT CarCos sigane, Tu misi

farTobi udris suraTis farTobs.

10.207. yvavilnari, romelsac marTkuTxedis forma aqvs 2

m da 4 m gverdebiT, erTnairi siganis bilikiT aris

Semovlebuli. ipoveT am bilikis sigane, Tu misi farTobi

9-jer metia yvavilnaris farTobze.

10.208. nakveTs marTkuTxedis forma aqvs, romlis sigrZe

orjer metia siganeze. nakveTs mTel sigrZeze Wris 2 m

siganis biliki, xolo nakveTis danarCen nawilze

xorbalia daTesili. ipoveT nakveTis sigrZe, Tu

xorbliani nawilis farTobi 4600 m2-iT metia bilikis

farTobze.

10.209. marTkuTxedis formis Tunuqis furclisagan Tav-

Ria yuTi daamzades ise, rom am furclis kuTxeebSi

amoWrilia kvadratebi 5 sm gverdiT da darCenili napirebi

gadakecilia. ra zomis iyo Tunuqis furceli, Tu misi

sigrZe orjer meti iyo siganeze da yuTis moculoba

aRmoCnda 1500 sm3-is toli?

10.210. xsnars, romelic 40 g marils Seicavda, daumates

200 g wyali, ris Semdeg misi koncentracia 10%-iT

Page 277: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

277

Semcirda. ramden wyals Seicavda xsnari da rogori iyo

misi koncentracia?

10.211. WurWlidan, romelic 20 l-s itevs da spirtiT

aris savse, gadmoasxes spirtis raRac raodenoba da

WurWeli wyliT Seavses; Semdeg gadmoasxes narevis

imdenive raodenoba da isev Seavses wyliT. amis Semdeg

WurWelSi aRmoCnda 5 l sufTa spirti. ramdeni siTxe

gadmousxamT TiToeul jerze?

10.212. WurWelSi iyo 10 l marilmJava. marilmJavas

nawili gadaasxes da WurWelSi Caasxes igive raodenobis

wyali. Semdeg isev gadaasxes narevis igive raodenoba da

Seavses igive raodenobis wyliT. ramden litrs asxamdnen

yovel Casxmaze Tu WurWelSi darCa marilmJavas 64%-iani

xsnari?

III. bnpdbofcjt!bnpytob!hboupmfcbUb!!tjtufnfcjt!hbnpzfofcjU!

!10.213. moswavlem 3 rveulsa da 2 fanqarSi gadaixada 65

TeTri. meore moswavlem imgvarsave 2 rveulsa da 4

fanqarSi gadaixada 70 TeTri. ramdeni TeTri Rirs erTi

rveuli?

10.214. 8 cxenisa da 15 Zroxis gamosakvebad yoveldRi-

urad iZleodnen 162 kg Tivas. ramden Tivas aZlevdnen yove-

ldRiurad TiToeul cxens da TiToeul Zroxas, Tu viciT,

rom 5 cxeni Rebulobda 3 kg-iT met Tivas, vidre 7 Zroxa?

10.215. orma xelosanma samuSaoSi miiRo 1170 lari.

pirvelma imuSava 15 dRe. meorem ki 14 dRe. ramden lars

Rebulobda dReSi meore xelosani, Tu cnobilia, rom

pirvelma xelosanma 4 dReSi miiRo 110 lariT meti, vidre

meorem 3 dReSi?

10.216. ori naturaluri ricxvis namravli 2,4-jer metia

am ricxvebis sxvaobaze, maTi saSualo ariTmetikuli 762 -

iT metia 714 -ze. ipoveT es ricxvebi.

10.217. ori dadebiTi ricxvis jami erTiT metia pirveli

da meore ricxvebis gaorkecebul sxvaobaze. ipoveT es

ricxvebi, Tu pirvelis kvadrati samiT metia meoreze.

Page 278: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

278

10.218. bostneulis maRaziaSi kartofili da kombosto

miitanes. pirvel dRes gayides kartofilis naxevari da

kombostos 31, sul 150 kg. meore dRes gayides darCenili

kartofilis 21 da darCenili kombostos

21, sul 100 kg.

ramdeni kartofili da ramdeni kombosto miitanes

maRaziaSi?

10.219. samkervalom miiRo ori xarisxis maudi, metri 6

lariani da 5 lariani, sul 1600 laris. paltoebis

Sesakerad samkervalom daxarja pirveli xarisxis maudis

maragis 25% da meore xarisxis maudis maragis 20%, sul

350 laris Rirebulebisa. TiToeuli xarisxis ramdeni

metri maudi miiRo samkervalom?

10.220. 10 cxenisa da 14 Zroxis gamosakvebad

yoveldRiurad 180 kg Tivas iZleodnen; Tivis normis

gadidebis Semdeg cxenebisaTvis 25%-iT, xolo

ZroxebisaTvis 3133 %-iT, daiwyes dReSi 232 kg Tivis micema,

Tavdapirvelad ramden kilogram Tivas aZlevdnen dReSi

erT cxensa da erT Zroxas?

10.221. ori memanqane erTmaneTisagan damoukideblad

beWdavda 60-gverdian xelnawers. pirveli memanqane 6

gverdis beWdvas andomebda imden dros, rasac meore

memanqane 5 gverdis beWdvas. ramden gverds beWdavda saaTSi

TiToeuli memanqane, Tu pirvelma mTeli samuSao Seasrula

2 saaTiT ufro adre, vidre meorem?

10.222. tvirTis gadasazidad gansazRvruli vadiT

daqiravebulia erTi da imave simZlavris ramdenime sabargo

manqana. manqanebio rom 2-iT naklebi yofiliyo, maSin

tvirTis gadasazidad dasWirdebodaT vadaze 2 saaTiT meti

dro; manqanebi rom 4-iT meti yofiliyo, maSin tvirTis

gadasazidad dasWirdebodaT vadaze 2 saaTiT naklebi dro.

ramdeni manqana iyo daqiravebuli da ramdeni dro

dasWirdaT tvirTis gadasazidad?

10.223. Tu wignis gverdze striqonebis ricxvs

SevamcirebT 4-iT, xolo striqonSi asoebis ricxvs 5-iT,

maSin mTel gverdze asoebis ricxvi 360-iT Semcirdeba. Tu

ki gverdze gavadidebT striqonebis winandel ricxvs 3-iT,

xolo asoebis ricxvs striqonSi 2-iT, maSin gverdze 228

Page 279: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

279

asoTi meti daeteva, vidre winaT. ipoveT striqonebis

ricxvi gverdze da asoebis ricxvi striqonSi.

10.224. ramodenime mTibavs garkveul droSi unda gaeTiba

15 ha mindori. Tu mTibavebi iqnebodnen 5-iT meti, maSin

isini samuSaos daamTavrebdnen vadaze 2 sT-iT adre.

ramdeni mTibavi muSaobda mindvris gasaTibad, Tu 3 mTibavi

4 saaTSi Tibavs 3 ha mindors?

10.225. traqtoristTa brigada garkveul vadaSi xnavs 300

ha miwas. Tu brigadaSi iqneboda 3 traqtoriT meti, maSin

brigada xvnas daamTavrebda vadaze 6 dRiT adre. ramdeni

traqtori iyo brigadaSi, Tu sami traqtori 2 dReSi xnavs

90 ha miwas?

10.226. orniSna ricxvis aTeulebis ricxvi samjer metia

misi erTeulebis ricxvze. Tu am ricxvis cifrebs

gadavaadgilebT, maSin miviRebT ricxvs, romelic 36

erTeuliT naklebia saZebn ricxvze. ipoveT orniSna

ricxvi.

10.227. orniSna ricxvis cifrebis jami udris 11-s. Tu am

ricxvs 63-s davumatebT, maSin miiReba imave cifrebiT,

mxolod Sebrunebul rigze dawerili ricxvi. ipoveT

orniSna ricxvi.

10.228. orniSna ricxvis cifrebis jami udris 12-s. Tu am

ricxvis cifrebs gadavaadgilebT, maSin miviRebT ricxvs,

romelic 18-iT metia saZebn ricxvze. ipoveT orniSna

ricxvi.

10.229. orniSna ricxvis cifrTa jami udris 15-s. Tu am

ricxvs 7-ze gavamravlebT da miRebuli namravlidan

gamovaklebT orniSna ricxvs, romelic Cawerilia

mocemuli orniSna ricxvis cifrebiT, magram Sebrunebuli

mimdevrobiT, miviRebT 387-s. ipoveT orniSna ricxvi.

10.230. orniSna ricxvi 4-jer metia Tavisave cifrTa

jamze da 3-jer metia maTsave namravlze. ipoveT orniSna

ricxvi.

10.231. orniSna ricxvis cifrTa jami udris 13-s. Tu am

ricxvs 9-s gamovaklebT, maSin miviRebT ricxvs, romelic

Cawerili iqneba imave cifrebiT, magram Sebrunebuli

mimdevrobiT. ipoveT es ricxvi.

10.232. mocemulia erTi da imave cifrebiT gamosaxuli

ori orniSna ricxvi. pirveli ricxvis ganayofi meoreze

udris 1,75-s. pirveli ricxvis namravli misi aTeulebis

ricxvze 3,5-jer metia meore ricxvze. ipoveT meore ricxvi.

Page 280: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

280

10.233. orniSna ricxvis cifrTa namravli samjer

naklebia TviT am ricxvze. Tu saZiebel ricxvs mivumatebT

18-s, maSin miiReba ricxvi dawerili imave cifrebiT, magram

Sebrunebuli mimdevrobiT. ipoveT es ricxvi.

10.234. ipoveT orniSna ricxvi, romlis ganayofi misi

cifrebis namravlze aris 322 , xolo sxvaoba saZiebel

ricxvsa da imave cifrebiT, magram Sebrunebuli

mimdevrobiT, dawerili ricxvs Soris aris 18.

10.235. Tu mocemul orniSna ricxvs gavyofT misi

cifrebis jamze, maSin miiReba ganayofi 3 da naSTi 7. Tu

mocemul orniSna ricxvis cifrTa kvadratebis jams

gamovaklebT mocemuli orniSna ricxvis cifrebis

namravls, miviRebT mocemul orniSna ricxvs. ipoveT es

ricxvi.

10.236. Tu orniSna ricxvs gavyofT ricxvze, romelic

imave cifrebiT aris dawerili mxolod Sebrunebuli

mimdevrobiT, maSin miviRebT ganayofs 4-s da naSTs 3-s; Tu

saZiebel ricxvs gavyofT mis cifrTa jamze, maSin

miviRebT ganayofs 8-s da naSTs 7-s. ipoveT es ricxvi.

10.237. mokriveTa da moWidaveTa seqciis sportsmenTa

saSualo wona erTidaigivea da 60 kg-is tolia. Tu krivis

seqciidan Widaobis seqciaSi gadava sportsmeni, romlis

wona 44 kg-ia, maSin seqciaTa saSualo wonebs Soris

sxvaoba gaxdeba 1,8 kg. Tu Widaobis seqciidan wava

sportsmeni, romlis wona 88 kg-ia (krivis seqcia ucvleli

darCeba), maSin aRniSnul saSualo wonebs Soris sxvaoba 2

kg gaxdeba. ramdeni sportsmenia TiToeul seqciaSi? 10.238. pirveli semestris Semdeg or klass aRmoaCnda

erTidaigive saSualo qula_ 50. Tu erTi klasidan meoreSi

gadava 18 qulis mqone bavSvi, maSin am klasebis saSualo

qulebs Soris sxvaoba gaxdeba 3. Tu meore klasidan

pirvelSi gadava 95 qulis mqone bavSvi, maSin aRniSnuli

sxvaoba gaxdeba 4. ramdeni moswavlea TiToeul klasSi? 10.239. sxvadasxva simZlavris orma traqtorma erTad

muSaobiT 30 wuTis ganmavlobaSi moxna mTeli yanis 61

nawili. marto pirvel traqtors rom 24 wuTi emuSava,

Semdeg ki marto meore traqtors 40 wuTi, maSin isini

moxnavdnen mTeli yanis 20%-s. ra xnis ganmavlobaSi

moxnavs mTel yanas TiToeuli traqtori cal-calke?

Page 281: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

281

10.240. or brigadas mosavlis aReba unda daemTavrebia 12

dReSi. 8 dRis erTad muSaobis Semdeg pirvelma brigadam

miiRo sxva davaleba, amitom meorem samuSaos darCenili

nawili 7 dReSi daamTavra. ra xnis ganmavlobaSi SeeZlo

TiToeul brigadas cal-calke mosavlis aReba? 10.241. erTad muSaobiT ori xelosani samuSaos

daamTavrebs 12 dReSi. Tu ki pirveli xelosani 2 dRes

imuSavebs, meore ki 3 dRes, maSin isini Seasruleben mTeli

samuSaos mxolod 20%-s. ramden dReSi daamTavrebs am

samuSaos TiToeuli xelosani cal-calke? 10.242. ori milis erTad muSaobiT avzi 1 sT 20 wuTSi

ivseba; Tu pirvel mils gavxsniT 10 wuTiT, meores ki 12

wuTiT, maSin gaivseba avzis mxolod 152

nawili. ra xnis

ganmavlobaSi aavsebs avzs TiToeuli mili cal-calke? 10.243. ori muSa erTad muSaobiT samuSaos asrulebs 6

dReSi. Tu pirveli imuSavebda orjer nela, xolo meore 3-

jer Cqara, maSin samuSaos Sesrulebas dasWirdeboda 4

dRe. ramden dReSi Seasrulebs samuSaos TiToeuli muSa

cal-calke? 10.244. Tu pirveli muSa 1 sT-s imuSavebs, xolo meore 3

sT-s, maSin mTeli samuSaos 2411

nawili Sesruldeba. Tu

amis Semdeg isini erTad kidev 2 sT-s imuSaveben,

aRmoCndeba, rom maT darCaT Sesasrulebeli mTeli

samuSaos 81 nawili. ramden saaTSi SeZlebs mTeli

samuSaos Sesrulebas marto pirveli muSa? 10.245. ori traqtori xnavs mindors. mas Semdeg, rac

pirvelma imuSava 2 saaTi, xolo meorem 5 saaTi, moxnuli

aRmoCnda mindvris naxevari. amis Semdeg 1,5 saaTis

ganmavlobaSi isini muSaobdnen erTad da moxnes kidev

mindvris meoTxedi. ra dro dasWirdeba marto pirvel

traqors samuSaos dasamTavreblad? 10.246. or muSas erTad muSaobiT SeuZlia gansazRvruli

davaleba 12 dReSi daamTavros. jer Tu marto erTi

maTgani imuSavebs da, rodesac igi mTeli samuSaos

naxevars Seasrulebs, mas meore muSa Secvlis, maSin mTeli

davaleba 25 dReSi damTavrdeba. ramden dReSi SeuZlia

TiToeul muSas cal-calke mTeli davalebis Sesruleba?

Page 282: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

282

10.247. ori salewi manqana Segrovil TavTavs 4 dReSi

lewavs. Tu pirveli galewavs mTeli TavTavis 32 nawils,

xolo Semdeg meore darCenil nawils, maSin mTeli samuSao

10 dReSi damTavrdeba. TavTavis ra nawils galewavs marto

meore manqana 5 dReSi, Tu is muSaobs ufro nela, vidre

pirveli? 10.248. ori miliT avzi ivseba 3 saaTSi. Tu jer marto

pirveli mili aavsebs avzis 25%, xolo Semdeg marto meore

darCenil nawils, maSin avzi 10 saaTSi aivseba. ramden

saaTSi aavsebs marto pirveli mili avzis 41 nawils, Tu

is avzs avsebs ufro swrafad, vidre meore? 10.249. gemma gaiara 100 km mdinaris dinebis

mimarTulebiT da 64 km dinebis sawinaaRmdego

mimarTulebiT, rasac sul 9 saaTi moandoma. meored imave

drois ganmavlobaSi gaiara 80 km mdinaris dinebis

sawinaaRmdego mimarTulebiT da 80 km mdinaris dinebis

mimarTulebiT. ipoveT gemis siCqare mdgar wyalSi da

mdinaris dinebis siCqare.

10.250. motorian navs mdinaris dinebis mimarTulebiT 12

km-is gasavlelad da ukan dabrunebisaTvis dasWirda 2 sT

da 30 wT. meored imave motorianma navma 1 sT 20 wuTSi

gaiara 4 km mdinaris dinebis mimarTulebiT da 8 km

sawinaaRmdego mimarTulebiT. ipoveT motoriani navis

siCqare mdgar wyalSi da mdinaris dinebis siCqare.

10.251. ori turisti gamodis erTmaneTis Sesaxvedrad

ori qalaqidan, romelTa Soris manZili 48 km-ia. isini

Sexvdebian erTmaneTs Sua gzaze, Tu meore turisti gamova

2 saaTiT adre pirvelze. Tuki isini erTdroulad

gamovlen qalaqebidan, maSin 4 saaTis Semdeg maT Soris

manZili darCeba 8 km. ipoveT TiToeuli turistis siCqare.

10.252. velosipedisti midioda garkveuli siCqariT da A

punqtidan B punqtSi daniSnul droze Cavida; mas rom es

siCqare gaedidebina 3 km-iT saaTSi, maSin adgilze

Cavidoda vadaze erTi saaTiT adre, xolo mas rom saaTSi

gaevlo 2 km-iT naklebi imaze, rasac is sinamdvileSi

gadioda, maSin daagviandeboda 1 saaTi. ipoveT manZili A

da B punqtebs Soris, velosipedistis siCqare da ramdeni

saaTi iyo is gzaSi.

Page 283: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

283

10.253. ori turisti gamovida erTmaneTis Sesaxvedrad

qalaqebidan, romelTa Soris manZili 30 km-s udris. Tu

pirveli gamova ori saaTiT adre meoreze, maSin isini

Sexvdebian erTmaneTs 2,5 saaTis Semdeg meore turistis

gamosvlis momentidan; Tu meore gamova 2 saaTiT adre

pirvelze, maSin Sexvedra moxdeba pirveli turistis

gamosvlidan 3 saaTis Semdeg. ramden kilometrs gadis

saaTSi TiToeuli turisti?

10.254. ori qalaqidan, romelTa Soris manZili 650 km-s

udris, erTmaneTis Sesaxvedrad erTdroulad gagzavnes

ori matarebeli. gamgzavrebidan 5 saaTis Semdeg

matareblebi Sexvdnen erTmaneTs. Tu pirvel matarebels

gagzavnian meoreze 2 sT 10 wuTiT adre, maSin Sexvedra

moxdeba meore matareblis gamosvlidan 4 saaTis Semdeg.

ramden kilometrs gadis saaTSi TiToeuli matarebeli?

10.255. or qalaqs Soris 960 km-is tol manZils

samgzavro matarebeli 4 saaTiT Cqara gadis, vidre

sabargo. Tu samgzavro matareblis siCqares saaTSi 8 km-iT

gavadidebT, xolo sabargo matareblis siCqares 2 km-iT,

maSin samgzavro matarebeli mTel manZils 5 saaTiT Cqara

gaivlis sabargoze. ipoveT TiToeuli matareblis siCqare.

10.256. velosipedisti moZraobs AB gzaze, romelic

Sedgeba gzis horizontaluri nawilis, aRmarTisa da

daRmarTisagan. swor adgilze velosipedistis siCqare

aris 12 km/sT, aRmarTze 8 km/sT, xolo daRmarTze 15 km/sT.

A -dan B -Si misvlas velosipedisti andomebs 5 saaTs,

xolo B -dan A -Si_4 sT 39 wuTs. ipoveT aRmarTisa da

daRmarTis sigrZe A -dan B -sken mimarTulebiT, Tu

cnobilia, rom gzis swori nawilis sigrZea 28 km.

10.257. A da B punqtebs Soris gza Sedgeba aRmarTisa

da daRmarTisagan. velosipedisti, moZraobs ra daRmarTze

6 km-iT meti siCqariT saaTSi, vidre aRmarTze, A -dan B -

mde gzis gavlaze 2 sT 40 wT-s xarjavs, xolo B -dan A -

mde gzis ukan gamovlaze 20 wT-iT naklebs. ipoveT

velosipedistis siCqare aRmarTsa da daRmarTze da

aRmarTis sigrZe A -dan B -sken mimarTulebiT, Tu mTeli

gzis sigrZe 36 km-ia.

10.258. wrewirze, romlis sigrZe udris 100 m-s, moZraobs

ori sxeuli. isini erTmaneTs xvdebian yoveli 20 wamis

Semdeg, rodesac erTi da imave mimarTulebiT moZraoben,

xolo xvdebian yoveli 4 wamis Semdeg, rodesac

Page 284: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

284

mopirdapire mimarTulebiT moZraoben. ipoveT TiToeuli

sxeulis siCqare.

10.259. ori sxeuli Tanabrad moZraobs erTsadaimave

wrewirze erTidaigive mimarTulebiT. pirveli sxeuli erT

bruns akeTebs 2 wm-iT Cqara meoreze da eweva meore

sxeuls yovel 12 wm-Si. ra droSi akeTebs erT bruns

TiToeuli sxeuli?

IV. tywbebtywb!bnpdbofcj

!10.260. pirveli ricxvi ise Seefardeba meores, rogorc

2:3, xolo meore mesames, rogorc 4:5. ipoveT pirveli

ricxvis Sefardeba mesamesTan.

10.261. proporciis pirveli sami wevris jami udris 58-s.

mesame wevri Seadgens pirveli wevris 32 , xolo meore

pirvelis 43 nawils. ipoveT proporciis meoTxe wevri.

10.262. klasSi 40 moswavlea. aqedan 25 swavlobs

inglisur enas, 22_germanuls, xolo 10 swavlobs orive am

enas. ramdeni moswavle ar swavlobs arc inglisurs da

arc germanuls? 10.263. klasSi 35 moswavlea. aqedan 20 dadis maTematikis

wreSi, 11_fizikis wreSi, xolo 10 moswavle ar dadis am

wreebidan arc erTSi. ramdeni moswavle dadis

erTdroulad fizikisa da maTematikis wreSi? 10.264. oTaxis iatakze, romlis farTobia 12 m

2,

gaSlilia sami xaliCa. pirveli xaliCis farTobia 5 m2,

meoris_ 4m2, xolo mesamis_ 3 m

2. yoveli ori xaliCa

erTmaneTze gadadebulia 1,5 m2 farTobze, amasTan 0,5 m

2

farTobze erTmaneTze devs samive xaliCa. ipoveT: 1)

iatakis im nawilis farTobi, romelic dafaruli ar aris;

2) mxolod pirveli xaliCiT dafaruli iatakis nawilis

farTobi.

10.265. 100 studentidan inglisuri ena icis 28

studentma, germanuli ena_ 30 studentma, franguli ena_ 42

studentma, inglisuri da germanuli_ 8 studentma,

inglisuri da franguli_ 10 studentma, samive es ena icis

3 studentma, arcerTi am enidan ar icis 20 studentma.

Page 285: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

285

daadgineT ramdenma studentma icis: 1) germanuli da

franguli? 2) inglisuri an germanuli? 3) inglisuri an

franguli? 4) germanuli an franguli? 10.266. Saqris fasis 15%-iT gazrdis Semdeg

yoveldRiurad Semosuli Tanxa 8%-iT Semcirda. ramden

kilogram Saqars yidis dReSi gamyidveli axla, Tu adre

igi dReSi yidida 50 kilograms?

10.267. stadionze Sesasvleli bileTis gaiafebis Semdeg

mayurebelTa ricxvma 50%-iT moimata da bileTebis

gayidviT Semosuli Tanxa 20%-iT gaizarda. ramdeni lari

gaxda bileTis fasi, Tu gaiafebamde is Rirda 10 lari?

10.268. saqonlis fasi Tavdapirvelad Seamcires 20%-iT,

xolo Semdeg es axali fasi kvlav 15%-iT Seamcires da

bolos, axali gadaangariSebis Semdeg, saqonlis fasi

kidev 10%-iT Semcirda. sul ramdeni procentiT Seamcires

saqonlis pirvandeli fasi?

10.269. mewarmem Tavisi produqcia jer gaaZvira da

Semdeg gaaiafa. amasTan gaZvireba da gaiafeba moxda

procentebis erTidaigive ricxviT. ramdeni procentiT

gaZvirda da ramdeniT gaiafda produqcia, Tu is

Tavdapirvelad Rirda 500 lari, axla ki Rirs 480 lari?

10.270. karaqi jer gaiafda 20%-iT, xolo Semdeg gaZvirda

imdeni procentiT ramdeni laric Rirda 1 kilogrami

karaqi gaiafebamde. ra Rirda 1 kilogrami karaqi

gaiafebamde, Tu is axla Rirs 4 lari da 20 TeTri?

10.271. samuSao dRe Semcirda 8 saaTidan 7 saaTamde.

ramdeni procentiT unda gadiddes Sromis nayofiereba,

rom imave pirobebSi xelfasi gadiddes 5%-iT?

10.272. fulis ori Tanxa, romelTa jamia 5000 lari

raRac vadiT Setanili iyo bankSi wliur 3%-ian anabarze.

TiToeulma am Tanxam moimata 60 lariT. pirveli Tanxa

bankSi iyo 4 TviT naklebi drois ganmavlobaSi, vidre

meore. ras udris TiToeuli Tanxa da ramdeni xniT iyo

TiToeuli Setanili bankSi?

10.273. fulis ori Tanxa romelTa jamia 8000 lari

Setanil iqna bankSi wliur 3%-ian anabarze. pirveli Tanxa

bankSi iyo 10 TviT naklebi drois ganmavlobaSi vidre

meore. am Tanxebidan pirvelma moimata 80 lari, xolo

meorem 60 lari. ras udris TiToeuli Tanxa da ramdeni

Tve iyo TiToeuli maTgani bankSi?

Page 286: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

286

10.274. kompiuteris fasi yovel 5 weliwadSi 90%-iT

mcirdeba. ra droa saWiro, rom 10000 laris Rirebulebis

kompiuteris fasi 100 lari gaxdes?

10.275. erTniSna ricxvi gaadides aTi erTeuliT. Tu

miRebul ricxvs gavadidebT imdenive procentiT,

ramdeniTac pirvel SemTxvevaSi, maSin miiReba 72. ipoveT

sawyisi ricxvi.

10.276. erT wisqvils SeuZlia 19 centneri xorbali

dafqvas 3 saaTSi, meores 32 centneri_5 saaTSi, xolo

mesames 10 centneri 2 saaTSi. rogor unda ganawildes 1330

centneri xorbali wisqvilebs Soris imgvarad, rom maT

erTdroulad daiwyon muSaoba da erTdrouladve

daamTavron dafqva?

10.277. im samuSaosaTvis, romelsac pirveli memanqane 4

sT-Si beWdavs, meores sWirdeba 6 sT, xolo mesames_4 sT 30

wT. rogor gavanawiloT memanqaneebs Soris 460-gverdiani

xelnaweri, raTa samivem erTidaigive droSi daasrulos

misi gadabeWdva?

10.278. ostati 18 detals amzadebs imave droSi,

romelSic moswavle_10 detals. davalebis Sesasruleblad

ostats 32 saaTi dasWirda, ra droSi Seasrulebs amave

davalebas moswavle?

10.279. ramdenime muSa asrulebs samuSaos 20 dReSi. Tu

maTi raodenoba 4-iT meti iqneboda da TiToeuli

imuSavebda dReSi 1 saaTiT mets, maSin igive samuSao

Sesruldeboda 16 dReSi. Tu muSebis raodenoba kidev 12

kaciT gaizrdeba da TiToeuli maTgani dReSi imuSavebs

kidev 2 saaTiT mets, maSin mocemuli samuSao Sesruldeba

10 dReSi. ramdeni muSa iyo da ramden saaTs muSaobdnen

isini dReSi.

10.280. sxvadasxva simZlavris ori tumbos erTdrouli

muSaobiT auzi ivseba 4 sT-Si. auzis naxevris gasavsebad

pirvel tumbos sWirdeba 4 sT-iT meti dro, vidre meores

auzis 43 nawilis gasavsebad. ra droSi gaavsebs auzs

TiToeuli tumbo cal-calke?

10.281. gemis gadmosatvirTad gamoyofilia ori brigada.

im droTa jami, romelic dasWirdeboda gemis dasaclelad

TiToeul brigadas cal-calke 12 sT-ia. ipoveT ra dro

dasWirdeboda TiToeul brigadas gemis dasaclelad, Tu

Page 287: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

287

maTi sxvaoba aris im drois 45%, romelic sWirdeba orive

brigadis erTdrouli muSaobiT gemis daclas.

10.282. erT dazgaze detalebis partiis damuSavebas 3

dRiT ufro mets undebian, vidre meoreze. ramden dRes

gagrZeldeboda detalebis am partiis damuSaveba pirvel

dazgaze calke, Tu cnobilia, rom dazgebis erToblivi

muSaobisas 20 dReSi samjer meti raodenobis detali iyo

damuSavebuli?

10.283. samma erTnairma kombainma erTad aiRo pirveli

mindori, xolo Semdeg orma maTganma meore mindori (sxva

farTobis). sul am samuSaos dasWirda 12 sT. Tu sami

kombaini Seasrulebda mTeli samuSaos naxevars, xolo

Semdeg darCenil nawils aiRebda erT-erTi maTgani, maSin

samuSaos Sesrulebas dasWirdeboda 20 sT. ra droSi

SeuZlia or kombains pirveli mindvris aReba?

10.284. miwismTxrelTa orma brigadam erTdrouli

muSaobiT amoTxara pirveli Txrili 2 dReSi. amis Semdeg

maT daiwyes meore Txrilis amoTxra, romlis sigrZe 5-jer

metia pirveli Txrilis sigrZeze. jer muSaobda mxolod

pirveli brigada, xolo Semdeg igi Secvala meore

brigadam da daamTavra samuSao. amasTan meore brigadam

Seasrula 1,5-jer naklebi samuSao, vidre pirvelma. meore

Txrilis amoTxraze daixarja 21 dRe. ramden dReSi

SeZlebda meore brigada pirveli Txrilis amoTxras, Tu

igi ufro nela muSaobs, vidre pirveli?

10.285. ra dros gviCvenebs saaTi (wuTis sizustiT), Tu es

dro moTavsebulia 1200sT-sa da 12

30sT-s Soris da saaTis

isrebi adgenen: 1) 66o-ian kuTxes? 2) 90

o-ian kuTxes? 3) 45

o-

ian kuTxes? 4) α kuTxes (α <165o)?

10.286. ra dros gviCvenebs saaTi (wuTis sizustiT), Tu es

dro moTavsebulia 200sT-sa da 2

40sT-s Soris da saaTis

isrebi adgenen: 1) 132o-ian kuTxes? 2) 90

o-ian kuTxes? 3) 33

o-

ian kuTxes? 4) α kuTxes?

10.287. turistma mTeli gzis 54 gaiara velosipediT,

xolo danarCeni gza fexiT. velosipediT moZraobisas man

daxarja 2-jer naklebi dro vidre fexiT siarulisas.

ramdenjer swrafad moZraobs turisti velosipediT vidre

fexiT?

Page 288: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

288

10.288. A da B qalaqebidan erTmaneTis Sesaxvedrad

erTdroulad velosipedisti da motociklisti gamovida.

A qalaqidan gamosuli velosipedisti qalaqebs Soris

manZilis 31-is gavlis Semdeg SeCerda da B qalaqisaken

gza mxolod mas Semdeg gaagrZela, rodesac masTan B

qalaqidan momavali motociklisti movida. motociklistma

SeuCereblad gaagrZela gza A qalaqisaken da Semdeg imave

gziT dabrunda B qalaqSi ise, rom gzaSi ar SeCerebula.

romeli ufro adre Cava B qalaqSi velosipedisti Tu

motociklisti?

10.289. soflidan qalaqisaken erTdroulad gaemgzavra

velosipedisti da avtomobili. mTeli gzis mexuTedis

gavlis Semdeg velosipedisti SeCerda da gaagrZela gza

mxolod maSin, rodesac avtomobils gasavleli darCa

mTeli gzis 53. avtomobili Cavida ra qalaqSi, maSinve

gamobrunda ukan. romeli ufro adre Cava, avtomobili

sofelSi Tu velosipedisti qalaqSi?

10.290. gza Sedgeba sami monakveTisagan. pirveli

monakveTis sigrZe mTeli gzis naxevris tolia, xolo

meore monakveTis _ mTeli gzis mesamedis. avtomobilis

siCqare gzis pirvel monakveTze orjer naklebia vidre

meore monakveTze da samjer naklebia vidre mesameze.

ramdenjer metia mTel gzaze avtomobilis saSualo

siCqare gzis pirvel monakveTze mis siCqareze?

10.291. mgzavri soflidan qalaqSi Cavida da Semdeg ukan

dabrunda. soflidan qalaqisaken moZraobis dros gzis

pirveli naxevari man gaiara avtomobiliT, xolo meore

naxevari fexiT. ukan dabrunebisas daxarjuli mTeli

drois naxevari man imoZrava avtomobiliT, meore naxevari

ki fexiT. rodis ufro naklebi dro daxarja mgzavrma:

soflidan qalaqSi Casvlaze Tu ukan dabrunebaze?

10.292. ori mgzavri soflidan qalaqisken gaemgzavra.

pirvelma mgzavrma gzis mesamedi avtobusiT gaiara, xolo

danarCeni gza fexiT. meore mgzavrma imave gzis gavlisas

daxarjuli drois mesamedi avtobusiT iara, danarCeni

drois ganmavlobaSi ki fexiT midioda. romeli mgzavris

saSualo siCqarea meti?

10.293. M da N punqtebidan, romelTa Soris manZili 33

km-ia, erTmaneTis Sesaxvedrad erTdroulad ori turisti

Page 289: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

289

gamovida. 3 sT da 12 wT-is Semdeg maT Soris manZili 1 km-

mde Semcirda, xolo kidev 2 sT 18 wT-is Semdeg pirvels

N -mde gasavleli darCa samjer meti manZili, vidre meores

M -mde. ipoveT turistebis siCqareebi.

10.294. ori velosipedisti erTdroulad gamovida

erTmaneTis Sesaxvedrad ori punqtidan, romelTa Soris

manZili 270 km-ia. meore velosipedisti saaTSi gadioda 211

kilometriT naklebs, vidre pirveli da Sexvda mas imdeni

saaTis Semdeg. ramden kilometrsac gadis pirveli

velosipedisti erT saaTSi. ipoveT pirveli

velosipedistis siCqare.

10.295. velosipedistma A punqtidan B punqtamde gaiara

60 km. ukan dabrunebisas man pirveli saaTi iara winandeli

siCqariT, Semdeg ki Seisvena 20 wuTi. Sesvenebis Semdeg

siCqare gaadida 4 km/sT-iT da amitom B -dan A -Si misasvlelad daxarja imdenive dro, ramdenic mas

dasWirda A -dan B -Si misasvlelad. ipoveT ra siCqariT

midioda velosipedisti A -dan B -mde.

10.296. A da B punqtebs Soris manZili 120 km-ia.

motociklisti gaemgzavra A -dan B -Si. igi ukan

gamoemgzavra imave siCqariT, magram gamosvlis mometidan

erTi saaTis Semdeg iZulebuli gaxda SeCerebuliyo 10

wuTiT, Semdeg kvlav ganagrZo gza A punqtamde, magram

gaadida siCqare 6 km/sT-iT. rogori iyo motociklistis

siCqare Tavdapirvelad, Tu cnobilia, rom ukan

dasabruneblad man imdenive dro daxarja, ramdenic A -dan

B -Si Casvlaze?

10.297. turistma naviT gacura mdinareze 90 km da Semdeg fexiT gaiara 10 km. amasTan, fexiT siaruls 4 saaTiT

naklebi dro moandoma, vidre naviT curvas. turists

fexiT imden xans ro evlo, ramden xansac icura naviT,

xolo naviT imden xans ecura, ramden xansac fexiT iara,

maSin es manZilebi toli iqneboda. ramdeni saaTi icura

turistma naviT?

10.298. ori motociklisti erTdroulad gaeSura

erTmaneTis Sesaxvedrad A da B punqtebidan, romelTa

Soris manZili udris 600 km-s. im droSi, rasac pirveli

andomebs 250 km-is gavlas, meore gadis mxolod 200 km-s.

ipoveT pirveli motociklistis siCqare Tu igi B punqtSi

Cadis 3 saaTiT ufro adre, vidre meore A punqtSi.

Page 290: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

290

10.299. rodesac aqilevsi kus gamoekida, maT Soris

manZili 50 metris toli iyo. mas Semdeg, rac maT Soris

manZili 10-jer Semcirda, ku mixvda, rom is mdevars Tavs

ver daaRwevda da gaCerda. ra manZili gaiara kum devnis

dawyebidan, Tu misi siCqare 16-jer naklebia aqilevsis

siCqareze da isini erTi mimarTulebiT moZraoben?

10.300. A da B qalaqebidan, romelTa Soris manZili 150

km-ia, erTidaigive mimarTulebiT ( A -dan B -ken) gavida ori

turisti. pirveli turisti A -dan gaemgzavra avtomanqaniT,

xolo meore B -dan fexiT. mas Semdeg, rac maT Soris

manZili Semcirda 25-jer, turistebi gaCerdnen. ras udris

manZili pirveli turistis gaCerebis adgilidan B

qalaqamde, Tu meore turistis siCqare 17-jer naklebia

pirvelis siCqareze?

10.301. A da B punqtebs Soris manZilia 300 km.

avtomobilma gaiara mTeli es manZili da dabrunda ukan.

B -dan gamosvlis 1 saaTisa da 12 wuTis Semdeg man siCqare

gaadida 16 km/sT-iT, ris Sedegadac ukan dabrunebaze

daxarja 48 wuTiT naklebi, vidre A -dan B -Si Casvlaze.

ipoveT avtomobilis sawyisi siCqare.

10.302. ori matarebeli gamodis A da B punqtebidan

erTmaneTis Sesaxvedrad. isini erTmaneTs Sexvdebian Sua

gzaze im SemTxvevaSi, Tu A -dan matarebeli gamova ori

saaTiT adre, vidre B -dan. Tuki isini A da B punqtebidan

erTdroulad gamovlen, maSin ori saaTis Semdeg

matareblebs Soris darCenili manZili A da B punqtebs

Soris manZilis 41-is toli iqneba. ramden dros

moandomebs TiToeuli matarebeli mTeli gzis gavlas?

10.303. A -dan B punqtisaken, romelTa Soris manZili 120

km-ia, gavida qveiTi. erTdroulad B -dan A -sken gamovida motociklisti, romelic 5 saaTis Semdeg Sexvda qveiTs.

Caisva ra qveiTi motociklSi, motociklisti dabrunda

ukan da Caiyvana qveiTi B -Si, ris Semdeg SeuCerebliv

wavida A -Si. amis gamo motociklistma daxarja 2,5-jer

meti dro, vidre mas dasWirdeboda B -dan A -Si

Casasvlelad. ipoveT TiToeulis siCqare.

10.304. manZili A da B punqtebs Soris 32 km-ia. A

punqtidan B punqtisaken ori velosipedisti gavida.

cnobilia, rom pirveli velosipedisti, romlis siCqare

aris 8 km/sT, A punqtidan naxevari saaTiT adre gamodis.

Page 291: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

291

im momentSi, roca mas meore velosipedisti daeweva, ukan

brundeba da A punqtamde misvlas naxevari saaTiT ufro

nakleb dros andomebs, vidre meore velosipedisti B

punqtamde misvlas. ipoveT meore velosipedistis siCqare.

10.305. qalaqidan erTdroulad erTi da igive

mimarTulebiT gaemgzavra velosipedisti da morbenali.

velosipedisti moZraobs 18 km/sT siCqariT, xolo

morbenali 12 km/sT siCqariT. maTi gamgzavrebidan naxevari

saaTis Semdeg imave qalaqidan imave mimarTulebiT

gaemgzavra cxenosani. ipoveT cxenosnis siCqare, Tu

cnobilia, ro igi velosipedists daewia 1 saaTiT ufro

gvian, vidre morbenals.

10.306. A punqtidan B punqtisaken gaemgzavra satvirTo

avtomobili. 1 sT-is Semdeg imave A punqtidan B

punqtisaken gaemgzavra msubuqi avtomobili, romelic B

punqtSi satvirTo avtomobilTan erTad mivida. Tu

satvirTo da msubuqi avtomobilebi erTdroulad

gamovidodnen A da B punqtebidan erTmaneTis Sesaxvedrad, maSin

isini erTmaneTs Sexvdebodnen gamosvlidan 1 sT-isa da 12

wT-is Semdeg. ra dro moandoma satvirTo avtomobilma A da B punqtebs Soris manZilis gavlas.

10.307. wrewirze, romlis sigrZea 400 m erTi da imave

wertilidan erTdroulad erTmaneTis sawinaaRmdego

mimarTulebiT moZraobas iwyebs ori sxeuli. SexvedrisTanave

meore sxeuli mobrunda da daiwyo moZraoba imave

mimarTulebiT ra mimarTulebiTac moZraobda pirveli.

pirveli daewia meores (gaaswro mas erTi wriT) 2 wuTsa

da 5 wm-Si moZraobis dawyebidan. Tu pirvelis siCqare

iqneboda mis Tavdapirvel siCqareze 2 m/wm-iT meti, xolo

meoris mis Tavdapirvel siCqareze 2 m/wm-iT naklebi, maSin

es Sexvedra moxdeboda moZraobis dawyebidan 1 wT-sa da 15

wm-Si. ipoveT TiToeuli sxeulis siCqare.

10.308. ori punqtidan, romelTa Soris manZili 2400 km-ia,

erTmaneTis Sesaxvedrad erTdroulad gamovida samgzavro

da Cqari matarebeli. Tu orive matarebeli imoZravebda

Cqari matareblis siCqariT, maSin maTi Sexvedra moxdeboda

faqtiur Sexvedramde 3 saaTiT adre, xolo Tu orive

matarebeli imoZravebda samgzavro matareblis siCqariT,

maSin maTi Sexvedra moxdeboda faqtiur SexvedrasTan

SedarebiT 5 saaTiT gvian. ipoveT TiToeuli matareblis

siCqare.

Page 292: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

292

10.309. A punqtidan gavida pirveli morbenali, ori

wuTis Semdeg mis kvaldakval gavida meore morbenali,

romelic daewia pirvels A -dan 1 km manZilze. A -dan 5 km-

is gavlis Semdeg meore mobrunda ukan da Sexvda pirvels

20 wuTSi pirveli morbenalis moZraobis dawyebidan.

ipoveT meore morbenalis siCqare.

10.310. A punqtidan B -saken, romelTa Soris manZili 70

km-ia, gavida velosipedisti, xolo garkveuli drois

Semdeg mis kvaldakval gavida motociklisti 50 km/sT

siCqariT. igi daewia velosipedists A -dan 20 km manZilze.

motociklisti B -Si Casvlidan 48 wuTis Semdeg dabrunda

ukan da Sexvda velosipedists 2 sT-sa da 40 wuTSi

velosipedistis moZraobis dawyebidan. ipoveT

velosipedistis siCqare.

10.311. soflidan qalaqisaken, romelTa Soris manZili

100 km-ia, gavida velosipedisti, xolo raRac drois Semdeg

mis kvaldakval gaemgzavra avtobusi 50 km/sT siCqariT. igi

daewia velosipedists 36 wT-Si (avtobusis gamosvlidan).

avtobusi qalaqSi CasvlisTanave gamobrunda ukan da

Sexvda velosipedists 5 sT da 20 wT-Si velosipedistis

moZraobis dawyebidan. ipoveT velosipedistis siCqare.

10.312. A qalaqidan B qalaqSi gaemgzavra mgzavri,

xolo erTi saaTis Semdeg meore mgzavri. Tu mgzavrebis

siCqareebi darCeboda ucvleli, maSin isini B qalaqSi

mividodnen erTdroulad. magram mTeli gzis 107 -is gavlis Semdeg

pirvelma mgzavrma gaadida siCqare 23 -jer da amitom B

qalaqSi misi Casvlis momentSi meore mgzavri imyofeboda

2,5 km manZilze B qalaqidan. ipoveT meore mgzavris

siCqare, Tu manZili A da B qalaqebs Soris 20 km-ia.

10.313. A qalaqidan B qalaqSi, romelTa Soris manZili

100 km-ia, gaemgzavra velosipedisti. erTi saaTis Semdeg A -

dan gamovida meore velosipedisti, romelic daewia

pirvels da igive siCqariT gaemgzavra ukan. cnobilia, rom

pirveli velosipedisti B -Si Cavida maSin, roca meore

dabrunda A -Si. ipoveT pirveli velosipedistis siCqare,

Tu meoris siCqarea 30 km/sT.

10.314. A qalaqidan B qalaqSi, romelTa Soris

manZilia 270 km, gaemgzavra turisti. gzis pirveli 120 km

man gaiara avtomobiliT, meore nawili motocikliT, xolo

gzis darCenili nawili man gaiara isev avtomobiliT 1 sT-

Page 293: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

293

Si. motociklis siCqare 15 km/sT-iT naklebia avtomobilis

siCqareze. ipoveT avtomobilis siCqare, Tu turistis

moZraobis saSualo siCqarea 54 km/sT.

10.315. tbas uerTdeba ori mdinare. navi pirveli

mdinaris dinebis mimarTulebiT tbamde gadis 36 km-s,

Semdeg 19 km-s tbaze da 24 km-s meore mdinareze dinebis

sawinaaRmdego mimarTulebiT. sul mgzavrobaze navma

daxarja 8 sT, aqedan 2 saaTi imoZrava tbaze. pirveli

mdinaris dinebis siCqare 1 km/sT-iT metia meore mdinaris

dinebis siCqareze. ipoveT TiToeuli mdinaris dinebis

siCqare.

10.316. Tu gemi da katarRa mdinaris dinebis

mimarTulebiT imoZraveben da A punqtidan B punqtSi

Cavlen, maSin gemi Cava 1,5-jer ufro Cqara vidre katarRa,

amasTan katarRa yovel saaTSi gaivlis gemze 8 km-iT

naklebs. Tu isini igive manZils gaivlian dinebis

sawinaaRmdegod, maSin gemi Cava 2-jer ufro Cqara vidre

katarRa. ipoveT gemis da katarRis siCqare mdgar wyalSi.

10.317. or WurWelSi, romelTa tevadobaa 144 litri da

100 litri, wylis garkveuli raodenobaa. Tu mcire

WurWlidan didSi CavasxamT wyals ise, rom ukanaskneli

piramde aivsos mcire WurWelSi wylis pirvandeli

raodenobis 51 darCeba. Tuki dididan mcireSi CavasxamT

wyals da mas piramde avavsebT, maSin did WurWelSi wylis

pirvandeli raodenobis 127

aRmoCndeba. ramdeni litri

wyalia TiToeul WurWelSi?

10.318. gvaqvs spirtis ori xsnari. Tu pirveli xsnaris 2

kg, meoris 5 kg da 1 kg sufTa spirts avurevT, miviRebT xsnars,

romelSic spirtis koncentracia iqneba 83. Tu pirveli

xsnaris 4 kg, meoris 15 kg da 3 kg sufTa spirts avurevT,

miviRebT xsnars, romelSic spirtis koncentracia aris 114.

ipoveT spirtis koncentracia TiToeul xsnarSi.

10.319. gvaqvs spilenZis ori Senadnobi. erTi maTgani

iwonis 5 kg da Seicavs 2 kg spilenZs, meore iwonis 11 kg

da Seicavs 2,75 kg spilenZs. SeiZleba Tu ara am

Senadnobebidan movWraT nawilebi, gadavadnoT da miviRoT

Page 294: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

294

8 kg Senadnobi, romlis yoveli kilogrami 207

kg spilenZs

Seicavs?

10.320. gogirdmJavas ori xsnaridan pirveli aris 40%-

iani, meore 60%-iani. es ori xsnari Seuries erTmaneTs da

daumates 5 kg sufTa wyali, ris Sedegad miiRes 20%-iani

xsnari. Tu 5 kg wylis nacvlad daumatebdnen 5 kg 80%-ian

xsnars, maSin miiRebdnen 70%-ian xsnars. ramdeni kilogrami

iyo pirveli da ramdeni kilogrami meore xsnari?

10.321. WurWlidan, romelic savsea sufTa gliceriniT

gadmoasxes ori litri glicerini da WurWeli Seavses

wyliT; amis Semdeg gadmoasxes narevis imdenive raodenoba

da isev Seavses wyliT. bolos WurWlidan isev gadmoasxes

2 litri narevi da kvlav Seavses wyliT. amis Semdeg

WurWelSi darCa 3 litriT meti wyali vidre sufTa

glicerini. ramdeni litri glicerini da wyalia

WurWelSi?

10.322. liTonis ori naWeri erTad iwonis 30 kg-s.

pirveli naWeri Seicavs 5 kg sufTa vercxls, xolo

meore_4 kg-s. rogoria vercxlis procentuli Semcveloba

pirvel naWerSi, Tu igi 15%-iT naklebia, vidre meore

naWerSi?

10.323. gvaqvs spilenZisa da kalis ori Senadnobi. erT

SenadnobSi am metalebis raodenobebi ise Seefardeba,

rogorc 3:2, xolo meoreSi rogorc 2:3. ramdeni grami

TiToeuli Senadnobi unda aviRoT, rom miviRoT 24 grami

axali Senadnobi, romelSic spilenZis raodenobis

Sefardeba kalis raodenobasTan iqneba 5:7?

10.324. oqros procentuli Semadgenloba erT SenadnobSi

2,5-jer metia, vidre meoreSi. Tu orive Senadnobs erTad

gadavadnobT, maSin miiReba Senadnobi, romelSic iqneba

40% oqro. ipoveT ramdenjer mZimea pirveli Senadnobi

meoreze, Tu erTi da imave wonis pirveli da meore

Senadnobebis erTad gadadnobiT miRebuli Senadnobi

Seicavs 35% oqros.

!

Page 295: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

295

§11. njnefwspcfcj!eb!qsphsftjfcj!!

J/!njnefwspcfcj!

!11.1. ipoveT! pirveli eqvsi wevri mimdevrobisa, romelic

Semdegi formuliTaa mocemuli:

1) nxn 23+= ; 2) n

nx )1(−= ; 3) 12 −= n

nx ; 4) n

nx −= 2 ;

5) 28 nxn −= ; 6) 32 2 +−= nnxn ; 7)

nnxn

2+= ;

8) n

xn1

= ; 9) ( )2

11 n

nx −+= ; 10)

( )n

xn

n11 −+

= .

11.2. mimdevroba mocemulia formuliT: 52 += nxn . ipoveT:

1) 20x ; 2) 100x ; 3) 1−kx ; 4) kx2 .

11.3. mimdevroba mocemulia 14 −= nxn formuliT. ipoveT

mimdevrobis im wevris nomeri, romelic udris:

1) 95-s; 2) 115-s; 3) 399-s; 4)479-s.

11.4. mimdevroba mocemulia 122 ++= nnxn formuliT.

aris Tu ara am mimdevrobis wevri Semdegi ricxvi:

1) 289; 2) 361; 3) 223; 4) 1000?

Tu aris, ipoveT am wevris nomeri.

11.5. mimdevroba mocemulia nnxn 172 −= formuliT. aris

Tu ara am mimdevrobis wevri Semdegi ricxvi:

1) –30; 2) -100?

Tu aris, ipoveT am wevris nomeri.

11.6. mimdevroba mocemulia 23 += nxn formuliT. ipoveT

n –is im mniSvnelobaTa simravle, romlebisTvisac

WeSmaritia utoloba:

1) 29≥nx ; 2) 47≤nx ; 3) 100>nx ; 4) 18080 ≤≤ nx .

11.7. mimdevroba mocemulia n

nxn1

+= formuliT. ipoveT

n -is im mniSvnelobaTa simravle, romlebisTvisac

WeSmaritia utoloba:

1) 2>nx ; 2) 5>nx ; 3) 6≤nx ; 4) 203 << nx .

Page 296: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

296

11.8. mimdevroba mocemulia 2nxn = formuliT. ipoveT im

wevris nomeri, romlidanac dawyebuli mimdevrobis

wevrebi metia:

1) 100-ze; 2) 1000-ze.

11.9. ipoveT mimdevrobis zogadi wevris formula:

1) 1, 3, 5, 7, 9,K 2) 2, 4, 6, 8, 10,K

3) 2, 5, 8, 11, 14,K 4) 1, 4, 9, 16, 25,K

5) 1, 8, 27, 64, 125,K 6) K,51 ,

41 ,

31 ,

21 ,1

7) K,54 ,

43 ,

32 ,

21

8) 3, -3, 3, -3,K

9) K ,81- ,

41 ,

21- ,1 10) 1, 9, 25, 49, 81,K

11.10. ipoveT ( )na mimdevrobis pirveli xuTi wevri, Tu

1) ,11 =a 11 +=+ nn aa ; 2) ,71 =a 31 −=+ nn aa ;

3) ,51 −=a nn aa 21 =+ ; 4) ,751 =a nn aa 1,01 =+ ;

5) ,61

1 =a nn aa −=+1 ; 6) ,31 =a n

n aa 1

1 =+ .

11.11. ( )nx mimdevroba mocemulia rekurentulad. dawereT

am mimdevrobis n -uri wevris formula:

1) 4 ,4 11 −=−= + nn xxx ; 2) nn xxx31 ,4 11 == + ;

3) 121 ,2 11 +== + nn xxx ; 4) 2 ,3 11 +== + nn xxx .

11.12. aris Tu ara monotonuri mimdevroba, romelic

Semdegi formuliTaa mocemuli:

1) nxn −=10 ; 2) 2

3+=

nxn ; 3) nxn −= 3 ;

4) n

xn1

= ; 5) n

xn21+= ; 6)

4

2nxn = ;

7) ( )26−= nxn ; 8) n

xn11−= ; 9)

nnxn

1−= ;

10) ( )

nx

n

n1−

= ; 11) 5273

++

=nnxn ; 12) 23 nxn −= .

11.13. daamtkiceT, rom mimdevroba, romlis zogadi wevria

Page 297: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

297

n

n aax ⎟

⎟⎠

⎞⎜⎜⎝

⎛ +=

212

,

sadac a aris 1-sagan gansxvavebuli dadebiTi

ricxvi, zrdadia.

11.14. vTqvaT, n

nxn15 −

= . ipoveT n -is im mniSvnelobaTa

simravle, romelTaTvisac:

1) 815 <− nx ; 2) 1,05 <− nx ;

3) 3215 <− nx ; 4) 001,05 <− nx .

11.15. ipoveT ( nx ) mimdevrobis udidesi da umciresi

wevrebi, Tu aseTebi arsebobs:

1) 362 ++−= nnxn ; 2) 182 +−= nnxn ;

3) 5,3

1−

=n

xn ; 4) n

nxn125 −

= .

11.16. arsebobs Tu ara sasruli ricxviTi Sualedi,

romelsac Semdegi mimdevrobis yvela wevri

ekuTvnis?

1) KK ,12,,37 ,

25 ,3

nn +

; 2) KK ,1 ,,,41 ,3 ,

31 ,2 ,

21 ,1

nn ;

11.17. daadgineT, mocemuli mimdevrobebidan romelia

SemosazRvruli da romeli ara:

1) 12 += nxn ; 2) 2nxn = ; 3)

nnxn

12 += ;

4) n

nx )2(−= ; 5)

n

nx ⎟⎠⎞

⎜⎝⎛−=

21

; 6) n

nxn72 +

= ;

7) 12

1−

=n

xn ; 8) nx nn ⋅−= )1( ; 9)

nnxn 2

83 += ;

10) 2)1( n

nx −= .!

!!

Page 298: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

298

JJ/!bsjUnfujlvmj!qsphsftjb!!

11.18. ipoveT ( )na ariTmetikuli progresiis pirveli wev-

ri, Tu:

1) 12 ,13110 == da ; 2) 5 ,25052 −=−= da ;

3) 3 ,0100 −== da ; 4) 2,0 ,7,1266 == da .

11.19. ipoveT ( )na ariTmetikuli progresiis sxvaoba, Tu:

1) 92 ,2 101 == aa ; 2) 2 ,7 161 =−= aa ;

11.20. mocemulia ( )na ariTmetikuli progresiis pirveli

wevri da sxvaoba. ipoveT progresiis pirveli 8

wevris jami.

1) 20 ,1001 −== da ; 2) 3 ,231 =−= da ;

3) 7 ,131 =−= da ; 4) 4 ,91 −== da .

11.21. ipoveT ariTmetikuli progresiis pirveli 10 wevris

jami:

1) 2, 5,K ; 2) –17, -11,K ; 3) –2, 0, 2,K ;

4) 14,2; 9,6;K .

11.22. ipoveT ( )na ariTmetikuli progresiis pirveli

wevri da sxvaoba, Tu:

1) 60 ,27 275 == aa ; 2) 47 ,74 7447 == aa ;

3) 92 ,0 6620 −== aa ; 4) 5,9 ,1 258 == aa .

11.23. ipoveT ( )na ariTmetikuli progresiis n -uri wevri

da wevrTa jami, Tu:

1) 15 ,5 ,81 === nda ; 2) 11 ,7,0 ,31 ==−= nda ;

3) 13 ,41 ,41 =−== nda ; 4) 61 ,

31 ,

6511 ==−= nda .

11.24. ipoveT ( )na ariTmetikuli progresiis wevrTa

ricxvi da wevrTa jami, Tu:

1) 5 ,21 ,01 === nada ; 2) 100 ,5,5 ,5,41 ==−= nada ;

3) 2146 ,4 ,

21371 ==−= nada ;

4) 32 ,7,0 ,5,141 === nada .

11.25. ariTmetikul progresiaSi:

1) 105 ,5 261 == aa . ipoveT d da 26S ;

2) 20 ,10 61 −=−= aa . ipoveT d da 6S ;

Page 299: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

299

3) 873 ,

43

261 == aa . ipoveT d da 26S ;

4) 89 , 91 βαα +== aa . ipoveT d da 9S .

11.26. ariTmetikul progresiaSi:

1) 459 ,10 45 == ad . ipoveT 1a da 45S ;

2) 10 ,2 15 −== ad . ipoveT 1a da 15S ;

3) 1 ,41

13 =−= ad . ipoveT 1a da 13S .

4) α+=α−= 2728 ,1 28ad . ipoveT 1a da 28S .

11.27. ariTmetikul progresiaSi:

1) 999 ,54 ,5,11 === nn Saa . ipoveT d da n ;

2) 7,137 ,2,5 ,2,01 === nn Saa . ipoveT d da n ;

3) 3400 ,67 ,11 === nn Saa . ipoveT d da n ;

4) 41146 ,

4315 ,61 ==−= nn Saa . ipoveT d da n .

11.28. ariTmetikul progresiaSi:

1) 75 ,21 ,91 −==−= nSda . ipoveT na da n ;

2) 32158 ,

31 ,

65

1 −=−== nSda . ipoveT na da n .

11.29. ariTmetikul progresiaSi:

1) 0 ,28 91 =−= Sa . ipoveT d da 9a ;

2) 108 ,7,0 301 == Sa . ipoveT d da 30a .

11.30. ariTmetikul progresiaSi:

1) 0 ,3 31 == Sd . ipoveT 1a da 31a ;

2) 32209 ,

31

37 == Sd . ipoveT 1a da 37a .

11.31. ariTmetikul progresiaSi:

1) 1050 ,140 1414 == Sa . ipoveT 1a da d ;

2) 55 ,37 1010 −=−= Sa . ipoveT 1a da d .

11.32. ariTmetikul progresiaSi:

1) 155 ,25 ,2 =−=−= nn Sad . ipoveT 1a da n ;

2) 3843 ,123 ,2 === nn Sad . ipoveT 1a da n .

11.33. ariTmetikul progresiaSi:

1) 2 ,5330 == da . ipoveT 17a ;

2) 3 ,7632 == da . ipoveT 15a ;

Page 300: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

300

3) 1 ,13 151 −== aa . ipoveT 18S ;

4) 18 ,8 111 == aa . ipoveT 13S .

11.34. 1) 7-sa da 35-s Soris CasviT eqvsi ricxvi ise, rom

maT mocemul ricxvebTan erTad ariTmetikuli

progresia Seadginon.

2) 1-sa da 16-s Soris CasviT 8 ricxvi ise, rom maT

mocemul ricxvebTan erTad ariTmetikuli

progresia Seadginon.

11.35. ariTmetikul progresiaSi: 1) 32 ,12 73 == aa . ipoveT 10a ;

2) 11 ,3 73 == aa . ipoveT d ;

3) 19 ,7 95 == aa . ipoveT 15S ;

4) 34 ,4 84 −=−= aa . ipoveT 7a .

5) )( , mnnama mn ≠== . ipoveT 1a da d ;

6) )( , mnnama mn ≠== . ipoveT mnS + .

jqpwfU! bsjUnfujlvmj! qsphsftjjt! qjswfmj! xfwsj! eb!

tywbpcb-!Uv!)$$22/47<!22/48*;!

11.36. 1) ⎩⎨⎧

=−=+

2142

310

71

aaaa

2) ⎩⎨⎧

=+−=+

6,22,0

105

115

aaaa

3) ⎩⎨⎧

=⋅=+6024

32

51

aaaa

4) ⎩⎨⎧

=⋅=−758

72

37

aaaa

11.37. 1) ⎩⎨⎧

=+=−+

1710

61

352

aaaaa

2) ⎩⎨⎧

=+=+−

178

33

252

aSaSS

3) ⎩⎨⎧

==+

140105

4

51

Saa

4) ⎪⎩

⎪⎨⎧

=+=+

601170

157

212

24

aaaa

11.38. ipoveT ariTmetikuli progresiis pirveli wevri,

wevrTa ricxvi da sxvaoba, Tu:

1)

⎪⎩

⎪⎨

==+

=

5,4125,32

55

15

52

Saa

an

2)

⎪⎩

⎪⎨

===

1057530

5

3

nSSS

Page 301: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

301

11.39. ariTmetikul progresiaSi:

1) ⎩⎨⎧

=+=+

. .21269

963

75

SaaSS

ipoveT

2) ⎩⎨⎧

−=+−=+

. .10320

1254

84

SaaSS

ipoveT

11.40. ariTmetikul progresiaSi ipoveT pirveli n wevris

jami, Tu:

1) 12 −= nan ; 2) 23 += nan ; 3) nan 214 −= ;

4) 712 +−= nan .

11.41. 1) gamoTvaleT yvela naturaluri ricxvis jami 1-

dan 100-mde;

2) gamoTvaleT yvela naturaluri ricxvis jami 1-

dan n -mde;

3) ipoveT yvela luwi naturaluri ricxvis jami 100-

mde CaTvliT;

4) ipoveT yvela kenti naturaluri ricxvis jami 13-

dan 81-mde CaTvliT;

5) gamoiangariSeT yvela orniSna naturaluri

ricxvis jami.

6) ipoveT yvela kenti samniSna ricxvis jami 112-dan

128-mde.

11.42. ariTmetikul progresiaSi:

1) 15 ,71 == da . ipoveT 201110 aaa +++ L ;

2) 8 ,21 == da . ipoveT 251211 aaa +++ L .

11.43. ariTmetikul progresiaSi:

1) 209 =a . ipoveT 17S ;

2) 216 =a . ipoveT 31S .

11.44. ariTmetikul progresiaSi:

1) 48158 =+ aa . ipoveT 22S ;

2) 98151074 =+++ aaaa . ipoveT 9a ;

3) 1201614117 =+++ aaaa . ipoveT 12a ;

4) 100181282 =+++ aaaa . ipoveT 10a .

11.45. 1) ipoveT K,55,0 ,127

ariTmetikuli progresiis pir-

veli uaryofiTi wevri.

Page 302: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

302

2) ipoveT K,923 ,

213 −− ariTmetikuli progresiis

pirveli dadebiTi wevri.

11.46. ipoveT ariTmetikuli progresiis udidesi

uaryofiTi wevri, Tu:

1) 321 ,371 −== da ; 2)

411 ,301 =−= da .

11.47. ipoveT ariTmetikuli progresiis umciresi

dadebiTi wevri, Tu:

1) 54 ,501 −== da ; 2)

311 ,601 =−= da .

11.48. ipoveT ariTmetikuli progresiis yvela dadebiTi

wevris jami, Tu:

1) 43 ,351 −== da ; 2)

52 ,281 −== da .

11.49. ipoveT ariTmetikuli progresiis yvela uaryofiTi

wevris jami, Tu:

1) 31 ,221 =−= da ; 2)

43 ,351 =−= da .

11.50. 1) ipoveT nan 3218 −= mimdevrobis yvela iseTi wev-

ris jami, romlebic metia 6-ze.

2) ipoveT nan 7614 −= mimdevrobis yvela iseTi wev-

ris jami, romlebic metia 2-ze.

11.51. 1) ipoveT 10 da 20-s Soris moTavsebuli yvela im

ukveci wiladebis jami, romelTa mniSvnelia 3.

2) ipoveT 8 da 16-s Soris moTavsebuli yvela im

ukveci wiladebis jami, romelTa mniSvnelia 5.

11.52. ariTmetikul progresiaSi:

1) 900 ,100 3010 == SS . ipoveT 40S ;

2) 1502515 == SS . ipoveT 30S .

11.53. aris Tu ara ( )na mimdevroba ariTmetikuli

progresia, Tu am mimdevrobis pirveli n wevris

jami Semdegi formuliT gamoiTvleba:

1) nnSn 22 −= ; 2) 114 2 +−= nSn ;

3) 17 −= nSn ; 4) 32 +−= nnSn .

Page 303: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

303

11.54. ra pirobas unda akmayofilebdes ba , da c ricxvebi, rom mimdevroba, romlis pirveli n

wevris jami gamoiTvleba formuliT cbnanSn ++= 2,

iyos ariTmetikuli progresia?

11.55. amoxseniT gantoleba:

1) 441531 =++++ xL ;

2) 117741 =++++ xL ;

3) ( ) 40010531 =−++++ xL ;

4) ( ) 20921074 =−++++ xL ;

5) ( ) 5153075,42 =+++++ xL ;

6) ( ) ( ) ( ) ( ) 15528741 =++++++++ xxxx L .

11.56. daamtkiceT, rom Tu a1,

b1,

c1 ariTmetikuli

progresiaa, maSin:

acbcab 2=+ .

11.57. daamtkiceT, rom Tu cb +

1,

ca +1

da ba +

1

ariTmetikuli progresiaa, maSin 2a ,

2b , 2c

ariTmetikuli progresia iqneba.

11.58. daamtkiceT, rom ( )na mimdevrobis arcerTi sami

momdevno wevri ar adgens ariTmetikul progresias,

Tu:

1) 2nan = ; 2) nan = ; 3)

nan

1= .

11.59. daamtkiceT, rom Tu a , b , c ariTmetikuli progre-

siaa, maSin

1) ( ) ( ) ( )22222 63 cbabacba +++−=++ ;

2) ( )22 28 cbbca +=+ .

11.60. ramden saaTSi gaivlis velosipedisti 54 km-s, Tu

pirvel saaTSi igi gadis 15 km-s, xolo yovel Semdeg

saaTSi 1 km-iT naklebs, vidre winaSi?

11.61. amfiTeatri Sedgeba 10 rigisagan, amasTanave yovel

Semdeg rigSi 20 adgiliT metia, vidre winaSi, xolo

ukanasknel rigSi 280 adgilia. ramden kacs itevs

amfiTeatri?

11.62. burTulebi samkuTxedis formiT aris dalagebuli.

amasTan zemodan pirvel rigSi 1 burTulaa,

Page 304: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

304

meoreSi_2, mesameSi_3 da a. S. ramden rigadaa

dalagebuli burTulebi, Tu maTi saerTo raodenoba

120-ia? ramdeni burTulaa saWiro ocdaaTrigiani

samkuTxedis Sesadgenad?

11.63. turistma, romelic adioda mTis ferdobze, pirveli

saaTis ganmavlobaSi miaRwia 800 m simaRles, xolo

yovel Semdeg saaTSi 25 metriT naklebi simaRle

dafara, vidre winaSi. ramden saaTSi miaRwevs

turisti 5700 m simaRles?

11.64. mama Tavis Svils misi dabadebis dRes, dawyebuli 5

wlidan, saCuqrad aZlevs imden wigns, ramdeni wlisac

aris Svili. xuTi Svilis wlovanebaTa ricxvi

Seadgens ariTmetikul progresias, romlis sxvaobaa

3. ramdeni wlis iyo TiToeuli Svili, rodesac maTi

biblioTeka 325 wignisagan Sedgeboda?

11.65. A punqtidan gamovida velosipedisti, romelmac

pirvel saaTSi gaiara 10 km, xolo yovel Semdeg

saaTSi 1 km-iT mets gadioda, vidre winaSi.

erTdroulad, mis kvaldakval A -dan 7,5 km-is

manZilze mdebare B punqtidan gamovida meore

velosipedisti, romelmac pirvel saaTSi gaiara 12 km,

xolo yovel Semdeg saaTSi gadioda 1,5 km-iT mets,

vidre winaSi. ipoveT ramdeni saaTis Semdeg daeweva

meore velosipedisti pirvels.

11.66. ori sxeuli, romelTa Soris manZili 153 m-ia,

erTmaneTis Sesaxvedrad moZraobs. pirveli sxeuli

wamSi 10 m-s gadis. meore sxeulma ki pirvel wamSi

gaiara 3 m da yovel Semdeg wamSi 5 m-iT meti, vidre

winaSi. ramdeni wamis Semdeg Sexvdebian sxeulebi

erTmaneTs?

11.67. sxeuli pirvel wuTSi 3 m-s gadis, xolo yovel

Semdeg wuTSi 6 m-iT mets, vidre winaSi. pirveli

sxeulis gamosvlidan 5 wuTis Semdeg imave punqtidan

sawinaaRmdego mimarTulebiT gamodis meore sxeuli,

romelic pirvel wuTSi gadis 54 m-s, xolo yovel

Semdeg wuTSi 3 m-iT mets, vidre winaSi. meore

sxeulis gamosvlidan ramdeni wuTis Semdeg iqnebian

sxeulebi mocemuli punqtidan toli manZilebiT

daSorebuli?

11.68. ori punqtidan erTmaneTis Sesaxvedrad erTdroulad

ori sxeuli gamovida; punqtebs Soris manZili 200 m-

Page 305: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

305

ia. pirveli sxeuli wamSi gadis 12 m-s; meore sxeulma

pirvel wamSi gaiara 20 m, xolo yovel Semdeg wamSi

gadioda 2 m-iT naklebs, vidre winaSi. ramdeni wamis

Semdeg Sexvdebian sxeulebi erTmaneTs?

11.69. SeiZleba Tu ara, rom marTkuTxa samkuTxedis

gverdebma Seadginon ariTmetikuli progresia?

11.70. SeiZleba Tu ara, rom samkuTxedis gverdebma da

perimetrma Seadginon ariTmetikuli progresia?

11.71. ariTmetikuli progresiis Semadgeneli sami ricxvis

jami udris 2, xolo amave ricxvTa kvadratebis jamia

951 . ipoveT es ricxvebi.

11.72. ipoveT naturalur ricxvTagan Sedgenili iseTi

ariTmetikuli progresia, romlis pirveli sami da

pirveli oTxi wevris namravli Sesabamisad udris 6

da 24.

11.73. mocemulia ori ariTmetikuli progresia. pirveli

progresiis pirveli da mexuTe wevrebi Sesabamisad

tolia 7 da –5, xolo meore progresiis pirveli

wevri udris 0-s da ukanaskneli wevri 213 . ipoveT

meore progresiis wevrebis jami, Tu cnobilia, rom

orive progresiis mesame wevri erTmaneTis tolia.

11.74. mocemulia ori ariTmetikuli progresia 5,9,13,K da

3,9,15,K . TiToeuli Seicavs 50 wevrs. ipoveT yvela im

ricxvebis jami, romlebic erTdroulad warmoadgenen

am ori progresiis wevrebs.

!JJJ/!hfpnfusjvmj!qsphsftjb!

!11.75. ipoveT geometriuli progresiis mniSvneli, Tu:

1) 9 ,12 21 == bb ; 2) 30 ,20 54 −== bb ;

3) 80 ,40 98 −=−= bb ; 4) 2 ,2 43 == bb .

hfpnfusjvm!qsphsftjbTj!)$$22/87.22/98*;!

11.76. 1) 2 ,41

1 == qb . ipoveT 6b ;

2) 21 ,81 == qb . ipoveT 7b ;

Page 306: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

306

3) 21 ,41 −=−= qb . ipoveT 6b ;

4) 31 ,41 −=−= qb . ipoveT 4b .

11.77. 1) 4 ,2565 == qb . ipoveT 3b ;

2) 3 ,1625 == qb . ipoveT 3b ;

3) 3 ,4866 −=−= qb . ipoveT 2b ;

4) 2 ,3207 −== qb . ipoveT 3b .

11.78. 1) 486 ,2 61 −=−= bb . ipoveT q ;

2) 512 ,2 51 == bb . ipoveT q ;

3) 384 ,3 81 −== bb . ipoveT q ;

4) 1 68, 256b b= = . ipoveT q .

11.79. 1) 21 ,81 == qb . ipoveT 5S ; 2) 2 ,11 −== qb . ipoveT 9S ;

3) 32 ,41 == qb . ipoveT 6S ; 4)

21 ,31 −== qb .ipoveT 10S .

11.80. 1) 21 ,961 == qb . ipoveT 7b da 7S ;

2) 2 ,125,01 −== qb . ipoveT 6b da 6S .

11.81. 1) 2 ,21 ,2561 === nbqb . ipoveT n da nS ;

2) 1024 ,4 ,41

1 === nbqb . ipoveT n da nS .

11.82. 1) 1458 ,2 71 == bb . ipoveT q da 7S ;

2) 81 ,2 51 == bb . ipoveT q da 5S .

11.83. 1) 3125 ,212 6 == bq . ipoveT 1b da 6S ;

2) 96 ,2 6 == bq . ipoveT 1b da 6S .

11.84. 1) 341 ,512 ,11 −=−== nn Sbb . ipoveT n da q ;

2) 9

1210 ,9

10 ,901 === nn Sbb . ipoveT n da q .

11.85. 1) 765 ,2 8 == Sq . ipoveT 1b da 8b ;

2) 847 ,3 5 == Sq . ipoveT 1b da 5b .

11.86. 1) 254 ,21 ,1281 === nSqb . ipoveT n da nb ;

Page 307: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

307

2) 65 ,32 ,271 === nSqb . ipoveT n da nb .

11.87. 1) 75,43 ,4

27 ,43

=== nn Sbq . ipoveT n da 1b ;

2) 7161 ,7 ,21

=== nn Sbq . ipoveT n da 1b .

11.88. ipoveT ( )nb geometriuli progresiis mniSvneli, me-6

da me-7 wevrebi, Tu:

1) 24 ,6 53 == bb ; 2) 10 ,10 85 −== bb ;

3) 18 ,2 53 −=−= bb ; 4) 3 ,24 85 == bb .

11.89. geometriuli progresiis me-8 wevri udris 13-s, xolo

mniSvneli_3-s. ipoveT meaTe da mecamete wevrebi.

11.90. 1) gamosaxeT ( )nb geometriuli progresiis meSvide,

meTxuTmete da meormoce wevrebi 5b -isa da q -s

saSualebiT.

2) ( )nb geometriul progresiaSi ( )0>nb , 21 −− += nnn bbb ,

( 3≥n ). ipoveT progresiis mniSvneli.

11.91. geometriul progresiaSi:

1) 21 ,

23

1 == qb . ipoveT 76543 bbbbb ++++ ;

2) 32 ,181 == qb . ipoveT 6543 bbbb +++ ;

3) 3 ,32

1 −== qb . ipoveT 5432 bbbb +++ ;

4) 2 ,23

1 −=−= qb . ipoveT 6543 bbbb +++ .

11.92. 1) 9-sa da 243-s Soris CasviT ori ricxvi, romlebic

mocemul ricxvebTan erTad geometriul progresias

Seadgenen.

2) 160-sa da 5-s Soris CasviT oTxi ricxvi ise, rom

maT mocemul ricxvebTan erTad Seadginon

geometriuli progresia.

3) 1-sa da 7-s Soris CasviT eqvsi ricxvi ise, rom maT

mocemul ricxvebTan erTad Seadginon geometriuli

progresia.

Page 308: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

308

4) 60-sa da 1615

-s Soris CasviT xuTi iseTi ricxvi,

romlebic mocemul ricxvebTan erTad geometriul

progresias adgenen.

11.93. ipoveT geometriuli progresiis pirveli wevri da

mniSvneli, Tu:

1) ⎩⎨⎧

=−−=−8

4

13

12

bbbb

2)

⎪⎪⎩

⎪⎪⎨

=+−

=+

87

167

123

14

bbb

bb

3) ⎩⎨⎧

=−=−

615

24

15

bbbb

4) ⎩⎨⎧

=−+=−+

2010

563

452

bbbbbb

11.94. ipoveT im geometriuli progresiis pirveli wevri,

mniSvneli da wevrTa ricxvi, romelSic:

1) ,4857 =− bb 2) ,21646 =− bb

4856 =+ bb , 813 =− bb ,

1023=nS ; 40=nS .

11.95. ipoveT 3S , 5S , nS , Tu ( )nb geometriuli progresia n -

uri wevris formuliTaa mocemuli:

1) n

nb 45,1 ⋅= ; 2) 132 +⋅= n

nb .

11.96. ipoveT jami:

1) 102 2221 ++++ L ; 2) 1032 2

121

21

21

−−+− L ;

3) 1032 31

31

31

31

++++ L ; 4) 1232 22221 ++−+− L .

5) 10021 xxx ++++ L ; 6)

1353 xxxx +−+− L .

11.97. amoxseniT gantoleba:

1) 1

111

102

−+

=++++x

xxxxx L ;

2) xxxxxxx

++

=++−+−1

1213

1232 L .

3) 01 992 =++++ xxx L ; 4) 01 1002 =++++ xxx L ;

5) 27

11 1

2 =−

++++++

xxxxx

x

nnL ;

Page 309: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

309

6) xxxxxx

xxx

xx

xx

−+−

+++++=++−

+−

+−

12311321 11

102 LL ,

sadac x mTeli ricxvia.

11.98. daamtkiceT, rom Semdegi formuliT mocemuli ( )nb

mimdevroba geometriuli progresiaa:

1) n

nb 2= , 2) nnb53

= ;

3)

n

nb ⎟⎠⎞

⎜⎝⎛⋅=

314 ; 4)

nnb 3−= .

11.99. daamtkiceT, rom nebismieri a -sa da b -saTvis ( ba ≠ )

( )2ba + , 22 ba − , ( )2ba − geometriuli progresiaa.

11.100.daamtkiceT, rom Tu a , b , c , d geometriuli

progresiaa, maSin ( ) ( ) ( ) ( )2222 accbbdda −+−+−=− .

11.101.cnobilia, rom ( )nb geometriuli progresiaa. iqneba

Tu ara geometriuli progresia Semdegi mimdevroba:

1) 12b , 22b , 32b ,K , nb2 ,K ; 2) KK ,,,,, 12531 −nbbbb ;

3) KK ,1,,1,1,1

321 nbbbb; 4) KK ,,,,, 33

332

31 nbbbb .

11.102. aris Tu ara ( )nb mimdevroba geometriuli progre-

sia, Tu cnobilia, rom am mimdevrobis pirveli n

wevris jami Semdegi formuliT gamoiTvleba:

1) 13 −= nnS ; 2) 12 −= nSn ; 3) 12 −= n

nS ; 4) 13 += nnS .

11.103. ipoveT formula, romelic gamosaxavs geometriuli

progresiis pirveli n wevris namravls pirveli

wevrisa da mniSvnelis saSualebiT.

11.104. Tu geometriuli progresiis yvela wevrs gavamra-

vlebT sxva geometriuli progresiis Sesabamis

(dakavebuli adgilis nomris mixedviT) wevrebze,

maSin iqneba Tu ara miRebuli mimdevroba

geometriuli progresia?

11.105. daamtkiceT, rom Tu )( nb geometriuli progresiaa,

maSin

⎟⎟⎠

⎞⎜⎜⎝

⎛+++⋅=

nnn bbb

bbS 111

211 L .

Page 310: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

310

11.106. geometriuli progresiis pirveli oTxi wevris jami

udris 30-s, momdevno oTxi wevris ki 480-s. ipoveT

pirveli Tormeti wevris jami.

11.107. geometriuli progresiis pirveli sami wevris jamia

40, eqvsi wevrisa ki 60; ipoveT 9S .

11.108. ipoveT oTxi ricxvi, romlebic Seadgens klebad

geometriul progresias, Tu viciT, rom am

progresiis kiduri wevrebis jamia 27, xolo Sua

wevrebis jami aris 18.

11.109. ipoveT sami ricxvi, romlebic zrdad geometriul

progresias Seadgenen, Tu viciT, rom maTi jami aris

26, xolo am ricxvebis kvadratebis jamia 364.

11.110. ricxvebi 15, q17 , 215q adgenen ariTmetikul

progresias. ipoveT 2, q2 , K,2 2q geometriuli

progresiis pirveli 4 wevris jami, Tu is klebadia.

11.111. ricxvebi 1 , ,6 dd− adgenen geometriul progresias.

ipoveT K,23 ,3 ,3 dd ++ ariTmetikuli progresiis

pirveli 13 wevris jami, Tu is klebadia.

11.112. ariTmetikuli progresiis 1-li, me-3 da me-13 wevrebi

geometriul progresias adgenen. ipoveT am

ukanasknelis mniSvneli.

11.113. geometriuli progresiis 1-li, me-2 da me-4 wevrebi

ariTmetikul progresias adgenen. ipoveT

geometriuli progresiis mniSvneli.

11.114. ipoveT ariTmetikuli da geometriuli progresiebi,

Tu cnobilia, rom TiToeuli progresiis pirveli

wevri udris 1-s, orive progresiis mesame wevrebi

tolia, xolo ariTmetikuli progresiis 21-e wevri

udris geometriuli progresiis me-5 wevrs.

11.115. sami dadebiTi ricxvi, romelTa jami 21-ia,

ariTmetikul progresias Seadgenen. Tu maT

Sesabamisad 2-iT, 3-iT da 9-iT gavadidebT, miviRebT

geometriul progresias. ipoveT es ricxvebi.

11.116. sami dadebiTi ricxvi, romlebic ariTmetikul

progresias Seadgenen, jamSi 15-s iZleva. Tu pirvelsa

da meores erTiT gavadidebT, xolo mesame ricxvs 4-

iT, maSin miviRebT geometriul progresias. ipoveT es

ricxvebi.

11.117. sami ricxvi, romelTa jami udris 65-s, geometriul

progresias Seadgens. Tu am ricxvebidan umciress 1-s

Page 311: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

311

gamovaklebT, xolo udidess 19-s, maSin miRebuli

ricxvebi ariTmetikul progresias Seadgenen. ipoveT

es ricxvebi.

11.118. ipoveT oTxi mTeli ricxvi, romelTagan pirveli

sami ariTmetikul progresias Seadgens, ukanaskneli

sami ki geometriul progresias; cnobilia, rom ori

kiduri ricxvis jami udris 37-s, xolo ori Sua

ricxvis jami 36-s.

11.119. oTxi ricxvi ariTmetikul progresias adgens. Tu

maT Sesabamisad 2-s, 6-s, 7-sa da 2-s davaklebT, maSin

axlad miRebuli ricxvebi geometriul progresias

Seadgenen. ipoveT es ricxvebi.

11.120. oTxi ricxvi geometriul progresias adgens. Tu

maT Sesabamisad 2-s, 1-s, 7-sa da 27-s davaklebT, maSin

axlad miRebuli ricxvebi ariTmetikul progresias

Seadgenen. ipoveT es ricxvebi.

11.121. geometriuli progresiis pirveli wevri aris 1,

mniSvnelia 2, wevrTa ricxvi ki n2 . progresiis

wevrTa jami 3233

-jer metia bolo n -wevris jamze.

ipoveT n .

11.122. ariTmetikul da geometriul progresiebs aqvT 5-is

toli pirveli wevrebi; am progresiebis mesame

wevrebic erTmaneTis tolia, xolo ariTmetikuli

progresiis meore wevri 10-iT metia geometriuli

progresiis meore wevrze. ipoveT es progresiebi.

11.123. ipoveT oTxi iseTi ricxvi, romelTagan pirveli

sami Seadgens geometriul progresias, xolo

ukanaskneli sami_ariTmetikul progresias: kidura

wevrebis jamia 21, xolo Sua wevrebis- 18. 11.124. sami ricxvi Seadgens geometriul progresias. Tu

mesame wevrs gamovaklebT oTxs, maSin es ricxvebi

Seadgenen ariTmetikul progresias. Tu miRebuli

ariTmetikuli progresiis meore da mesame wevrebs

TiTo-TiTos gamovaklebT, maSin isev miviRebT

geometriul progresias. ipoveT es ricxvebi.

11.125. ipoveT oTxi ricxvi, romlebic Seadgenen iseT

geometriul progresias, romlis kidura wevrebis

jami udris –49-s, xolo Sua wevrTa jamia 14.

11.126. ipoveT geometriuli progresiis Semadgeneli oTxi

ricxvi, Tu cnobilia, rom am progresiis mesame wevri

Page 312: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

312

9-iT metia pirvelze, xolo meore 18-iT metia

meoTxeze.

!!

JW/!hfpnfusjvmj!qsphsftjb-!spdb! 1<q !

!11.127. ipoveT geometriuli progresiis jami:

1) K,41 ,

21 ,1 ; 2) 16, 4, 1,K ;

3) K,154 ,

311 ,

326 ; 4) K,

83 ,

21 ,

32

.

11.128. 1) ipoveT mniSvneli geometriuli progresiisa,

romelSic pirveli wevri udris 66-s, xolo

progresiis jami 110-s.

2) ipoveT meoTxe wevri geometriuli progresiisa,

romelSic mniSvneli udris 0,4-s, xolo progresiis

jami 3133 -s.

3) ipoveT jami geometriuli progresiisa, romelSic

meore wevri udris 321 -s, xolo progresiis

mniSvneli 32-s.

4) geometriuli progresiis jami udris 12,5-s, xolo

misi pirveli da meore wevrebis jami 12-s. ipoveT es

progresia.

11.129. ipoveT geometriuli progresiis pirveli wevri, Tu:

1) progresiis jami udris 10,8-s, xolo progresiis

mniSvneli 92-ia;

2) progresiis jami udris 729-s, xolo meore wevri

162-s;

3) progresiis jami udris 14,4-s, xolo progresiis

mniSvneli 83-ia;

4) pirveli oTxi wevris jami udris 4333 , xolo

progresiis jami 36-ia.

Page 313: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

313

11.130. ipoveT geometriuli progresiis mesame wevri, Tu

cnobilia, rom am progresiis jami udris 531 , xolo

meore wevri tolia 21

− -is.

11.131. ipoveT iseTi geometriuli progresiis mniSvneli,

romlis yoveli wevri 4-jer metia yvela misi

momdevno wevrebisagan Sedgenili progresiis jamze.

11.132. ipoveT iseTi geometriuli progresiis mniSvneli,

romlis yoveli wevri ise Seefardeba Tavis

momdevno wevrTagan Sedgenili progresiis jams,

rogorc 2:3.

11.133. geometriuli progresiis jami tolia 4-is, xolo

misi wevrebis kubebisagan Sedgenili progresiis

jamia 192. ipoveT am progresiis pirveli wevri da

mniSvneli.

11.134. tolgverda samkuTxedSi, romlis gverdi aris a ,

misi gverdebis Suawertilebis SeerTebiT Caxazulia

axali samkuTxedi; am samkuTxedSi imave xerxiT

Caxazulia kidev axali samkuTxedi da a. S.

usasrulod. ipoveT:

1) am samkuTxedebis perimetrebis jami;

2) am samkuTxedebis farTobebis jami.

$12. usjhpopnfusjvm!hbnptbyvmfcbUb!hbnbsujwfcb!!eb!hbnpUwmb!

! hbnpUwbmfU!)$$23/2<!23/3*;!

12.1. 1) oooo 180cos10270sin20cos290sin5 +−+ ;

2) oooo 180cos3270sin390cos203 −++tg ;

3) π−π+π−π tg2sin323cos2sin4 ;

4) π⋅π

+π−π− 2cos2

sin2cos32sin26 ;

5) π−π+π 252cos34

sin2 tg ;

6) π−π+π

−π tgtg 423cos3

2sin224 .

Page 314: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

314

12.2. 1) oooo 90cos4524530sin2 ++− ctgtg ;

2) 2

43

36

cos23

sin3 π−

π+

π−

π ctgtg ;

3) 4

33

cos22

sin3 222 π−

π+

π− tg ;

4) ooo

oo

45460cos490sin3604524

22

42

ctgctgtg

+−+−

;

5)

2422

42

6cos2

63

4sin2 ⎟

⎠⎞

⎜⎝⎛ π

−⎟⎠⎞

⎜⎝⎛ π

+⎟⎠⎞

⎜⎝⎛ π

−⎟⎠⎞

⎜⎝⎛ π ctgtg ;

6) 2

36

cos44

22

sin3 323

2 π+

π−⎟

⎠⎞

⎜⎝⎛ π

−π ctgtg .

12.3. Semdegi funqciebidan romelia luwi? kenti? arc

luwi da arc kenti?

1) 2xtg , x2sin , xsin , xx cos2sin + , x5cos ;

2) x

xcos1

sin2+

, xx cossin ⋅ , xx cos⋅ , 3cos2sin

xxx +;

3) xcos1+ , xx 22 sin+ , xxxx

coscos

2

2

−+

, tgxx2;

4) xx

cos1cos1

+−

, xx cossin21 2 +− , tgx

x 1cos + ,

tgxx +− 2sin21 , 5

2cos1x

x−.

hbnpUwbmfU!)$$23/5<!23/6*;!

12.4. 1) ( )o90sin − , ( )o60−tg , ( )o45cos − , ( )o60−ctg ;

2) ( )o452 −tg , ( )o180cos − , ( )o60sin3 − , ( )o270−ctg ;

3) ( )o180sin − , ( )o180−tg , )90cos( o− , ( )o303 −ctg .

12.5. 1) ( ) ( ) ( ) ( )oooo 9060cos45230sin −−−+−−− ctgtg ;

2)

( )⎟⎠⎞

⎜⎝⎛ π−+−

−⎟⎠⎞

⎜⎝⎛ π−−−

3cos4452

16

230sin

2

3

o

o

tg

ctg;

Page 315: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

315

3) 066

43

cos2 33 tgctg +⎟⎠⎞

⎜⎝⎛ π−−⎟

⎠⎞

⎜⎝⎛ π− ;

4) ⎟⎠⎞

⎜⎝⎛ π−+⎟

⎠⎞

⎜⎝⎛ π−−⎟

⎠⎞

⎜⎝⎛ π−+

2cos4

43

6sin205 ctgtg .

usjhpopnfusjvm! gvordjbUb! qfsjpevmpcjt! hbUwbmjtxj.

ofcjU!hbnpUwbmfU!)$$23/7<!23/8*;!

12.6. 1) o780sin ,

o765cos , o390tg ,

o405ctg ;

2) o1500sin ,

o1020cos , o1845tg ,

o1485ctg ;

3) ( )o2205sin − , ( )o1980cos − , o2220tg , ( )o1860−ctg ;

4) o2250sin ,

o2190cos , ( )o1980−tg , o1410ctg .

12.7. 1) ( ) oooo 1170cos1980sin2220cos22190sin −−−+ ;

2) ( )ooo

148521740cos2250sin2

−−

tg;

3) ( )ooooo

2550cos1845sin222014101530cos

2

2

−−⋅ tgtg

;

4) ( ) ( )

oo

oooo

990cos1530sin2318452940420cos2490sin

3

22

−⋅−−⋅− ctgtg

.

jqpwfU!gvordjjt!vndjsftj!ebefcjUj!qfsjpej!)$$23/9.23/22*;!

12.8. 1) xsin2 , 2) 2

sin x, 3) xcos3 ,

4) 12 +tgx , 5) tgx31

, 6) 743

+ctgx .

12.9. 1) x2sin . 2) 2

sin x, 3) ⎟

⎠⎞

⎜⎝⎛ π

+3

sin x ,

4) ⎟⎠⎞

⎜⎝⎛ π

−4

2sin x , 5) 3

cos x, 6) ⎟

⎠⎞

⎜⎝⎛ π

−6

2cos x ,

7) x3sin , 8) ⎟⎠⎞

⎜⎝⎛ π

−3

cos3 x .

12.10. 1) xtg2 , 2) 3xtg , 3) ⎟

⎠⎞

⎜⎝⎛ π

+3

2xtg ,

Page 316: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

316

4) ⎟⎠⎞

⎜⎝⎛ π

−4

321 xtg , 5)

2xctg , 6) xctg4 ,

7) x2cos , 8) xcos

1.

12.11. 1) x2sin , 2) x2cos , 3) ( )24sin +πx ,

4) 3xtg π, 5) xsin , 6) x2sin ,

7) tgx , 8) axsin , 9) axcos ,

10) tgax . 12.12. daadgineT, SesaZlebelia Tu ara erTdroulad

adgili hqondes Semdeg tolobebs:

1) 135cos ,

1312sin =α−=α ;

2) ; 25

8cos ,2524sin −

== αα

3) 43

54cos ,

53sin −=α=α−=α tg da ;

4) 3 21cos ,

23sin −=α−=α−=α tg da ;

5) 2 ,31sin =α=α tg ; 6) 6 ,

41cos =−= αα tg .

hbnpUwbmfU! α ! bshvnfoujt! usjhpopnfusjvmj! gvordjfcjt!

nojTwofmpcfcj-!Uv!)$$23/24<!23/25*;!

12.13. 1) 2

0 54sin π

<α<=α da ; 2) π<α<π−=α 223

419sin da ;

3) π<α<π

−=α2

da 1312cos ;

4) oo 270 8,0cos <α<−=α 180 da .

12.14. 1) π<α<π

−=α2

1 datg ; 2) π<α<π=α23

43

datg ;

3) oo 360 3 <α<−=α 270 dactg ;

4) oo 270 1 <α<=α 180 dactg .

12.15. 1) ipoveT αsin , αcos da αctg , Tu cnobilia, rom

3=αtg da α pirvel meoTxedSi ar Zevs.

Page 317: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

317

2) gamoTvaleT αcos , Tu oo 360315 <α< da

0132 2 =+α+α tgtg .

hbbnbsujwfU!hbnptbyvmfcb!)$$23/27.23/29*;!

12.16. 1) ooo 11sin1111cos +tg ; 2)

ooo 42cos4242sin −ctg ;

3) oooo 7676sin7676cos 2222 ctgtg + ; 4) α−αα sincos tg ;

5) αα−α ctgsincos ; 6) 117

1117

122 +

++ oo ctgtg

;

7) βαβα

ctgctgtgtg

++

; 8) ββαβα ctg⋅

⋅coscossinsin

.

12.17. 1) α⎟⎠⎞

⎜⎝⎛ −

α2

2 1cos

1 ctg ; 2) 1coscossinsin

+α⋅β⋅β⋅αβ⋅α tgctg ;

3) α−β−β−α 2222 coscossinsin ;

4) ( )1cos1 222 +αα−α+ tgtg ; 5) ( ) α−−αα− 222 1sin1 ctgctg ;

6) β+β

cos1sin2

; 7) α+α

−αcossin

1cos2 2;

8) ( )

⎟⎟⎠

⎞⎜⎜⎝

αα−

+αα+

2

2

sincos11

sincos1

.

12.18. 1) α+

α+α

sin1costg ; 2)

α+α

−αsin1

cosctg ;

3) β⋅α−β⋅αβ−α 22

22

22

sinsinsincos ctgctg ;

4) ( ) ( ) 11cos1sin 22 −α+α+α+α tgctg ;

5) α⋅α−αα⋅α cos

sincos

2 ctgtg; 6) β+β−β 244 coscossin ;

7) β−β+β 442 sincossin ; 8) β+β⋅β+β 2224 sincossincos .

ebbnuljdfU!jhjwfpcfcj!)$$23/2:<!23/31*;!

12.19. 1) ( ) ( ) 422 =α−α−α+α ctgtgctgtg ;

2) α

=α−α−

22

2 1cos1sin1

tg;

3) αα−=α+α 2244 cossin21cossin ;

Page 318: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

318

4) α⋅α−=α+α 2266 cossin31cossin ;

5) βα

=β+αβ+α

tgtg

tgctgctgtg

;

6) ( ) ( )α

=α++α− 222

sin211 ctgctg .

12.20. 1) α=α

α−α− 24

442

coscossin1 tg ;

2) α−α=α⋅α+α−α sincos

cossin1sincos 33

;

3) ( ) ( ) α+α=α+α+α+α cossin1cos1sin 33 tgctg ;

4) ( ) ( ) 1cossin2cossin3 6644 =β+β−β+β ;

5) ( )2cossin21 α+α=α+α

+ctgtg

;

6) 011

22

2

2

2=α−

αα+

⋅α+

α tgctg

ctgtg

tg;

7) α⋅α=α−α 2222 sinsin tgtg ;

8) α⋅α=α−α 2222 coscos ctgctg .

hbnpUwbmfU!)$$23/32<!23/33*;!

12.21. 1) oooo 50sin40cos50cos40sin + ;

2) oooo 40sin70cos40cos70sin − ;

3) 5

sin107sin

5cos

107cos π

π+π

π ;

4) 7

8cos7

sin7

8sin7

cos ππ−

ππ;

5) ooooo 22sin28sin50cos28cos50sin −−⋅ ;

6) ooooo 50cos22sin72sin22cos72cos −⋅+ ;

7) ( ) ( ) ( ) ( )α−⋅α++α−⋅α+ oooo 20sin10cos20cos10sin ;

8) ( ) ( ) ( ) ( )αααα +⋅+++⋅+ oooo 20sin50sin20cos50cos .

12.22. 1) sin 36 cos 6 cos36 sin 6−o o o o;

2) ( )2 3 sin 21 cos39 cos 21 sin 39+o o o o;

3) sin 20 cos10 sin10 cos 20+o o o o;

Page 319: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

319

4) sin 21 cos9 sin 9 cos 21+o o o o.

hbnpUwbmfU!)$$23/34<!23/35*;!

12.23. 1) oo

oo

252012520

tgtgtgtg⋅−

+; 2)

125702570+⋅

−oo

oo

tgtgtgtg

;

3) 13327

3327−⋅

+oo

oo

tgtgtgtg

; 4) oo

oo

356513565

tgtgtgtg⋅+

−;

5) oo

oo

802018020

tgtgtgtg

+−

; 6)

92

91

92

9ππ

π+

π

tgtg

tgtg.

12.24. 1) o75cos ; 2)

o15tg ;

3) o105sin ; 4)

o75ctg .

12.25. gaamartiveT gamosaxulebebi:

1) oooo

oooo

12sin18cos12cos18sin15sin11cos15cos11sin

⋅+⋅⋅+⋅

;

2) oooo

oooo

12sin37cos12cos37sin40sin65sin40cos65cos

⋅−⋅⋅+⋅

;

3) ( ) ( )( ) ( )β−α−β+α

β−α+β+αsinsinsinsin

; 4) ( ) ( )( ) ( )β−α+β+α

β−α−β+αcoscoscoscos

.

5) α⋅α−α+α241

24tgtg

tgtg; 6)

13737+α⋅αα−α

tgtgtgtg

.

ebbnuljdfU!jhjwfpcfcj!)$$23/37.23/39*;!

12.26. 1) ( )

β+α=βαβ+α tgtg

coscossin

; 2) ( ) 1

sinsincos

−β⋅α=β⋅αβ+α ctgctg ;

3) ( )

( ) ( )α−β=β+α+β⋅αβ⋅α−β+α tg

cossinsin2cossin2sin

;

4) ( )

( ) ( )β+α=β⋅α−β−αβ−α−β⋅α tg

sinsin2cossincossin2

.

12.27. 1) 1cos2

4cos

4cos

⎟⎠⎞

⎜⎝⎛ α−π

+⎟⎠⎞

⎜⎝⎛ α+π

;

Page 320: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

320

2) 22

4sin

4sin

6sin

6sin

=⎟⎠⎞

⎜⎝⎛ α−π

+⎟⎠⎞

⎜⎝⎛ α+π

⎟⎠⎞

⎜⎝⎛ α−π

+⎟⎠⎞

⎜⎝⎛ α+π

;

3) ( ) ( ) 1

sinsin2coscos 22

22

22+β⋅α=

β⋅αβ−α+β+α ctgctg ;

4) ( ) ( )α+=α+α o30sinsin3cos21

;

5) ( )o60sin2cos3sin −α=α−α ;

6) ( ) ( )2360cos60coscos 222 =α−+α++α oo.

12.28. 1) α−α+

=⎟⎠⎞

⎜⎝⎛ α+π

tgtgtg

11

4; 2)

( )( ) 145145

=α−α−α−+α

o

o

tgtgtgtg

;

3) ( ) ( ) βα−=β−αβ−α

−β+αβ+α tgtg

tgtgtg

tgtgtg 2 ;

4) ( ) ( ) 1=β+α⋅β+α+β⋅α ctgtgtgtgtg ;

5) ( )( )β+α

β−α=

β⋅α−β⋅α+

coscos

11

tgtgtgtg

;

6) ( ) ( )β−α⋅β+α=β⋅α−β−α tgtg

tgtgtgtg

22

22

1;

7) ( ) ( ) α⋅α++=α−α+ tgtgtgtg oo 45145 ;

8) ( ) ( ) β⋅α⋅β+α=β−α−β+α tgtgtgtgtgtg .

12.29. 1) ipoveT ⎟⎠⎞

⎜⎝⎛ π

+α4

cos , Tu 54sin −=α da π<α<π

23

;

2) ipoveT ( )o30sin −α ,Tu 73sin =α da

oo 18090 <α< ;

3) ipoveT ( )β+αcos da ( )β−αcos , Tu 6,0cos =α ,

135cos =β ,

20 π

<α< da π<β<π 223

;

4) ipoveT ( )β±αsin da ( )β±αcos , Tu 53cos −=α ,

1312sin =β , π<α<

π2

da π<β<π2

;

5) ipoveT ( )β+αcos , Tu 4=αtg , 3−=βctg ,

Page 321: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

321

2

3π<α<π da π<β<

π 22

3 ;

6) ipoveT ( )β+αsin , Tu 32

−=αtg , 31cos −=β ,

π<α<π2

da π<β<π23

.

12.30. 1) ipoveT ( )β+αtg , Tu 21sin =α ,

31sin =β ,

oo 900 <α< da

oo 18090 <β< ;

2) ipoveT ( )β+αctg , Tu 32sin =α ,

54cos =β ,

π<α<π2

da π<β<π 223

;

3) ipoveT 2β−αtg , Tu

53

2cos −=

α,

31

2cos −=

β,

oo 360180 <α< da

oo 540360 <β< ;

4) ipoveT 2β−αctg , Tu

91

2sin −=

α,

32

2sin −=

β,

oo 540360 <α< da

oo 720540 <β< .

12.31. 1) ipoveT αsin , Tu ( )3245sin −=α−o da

24π

<α<π

;

2) ipoveT βcos , Tu 71cos =α , ( )

1411cos −=β+α ,

2

0 π<α< da

20 π

<β< ;

3) ipoveT ( )α+o61sin , Tu ( )531sin =α+o ,

oo 17090 <α< ;

4) ipoveT ( )α+o87cos , Tu ( )7127cos −=+αo,

oo 15090 <α< .

12.32. 1) daamtkiceT, rom o90=β+α , Tu

178sin =α ,

1715sin =β da

oo 900 <α< da oo 900 <β< ;

2) daamtkiceT, rom 4π

=β+α , Tu 5

1sin =α ,

Page 322: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

322

101sin =β da

20 π

<α< ; 2

0 π<β< .

hbnpUwbmfU!ebzwbojt!gpsnvmfcjU!)$$23/44<!23/45*;!

12.33. 1) o120sin ,

o150cos , o135tg ,

o120ctg ;

2) o225sin ,

o210tg , )240sin( o− , o210cos(− ).

12.34. 1) oooo 240()330()225cos()300sin( −+−+−+− ctgtg );

2) oooo 225210150cos120sin 2222 ctgtg −++ ;

3) )330()240()120(cos)330(sin 2222 oooo −+−−−−− ctgtg ;

4) )315(150cos2120)240cos(330sin4 ooooo −⋅−⋅−⋅ tgtg .

12.35. daiyvaneT 45o-ze naklebi dadebiTi kuTxis

funqciebamde:

1) o86sin ,

o55cos , o73tg ,

o47ctg ;

2) o175sin ,

o103cos , o159tg ,

o188ctg ;

3) o560sin ,

o846cos , o758tg ,

o1000ctg ;

4) )310sin( o− , )500cos( o− , )405( o−tg , )820( o−ctg .

12.36. daiyvaneT im kuTxis funqciebamde, romelic

moTavsebulia ⎥⎦⎤

⎢⎣⎡ π

4;0 SualedSi:

1) π7,0sin , π2,3cos , π8,4tg , π9,2ctg ;

2) )1,2sin( π− , π4,3cos , )1,17( π−tg , )2,39( π−ctg .

hbnpUwbmfU!)$$23/48.23/4:*;!

12.37. 1) oo

oo

240sin421063303330cos4

−−

tgtg

; 2) o

oo

510sin2870cos48403 +tg

;

3)

49

617sin5

37cos7

π

π−

π

tg; 4)

625sin

619cos2

320

π

π+

πtg.

12.38. 1) ( ) ( ) ( ) ( )α−+α−−α++α− oooo 27036090cos180sin ctgtg ;

2) ( ) ( ) ⎟⎠⎞

⎜⎝⎛ α+π−α−π+α−π−⎟

⎠⎞

⎜⎝⎛ α−π

23cos

2sin ctgtg ;

Page 323: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

323

3) ( ) ( ) ( ) ( )α−⋅α++α−+α− oooo 36090270sin180sin 22 ctgtg ;

4) ( ) ( )( ) ( )α+⋅α+

α−+α−oo

oo

27090270sin360cos

22

22

ctgtg;

5) )10cos(290)80sin(22003 oooo −++−− ctgtg ;

6) oooooo 340110340cos250sin110cos160sin tgtg ⋅+⋅+⋅ .

12.39. 1) )56(326cos214

)56(214416304cosooo

oooo

−⋅+−⋅−⋅

ctgctgtgtgtg

;

2) ( )( ) oooo

oooo

360cos220sin50cos180270sin320cos130sin270

⋅⋅⋅α−⋅⋅⋅α−

ctgtg

;

3) ( ) ( ) ( ) ( )α−+−α−−α+−α oooo 360270180cos90sin ctgtg ;

4) ( ) ( ) ( ) ( )α−++α+−α⋅−α oooo 270sin180sin360180 222 ctgtg ;

5) ( ) ( )( ) ( )oo

oo

270cos90360cos270sin

33

3

−α⋅−αα−⋅−α

tg;

6) ( ) ( ) ( )( ) ( ) ( )α+α+α+

α−α−α−ooo

ooo

909090sin90180cos180

tgctgtgtg

.

12.40. daamtkiceT igiveobebi:

1) ( ) ( )α−=α+ oo 45cos45sin ; 2) ( ) ( )α−=α+ oo 45sin45cos ;

3) ( ) ( )α−=α+ oo 4545 ctgtg ; 4) ( ) ( )α−=α+ oo 30sin150sin ;

5) ( ) ( ) ( )

( ) ( ) 1180360cos

27090 360sin=

+⋅+−⋅+−

ααααα

oo

ooo

tgctgtg

;

6)

( )

( )α=

⎟⎠⎞

⎜⎝⎛ α+π⋅α−π

α−⋅⎟⎠⎞

⎜⎝⎛ α−π⋅⎟

⎠⎞

⎜⎝⎛ α+π

sin

23sin

cos23cos

2

ctg

tg;

7) 1494847434241 =oooooo tgtgtgtgtgtg ;

8) 18070605040302010 =oooooooo tgtgtgtgtgtgtgtg .

hbnpUwbmfU!)$$23/52<!23/53*;!

12.41. 1) 3

270 β+α−otg , Tu 81

3cos −=

α,

32

3cos =

β,

oo 540270 <α< ,

oo 1080810 <β< ;

Page 324: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

324

2) 4

360 β−α−otg , Tu 21

4cos =

α,

21

4sin −=

β,

oo 14401080 <α< ,

oo 1080720 <β< .

12.42. 1)

oo 15cos15sin ⋅ ; 2) oo 75sin15sin6 ⋅ ;

3) oo 75cos15cos 22 − ; 4) 1

8cos2 2 −

π;

5) o15sin21 2− ; 6)

o

o

15115

2tgtg−

;

7)

8

81 2

π

π

tg

tg−; 8)

o

o

751751

2

2

tgtg

+−

;

9) 8

cos8

sin41 ππ

; 10) ( )2105cos165cos oo − .

hbbnbsujwfU!)$$23/54.23/56*;!

12.43. 1) α⋅α⋅α 2coscossin ; 2) α−α 44 sincos ;

3) α− 2sin21 ; 4) 1cos2 2 −α ;

5) α+α 2sin24cos 2; 6)

2cos

2sin4cos 222 αα

−α ;

7) α⋅α− 22 cossin81 ; 8) ( )222 sincossin2cos α−αα+α .

12.44. 1) ( )

α+α+α

2sin1cossin 2

; 2) α−α

αcossin2cos

;

3) αα

−αα

cos2cos

sin2sin

; 4)

2cos

2sin

2sin

22

22

2

α−

α

α⋅

αctg;

12.45. 1) α+α−

2

2

11

tgtg

; 2) αα−α

2costgctg

;

3) ( )α−α⋅α⋅α 22 sincoscossin2 ;

4) α+α⋅α−α 4224 sinsincos6cos .

12.46. daamtkiceT igiveobebi:

Page 325: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

325

1) α=α+

α 2sin1

22ctg

ctg; 2) α=

α+

α

α−

α

cos

22

22

tgctg

tgctg;

3) α=α

α

+

α

tgtg

tg

tg

tg

21

2

21

2 ; 4) α+αα−α

=α+

αsincossincos

2sin12cos

.

12.47. gamoTvaleT:

1) α2sin , α2cos da α2tg , Tu 6,0sin =α , o900 <α< ;

2) α2sin , α2cos da α2tg , Tu 135cos −=α , 0sin >α ;

3) α2tg , Tu 51

=αtg ;

4) ( )β+α2tg , Tu 31

=αtg , 41

=βtg ;

5) ⎟⎠⎞

⎜⎝⎛ β

+α2

2cos , Tu 54sin =α ,

53

2cos −=

β,

π<α<π2

, 2

3π<β<π ;

6) ( )β+α2sin , Tu 41sin =α ,

53

2sin =

β,

o900 <α< ,

o1800 <β< .

12.48. 1) α3sin , α3cos da α3tg gamosaxeT Sesabamisad αsin ,

αcos da αtg -Ti;

2) ipoveT α3sin da α3cos , Tu αsin =0,6, o900 <<α .

12.49. gamoTvaleT:

1) o15sin ,

o15cos da o15tg ;

2) 0322sin ′o, 0322cos ′o

da 0322 ′otg ;

3) o75sin ,

o75cos da o75tg ;

4) 0367sin ′o, 0367cos ′o

da 0367 ′otg .

Page 326: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

326

hbbnbsujwfU!)$$23/61<!23/62*;!

12.50. 1) α+ 2cos1 ; 2) o40cos1+ ;

3) 1cos −α ; 4) 132cos −o ;

5) o

o

40cos50cos1−

; 6) ( )( )β−α−

β−α+cos1cos1

.

12.51. 1) α+α cos2

sin2 2; 2) α−

αα−α+ 22 cos

2cos1cos1 tg ;

3) ⎟⎠⎞

⎜⎝⎛ α

−π

−α+α−

24sin1sin1 2tg ; 4) ⎟

⎠⎞

⎜⎝⎛ α

−π

+24

1 2tg .

ebbnuljdfU!jhjwfpcfcj!)$$23/63<!23/64*;!

12.52. 1) ⎟⎠⎞

⎜⎝⎛ α

−=α+2

45cos2sin1 2 o; 2) ⎟

⎠⎞

⎜⎝⎛ α

−=α−2

45sin2sin1 2 o;

3) 2sin

cos1 α=

αα− tg ; 4)

2cos1sin α

=α+

α tg ;

5) ⎟⎠⎞

⎜⎝⎛ α+π

=αα+

42cos2sin1 tg ; 6) ⎟

⎠⎞

⎜⎝⎛ α

−π

=α+α−

24sin1sin1 2tg .

12.53. 1) 22sinsin2

2sinsin2 2 α=α+αα−α tg ; 2)

2cos1cos

2cos12sin α

=α+

α⋅

α+α tg ;

3) α−α

=α ctgctgtg 2

22; 4)

2cos

2sin α

⋅α=α

−α tgtg .

12.54. ipoveT 2

sin α,

2cos α da

2αtg , Tu:

1) 1312cos −=α da

23π

<α<π ;

2) 43cos =α da

oo 360270 <α< ;

3) 54sin −=α da

oo 270180 <α< ;

4) 54cos =α da π<α<

π 22

3.

hbnpUwbmfU!)$$23/66.23/69*;!

12.55. 1) αsin , Tu 96,02sin =α da oo 11701125 <α< ;

Page 327: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

327

2) 4αtg , Tu 8,0

2sin −=

α da

oo 540360 <α< ;

3) αsin , Tu 352 =αtg da oo 6302540 <α< ;

4) 2αtg , Tu 24=αtg da

oo 990900 <α< .

12.56. 1) ( )β+αcos , Tu 212cos −=α ,

412cos −=β da

oo 135290 <α< ,

oo 2702180 <β< ;

2) ( )β+αsin , Tu 512cos −=α ,

1012cos =β da

oo 2702180 <α< ,

oo 4502360 <β< .

12.57. 1) 8

cos α , Tu 6,02

sin −=α

da oo 720540 <α< ;

2) αsin , Tu 154 =αtg da oo 2242180 <α< .

12.58. 1) αsin , αcos da αtg , Tu 32

2=

αtg ;

2) α−

αcos32

sin, Tu

21

2=

αtg ;

3) α+αα−α

sinsin

tgtg

, Tu 152

2=

αtg ;

4) α+αα−α

cos54sin53

ctgtg

, Tu 21

2=

αctg .

xbsnpbehjofU!obnsbwmj!kbnbe!)$$23/6:<!23/71*;!

12.59. 1) oo 10cos20cos ⋅ ; 2)

5cos

10cos π

⋅π

;

3) oo 4sin40sin ⋅ ; 4)

8sin

5sin π

⋅π

;

5) oo 42cos12sin ⋅ ; 6)

8cos

10sin π

⋅π

.

12.60. 1) α⋅α 3sin5sin ; 2) α⋅α 2cos4sin ;

3) ooo 8cos10cos40sin2 ⋅⋅ ; 4) α⋅α⋅α 4cos3coscos4 .

xbsnpbehjofU!obnsbwmbe!)$$23/72.23/79*;!

Page 328: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

328

12.61. 1) oo 20cos50cos + ; 2)

oo 14sin26sin + ;

3) oo 36sin73sin − ; 4)

12cos

8cos π

−π

;

5) oo 3212 tgtg + ; 6)

85

87 π

−π tgtg .

12.62. 1) α+α 2sin4sin ; 2) α−α 6cos2cos ;

3) α+α 3tgtg ; 4) ( ) ( )β−α+β+α coscos ;

5) ( ) ( )α−−α+ oo 40sin40sin ; 6) ( ) ( )β−α−β+α sinsin .

12.63. 1) α+α cossin ; 2) α−α cossin .

12.64. 1) αααα

sin5sinsin5sin

−+

; 2) β−αβ+α

coscoscoscos

;

3) α+αα−α

5sin7sin5sin7sin

; 4) α+αα−α

4cos6cos4cos6cos

.

12.65. 1) oooo 16sin15sin11sin10sin +++ ;

2) α+α+α+α 4sin2sin3sinsin ;

3) oooo 36cos8cos13cos31cos +++ ;

4) α+α+α+α 4cos3cos2coscos .

12.66. 1) α+α+ cossin1 ; 2) α+α− sincos1 ;

3) α+α+α+α−

2coscos212coscos21

; 4) α−α+α−α−

2cossin212cossin21

.

12.67. 1) α+α+α 3sin2sinsin ; 2) ( )β+α+β+α sinsinsin ;

3) ( ) ( ) α+β+α+β+α 2sin3sin5sin ;

4) α−α+α 32 tgtgtg .

12.68. 1) α+ cos21 ; 2) α− cos21 ;

3) β+ 2sin21 ; 4) α+ cos22 ;

5) α+ cos21 ; 6) 1sin2 −α ;

7) α− 2sin41 ; 8) α− 2cos43 .

12.69. 1) mocemulia funqcia xxxf cossin)( += . daamtkiceT, rom

⎟⎠⎞

⎜⎝⎛ π

+4

xf luwi funqciaa.

2) mocemulia funqcia xxxf cos3sin)( += . daamtkiceT,

rom ⎟⎠⎞

⎜⎝⎛ π

+6

xf luwi funqciaa.

Page 329: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

329

ebbnuljdfU!jhjwfpcfcj!)$$23/81.23/84*;!

12.70. 1) 2coscos

sinsin βαβαβα +

=++ tg ; 2)

2coscossinsin α+β

−=β−αβ−α ctg ;

3)

( )

( )β+α

β−α=

β⋅α+β⋅αβ+α

21cos21cos

sincoscossinsinsin

;

4)

( )

( )βα

βα

βαβαβα

+

−=

+−

21sin21sin

cossinsincossinsin

;

5) α=α+αα+α 2

3coscos3sinsin tg ; 6) ( )α+=

α−αα+α o45

sincossincos tg .

12.71. 1) ( ) ( )( ) ( ) β⋅α=

β−α−β+αβ−α+β+α ctgtg

sinsinsinsin

;

2) ( ) ( )( ) ( ) β⋅α=

β+α−β−αβ−α+β+α ctgctg

coscoscoscos

;

3) ( ) ( )β−αβ+α=β−α sinsinsinsin 22;

4) ( ) ( )β−αβ+α−=β−α sinsincoscos 22;

5) ⎟⎠⎞

⎜⎝⎛ π

−α⋅⎟⎠⎞

⎜⎝⎛ π

+α=−α3

sin3

sin43sin4 2;

6) ⎟⎠⎞

⎜⎝⎛ α−π

⋅⎟⎠⎞

⎜⎝⎛ α+π

=−α3

sin3

sin41cos4 2.

12.72. 1) α=α+α−αα+α−α 2

3cos2cos2cos3sin2sin2sin tg ;

2) α=α+α+αα+α+α 3

5cos3coscos5sin3sinsin tg ;

3) α=α+α+α+αα−α+α−α tg

7sin5sin3sinsin7cos5cos3coscos

;

4) 2

2sin44sin

2sin4sin

4

22

22α

+−α

α−α

tg .

12.73. 1) ⎟⎠⎞

⎜⎝⎛ +=−++

24sin2cos1cos1 απαα , Tu

20 π

<α< ;

Page 330: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

330

2) 2

sin2sin1sin1 ααα =−−+ , Tu 2

0 π<α< ;

3) ( ) ( )2

sin4coscossinsin 222 β−α=β−α+β−α ;

4) ( ) ( ) ααααα 222 cos44cos2cos4sin2sin =+++ .

hbnpUwbmfU!)$$23/85.23/8:*;!

12.74. 1) o

oo

10cos50sin40sin

; 2)

94cos

18cos

9sin

ππ

π

;

3) o

oo

80sin20cos40cos +

; 4) oo

o

16sin76sin44sin−

;

5) oo

oo

15sin75sin15sin75sin

−+

; 6) ooo 80sin20sin40sin −+ .

12.75. 1) 88π

−π tgctg ; 2) ( ) o15sin26

1+

;

3) oo 10cos

310sin1

− ; 4)

2

15cos1

15sin1

⎟⎠⎞

⎜⎝⎛ −

oo;

5) ( )ooo 510110cos tgtg+ ;

6) ( )oooo 40515cos40sin2 ctgtg ⋅+ .

12.76. 1) πππ

65cos

1213cos

12sin8 ; 2)

47cos

811cos

83sin πππ

;

3) ooo 330cos255cos75sin ; 4) ( )227sin36cos9sin2 ooo + .

12.77. 1) oo 36cos18sin ; 2)

ooo 80cos40cos20cos ;

3) 7

4cos7

2cos7

cos πππ;

4) 33

16cos338cos

334cos

332cos

33cos16 πππππ⋅ ;

5) oooo 70cos50cos30cos10cos ⋅⋅⋅ ;

6) oooo 80sin60sin40sin20sin16 ⋅⋅⋅ ;

7) oooo 80604020 tgtgtgtg ⋅⋅⋅ ; 8)

ooo 70sin50sin10sin 222 ⋅⋅ .

Page 331: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

331

12.78. 1) ( ) ( )

oo

oooo

12sin2sin4sin2cos4cos

22

ctg+++

;

2) ( ) ( )

oo

oooo

7cos7sin717cos717sin 33

++++ tgctg

;

3) oo

o

10cos10sin20sin34

66

2

+−

; 4) oo

o

10sin20cos10cos34

22 −;

5) ooo 20sin10sin440cos4 242 +− ;

6) oooo 2cos4cos1cos3cos 22 ⋅−+ .

12.79. 1) oooo

ooooo

5cos23sin23cos3023sin28cos23cos28sin51sin

2

33

tg−−

;

2) ( )oo

oo

43sin47sin2

28sin32sin

+

+; 3)

ooo

ooo

110sin50sin20sin55cos25cos10cos

++⋅⋅

;

4) ooo

ooo

150cos140cos70cos175cos70sin35sin

+−−⋅⋅

;

5) 8

7cos8

5sin8

3cos8

sin 2222 π+

π+

π+

π;

6) 8

7cos8

5sin8

3cos8

sin 4444 π+

π+

π+

π.

12.80. daamtkiceT igiveoba:

1) α=α+α−αα+α−α 3

4cos3cos2cos4sin3sin2sin tg ;

2) α+α−

=α+α−

tgtg

11

2sin1sin21 2

;

3) α=α−+αα−α+α sin2

2sin21cos3sin5sin2sin

2 ;

4) 32

1cossin1cossin

66

44=

−α+α−α+α

.

hbbnbsujwfU!eb!hbnpUwbmfU!)$$23/92.23/9:*;!

12.81. 1) α−α−

2

2

cos1sin1

, Tu 2=αtg ; 2) α−α

cos1sin2

, Tu 41cos =α ;

3) ( )2cossin α−α , Tu 312sin −=α ;

Page 332: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

332

4) α

α−α−4

44

coscossin1

, Tu 2=αtg .

12.82. 1) ( )

βαβ+α

coscossin

, Tu 2=αtg da 3=βtg ;

2) ( )

βαβ−α

coscoscos

, Tu 3=αtg da 2=βtg ;

3) ( )( ) βα+β−α

βα−β+αsincossincossinsin

, Tu 2=αtg da 3=βtg ;

4) ( )( ) βα+β+α

βα−β−αsinsincoscoscoscos

, Tu 2=αtg da 3=βtg .

12.83. 1) ααα 2coscossin , Tu 414sin =α ;

2) ⎟⎠⎞

⎜⎝⎛ α

−ααα

2cos

2sin

2cos

2sin2 22

, Tu 312sin =α ;

3) ⎟⎠⎞

⎜⎝⎛ αα

−α⋅2

cos2

sin4cos3 222, Tu

432cos =α ;

4) ( ) ( )α−α+ oo 45sin45sin , Tu 312cos =α .

12.84. 1) ⎟⎠⎞

⎜⎝⎛ α−α⋅

α−α+ 22 cos

2cos12cos14 tg , Tu

43sin =α ;

2) α+α−

⋅sin1sin116 , Tu

43

24=⎟

⎠⎞

⎜⎝⎛ α

−πtg ;

3) α+α+α+α−

2coscos212coscos21

, Tu 22=

αtg ;

4) ( ) ( )22 coscossinsin β+α+β+α , Tu 23

2cos =

β−α.

12.85. 1) α−αα+α

cossincossin

, Tu ( ) 345 =α+otg ;

2) α+α−αα+α−α

3cos2cos2cos3sin2sin2sin

, Tu 52 =αtg ;

3) α+α+αα+α+α

5sin3sinsin5cos3coscos

, Tu 43 =αtg ;

4) α−αα−α

22

22

cos42sinsin42sin

, Tu 2=αtg .

Page 333: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

333

12.86. 1) α+αα−α 4224 sincossin6cos , Tu 314cos =α ;

2) ( )

( )α+ααα−α4cos2sincos

2cos1cos222

2, Tu

32cos =α ;

3) ( )

β−αβ+α

22 sinsinsin

, Tu ( )31sin =β−α ;

4) ( ) ( )

( )α−πα+π−α+π

9cos5,7cos47cos

2

22, Tu 3=αtg .

12.87. 1) α−α+αα− 422 cos2coscossin1 , Tu 51cos =α ;

2) α

α−α−α2sin

5cos3coscos22 , Tu

41cos =α ;

3) ( ) αα−αα−α+α−

sin2coscos3cos2coscos1

, Tu 4=αtg ;

4) α+

α+α+2

2

13103

tgtgtg

, Tu 512sin =α ;

5) α+α−α+α+

4cos2cos434cos2cos43

, Tu 5=αtg ;

6) ( )

( )α+αα+α+α

44

66

cossincos1cossin2, Tu

41cos =α .

12.88. 1) ( )

α+α+2sin1

1 2tg, Tu

63cos =α ;

2) ( )21

2sin1α−α−

tg, Tu

31cos =α ;

3) ( )

α−α−2sin1

1 2ctg, Tu

52sin =α ;

4) ( )( )

( )212sin12cos1

α−α−α+

tg, Tu

4 31cos =α ;

5) ( )( )212cos1

2sin1α−α−

α−tg

, Tu 8

1=αtg ;

6) ( )( )

( )212sin12cos1

α−α−α+

ctg, Tu

722sin =α .

Page 334: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

334

12.89. 1) ( ) αα−αα−α+α−

sin2coscos3cos2coscos1

, Tu 5,13=αctg ;

2) α+α+α+αα−α+α−α

7sin5sin3sinsin7cos5cos3coscos

, Tu 54sin =α , ( )o900 <<α ;

3)

⎟⎠⎞

⎜⎝⎛ α

−α

α

−α

2cos

2sincos4

4sin66

2, Tu

31cos =α ;

4) α−α−α+α

αα

7sin4sin6sin5sin2

11sinsin, Tu

841

2sin =

α.

hbnpUwbmfU!)23/:1.23/:4*;!

12.90. 1) α2sin , Tu 51cossin =α+α ;

2) α+α 33 cossin , Tu 45cossin =α+α ;

3) 2

cos2

sin 33 α−

α, Tu

65

2sin

2cos =

α−

α;

4) α+α 44 cossin , Tu 21cossin =α−α .

12.91. 1) α+α 66 cossin , Tu 41sincos =α+α ;

2) ⎟⎠⎞

⎜⎝⎛ π

−α

24cos

4cos 44

, Tu 41

4sin

4cos =

α+

α;

3) β−α tgtg2 , Tu ( ) ( )β−α=β+α 2sin52sin da

β−=α tgtg 42 ;

4) β+α tgtg2 , Tu ( ) ( )β+α=β−α 2sin42sin da

β+=α tgtg 62 ;

5) α

+α+α2sin

222 ctgtg , Tu 6=α+α ctgtg ;

6) ( )o904cos222 22

−α−α+α tgctg , Tu 4)2(2 =α−−α ctgtg .

12.92. 1) 1arcsin23arcsin

21arcsin0arcsin +++ ;

Page 335: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

335

2) ( )1arcsin23arcsin

21arcsin0arcsin −+⎟

⎟⎠

⎞⎜⎜⎝

⎛−−⎟⎟

⎞⎜⎜⎝

⎛−+ ;

3) 1arccos)1arcsin(0arcsin +−+ ;

4) 23arccos

21arccos

21arccos0arccos +⎟⎟

⎞⎜⎜⎝

⎛−++ ;

5) ⎟⎟⎠

⎞⎜⎜⎝

⎛−−−−

21arccos6

23arccos12)1arccos(5 ;

6) 133

10 arctgarctgarctgarctg +++ ;

7) 133

10 arcctgarcctgarcctgarcctg +++ ;

8) ( )33

1)1(0 −−⎟⎟⎠

⎞⎜⎜⎝

⎛−−−+ arcctgarcctgarcctgarcctg .

12.93. 1) ( )6,0arcsinsin ; 2) ( )[ ]23arcsincos − ;

3) ( )[ ]8,0arcsinsin − ; 4) ⎟⎠⎞

⎜⎝⎛

21arcsincos ;

5) ( )5,0arccoscos ; 6) ( )[ ]22arccossin − ;

7) ( )2,0arccoscos ; 8) ( )[ ]23arccossin − ;

9) ( )6cosarccos ; 10) )2(ctgarcctg ;

11) )1arccos(cos ; 12) ( )2tgarctg .

§13. usjhpopnfusjvmj!hboupmfcfcj!eb!vupmpcfcj!

! bnpytfojU!hboupmfcfcj!)24/2.24/31*;!

13.1. 1) 0sin =x ; 2) 21sin =x ;

3) 22sin =x ; 4)

23sin =x ;

Page 336: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

336

5) 22sin −=x ; 6) 1sin −=x ;

7) 2

13sin −=x ; 8) 13

sin =x

;

9) ( )2

1305sin =+ ox ; 10) 23

320sin =⎟

⎠⎞

⎜⎝⎛ −

xo;

11) 23

63sin −=⎟

⎠⎞

⎜⎝⎛ π

−x

; 12) 1443sin −=⎟

⎠⎞

⎜⎝⎛ − xπ .

13.2. 1) 0cos =x ; 2) 21cos =x ;

3) 23cos =x ; 4)

22cos =x ;

5) 21cos −=x ; 6) 1cos −=x ;

7) 2

15cos −=x ; 8) 21

4cos =

x;

9) 23)520cos( =− xo; 10) 115

23cos −=⎟

⎠⎞

⎜⎝⎛ − ox ;

11) 1182

cos =⎟⎠⎞

⎜⎝⎛ π

−x

; 12) 21

33cos −=⎟

⎠⎞

⎜⎝⎛ −π x

.

13.3. 1) 0=tgx ; 2) 3=tgx ;

3) 1=tgx ; 4) 3

1=tgx ;

5) 3−=tgx ; 6) 1−=tgx ;

7) ( ) 1602 −=+ oxtg ; 8) 353

=⎟⎠⎞

⎜⎝⎛ −π xtg ;

9) ( )33345 −=− xtg o; 10) 3

43−=⎟

⎠⎞

⎜⎝⎛ π

−xtg .

13.4. 1) 0sin2sin2 =− xx ; 2) xx coscos2 2 = ;

3) xx sinsin2 2 = ; 4) xx 2cos2cos3 = ;

5) tgxxtg 22 = ; 6) tgxxtg =3;

7) 04 =+ ctgxxctg ; 8) 032 =− ctgxxctg ;

9) xx cos21sin2 =− ; 10) xx 2cos22sin −= .

Page 337: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

337

13.5. 1) xx sin23sin2 =− ; 2) 2coscos2 =+ xx ;

3) xx 2sin21sin −= ; 4) 0562 =+− tgxxtg ;

5) ( ) 02sin22sin2 2 =−−+ xx ;

6) ( ) 03132 =−−+ tgxxtg .

13.6. 1) 2sin3cos2 2 += xx ; 2) xx cos3sin2 2 = ;

3) xx 22 cos1sin += ; 4) 532 =+ ctgxtgx .

5) tgxx

82cos

32 =+ ' 6) 043 22 =−+ xctgxtg .

13.7. 1) xx sin2sin = ; 2) xx cos2sin = ;

3) 25,0cossin =xx ; 4) 5,0cossin 22 =− xx ;

5) xx 2sin22cos = ; 6) xx cos2cos = ;

7) tgxxtg 32 = ; 8) xtgtgx 2= .

13.8. 1) 02

cossin =+xx ; 2)

21

2cos

2sin 44 =−

xx;

3) 21sin22cos −= xx ; 4) xxx sincos2cos −= ;

5) xx sin12cos += ; 6) xx 2sin12cos += .

13.9. 1) xx cos12

cos += ; 2) xx cos12

sin2 −= ;

3) xx cos12

sin2 2 += ; 4) xx cos12

cos2 2 −= ;

5) 02coscos1 =++ xx ; 6) xx cos1sin −= ;

7) xx cos1sin3 += ; 8) ( )xx 2cos132sin += .

13.10. 1) xx cossin = ; 2) 0cos3sin =+ xx ;

3) xx 22 cossin3 = ; 4) 0cos3sin 22 =− xx ;

5) xxxx cossin34cos3sin3 22 ⋅=+ ;

6) xxxx 22 cos3cossin2sin =⋅+ ;

7) 1coscossin3sin6 22 =−⋅− xxxx ;

8) xxx cossin2cos41 2 ⋅=− ;

9) xxxx cossin5,0cossin 22 ⋅−=− ;

10) 2cos3cossin3sin4 22 =−⋅+ xxxx ;

11) xxx 22 cos32sin6sin2 −= ;

12) xxx 2sin3sin3cos 22 =+ ;

Page 338: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

338

13) xxxx 2cos33cossin42sin =⋅+ ;

14) xxx 2sin3sincos3 22 =+ .

13.11. 1) 04sin6sin =− xx ; 2) 07cos3cos =+ xx ;

3) xx sin5sin = ; 4) xx cos2cos = ;

5) tgxxtg =4 ; 6) 052 =− xtgxtg .

13.12. 1) 05sin3sinsin =++ xxx ; 2) 0cos2cos3cos =++ xxx ;

3) xxx 2cos3coscos =+ ;

4) xxx 3sinsin2sin += ;

5) 07sin5cos3sin =−+ xxx ;

6) 06cos4sin2cos =−+ xxx .

13.13. 1) xxxx 7cos5cos3coscos ⋅=⋅ ;

2) xxxx cos5cos4cos2cos ⋅=⋅ ;

3) xxxx 5sin3sin6sin2sin ⋅=⋅ ;

4) xxxx 7sin5sin3sinsin ⋅=⋅ ;

5) xxxx 5sincos4sin2cos ⋅=⋅ ;

6) xxxx 8sin2cos7sin3cos ⋅=⋅ .

13.14. 1) 2cossin =− xx ; 2) 22cossin =+ xx ;

3) 2cossin3 =+ xx ; 4) 1cos3sin =− xx ;

5) 3cos3sin3 =− xx ; 6) 22cos2sin3 −=+ xx .

13.15. 1) 04sin3sin2sinsin =+++ xxxx ;

2) xxxx 7cos5cos3coscos +=+ ;

3) ( ) 023cos5cos7sinsin =π−+−+ xxxx ;

4) ⎟⎠⎞

⎜⎝⎛ π

+=+−2

37cos8sin3sin2sin xxxx .

13.16. 1) 13 =⋅ tgxxtg ; 2) ( ) ( ) 11312 =+⋅− xtgxtg ;

3) ( ) xxx 2cos2sin4cos1 2=⋅+ ;

4) 0sin24cos 2 =+ xx ; 5) 0sin21cos =+− xtgxx ;

6) tgxxxtgx +=+⋅ cos21cos2 .

13.17. 1) 01cos8sin 24 =−− xx ;

2) 03sin7sin2 24 =+− xx ;

3) 85cossin 44 =+ xx ; 4) xxxx 2cos2sin2cos2sin 44 =+ .

13.18. 1) xxx 5sin2cossin =+ ;

Page 339: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

339

2) ( )xxx sincos22cos −= ;

3) xxx 5sin23cos3sin3 =+ ;

4) xxx 3sin22cos2sin =+ .

13.19. 1) 235cos4cos3cos 222 =++ xxx ;

2) 25sin4sin3sin2sin 2222 =+++ xxxx ;

3) 04sin2sin23cos

2cos 2222 =−−+ xxxx

;

4) 16cos213sinsin 22 =++ xxx .

13.20. 1) x

xxcos

1sincos =− ; 2) 2

sin21sin2

cos xxx+=+ ;

3) ( )xxxx 3sincos3sin3cos −=− ;

4) 13cos2sin6 =+− tgxxx .

13.21. amoxseniT gantoleba da ipoveT gantolebis

umciresi dadebiTi da udidesi uaryofiTi

amonaxsnebi:

1) xx cos3sin = ; 2) 0sin7cos =− xx ;

3) 1cos3cossinsin4 22 =−⋅+ xxxx ;

4) xxx 5cos310sin35sin 22 −= ;

5) ( )2cossin11 xx

tgxtgx

+=−+

;

6) xxx cossin2sin1 +=+ .

13.22. amoxseniT gantoleba da ipoveT mocemul SualedSi

moTavsebuli amonaxsni:

1) xxx 22 cos32sinsin =+ , 2

3π≤≤π x ;

2) ( )23cos3sin2sin1 xxx −=+ , 02

<<π

− x ;

3) 0sin21cos =+− xtgxx , 22π

<<π

− x ;

4) 6cos62sin35 2 =− xx , oo 420405 << x .

13.23. ipoveT a -s yvela mniSvneloba, romelTaTvisac

gantolebas aqvs amonaxsni:

1) axx =+ cos4sin3 ; 2) axx =+ cos2sin5 ;

Page 340: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

340

3) ( ) 022sin3sin2 =+−−− axax ; 4) 72sin2cos −=+ axax ;

5) ( ) ( ) 03cos2cos 24 =+−+− axax ;

6) ( ) 023cos2sin 24 =+−−+ axax .

bnpytfojU!vupmpcfcj!)$$24/35.24/39*;!

13.24. 1) 0sin ≥x ; 2) 0sin <x ;

3) 21sin >x ; 4)

21sin <x ;

5) 21sin −>x ; 6)

23sin −<x ;

7) 22sin >x ; 8)

21sin −≤x .

13.25. 1) 0cos >x ; 2) 0cos ≤x ;

3) 23cos >x ; 4)

23cos <x ;

5) 21cos −≤x ; 6)

23cos −≥x ;

7) 22cos ≥x ; 8)

21cos −<x .

13.26. 1) 0>tgx ; 2) 0≤tgx ;

3) 1<tgx ; 4) 1−≥tgx ;

5) 3−≤ctgx ; 6) 33

>tgx .

13.27. 1) 222sin −<x ; 2)

232cos −>x ;

3) 21

62sin <⎟

⎠⎞

⎜⎝⎛ −

πx ; 4) 2

1122

3sin <⎟⎠⎞

⎜⎝⎛ π

+x ;

5) ( ) 02cos 4 ≥+ πx ; 6) 33

−<⎟⎠⎞

⎜⎝⎛ π

−xtg .

13.28. 1) xx cossin > ; 2) 2cossin <+ xx ;

3) 21

2sincos

2cossin −>+

xxxx ;

4) 21sin3coscos3sin >− xxxx .

Page 341: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

341

§14. mphbsjUnjt!Tfndwfmj!hbnptbyvmfcfcjt!!hbnpUwmb/!nbDwfofcmjboj!eb!mphbsjUnvmj!!

hboupmfcfcj/!hboupmfcbUb!tjtufnfcj!

!! hbnpUwbmfU!)$$25/2<!25/3*;!

14.1. 1) 36log6 ; 2) 81log2 ; 3) 01,0lg ; 4) 4log

21 ;

5) 5log 04,0 ; 6) 271log 33 .

14.2. 1) 32log100lg 2− ; 2) 9log16log312 + ;

3) 81log4log 321 − ; 4) 8log81log

213 + ;

5) 16log3 44log3 − ; 6)

9log3log 54 54 + .

14.3. gaalogariTmeT gamosaxulebebi:

1) abcx = ; 2) cdx 3= ; 3) ( )bax −= 2 ;

4) 5

3mnx = ; 5) ( )( )baa

bax−+

=5

; 6) dcx 23= ;

7) 23413 rldcx = ; 8)

( )43

22

310

dcbax −

= ; 9) bax = ;

10) 3 233 bax = ; 11) 3

bax = ; 12)

mnmnx54

3 2= .

14.4. ipoveT x misi logariTmis mixedviT:

1) cbx logloglog += ; 2) nmx logloglog −= ;

3) ax log5log = ; 4) bax log3log2log += ;

5) nmx log4log3log −= ; 6) ax log21log = ;

7) ( )nmx loglog21log += ; 8) cbax log5log3log2log −+= ;

9) ( ) ( )babax −−+= log2log3log ;

10) ( ) ( )nmnmx +−−= log31log

21log ;

11) ( ) ( ) ababax log32log

52log

21log −+−−= ;

Page 342: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

342

12) ( ) ( )cbmcbm

bx ++−−= loglog1loglog .

hbnpUwbmfU!)$$25/6.25/21*;!

14.5. 1) 12log335 +⋅ ; 2)

7log1 33 −; 3)

18log55 +; 4)

10log2 33 −;

5) 3log2 55 ; 6)

2log3 44 ; 7) 2log636 ; 8)

7log5,0 981 .

14.6. 1) 27log5 331log 2,0+ ; 2) 8log3 5,0

16log9 − ;

3) 9log2 33log 2 − ; 4) 81log4

31

3log2 − ;

5) 8log31

5,0

2log 3

−⎟⎠⎞

⎜⎝⎛

; 6) 4log41

2

3log4

−⎟⎠⎞

⎜⎝⎛

;

7) 8log51

21

2log 5

+⎟⎠⎞

⎜⎝⎛

; 8) 2log81

21

3log 8

−⎟⎠⎞

⎜⎝⎛

.

14.7. 1) 9log5log13log

447 247 −+ +; 2)

34log34log 37 949 +− ⋅ ;

3) 5log2

3log3log

42

3 2415 −⎟⎠⎞

⎜⎝⎛+ ; 4)

( ) ( )32log32log 57 57 +−+ ;

5) ( )23log

3123log

32

32278

−⎟⎠⎞⎜

⎝⎛ +

⋅ ;

6) ( ) ( ) 5log

132log32log 32

22 2522 ++

+−;

7) 7log

15log

1

86 4925 + ; 8) 9log

46log3log

1

735 32781 ++ ;

9) 3log8log3log

21

41

52716

259256 ⋅⎟⎟

⎜⎜

⎛+

−;

10) 36log2lg15log 96 31036 −+ −.

14.8. 1) 3log48log212 + ; 2)

25log

58log 5,02 − ;

3) 2log18log313 + ; 4)

3log2log

8log27log

213

312

;

Page 343: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

343

5) 3log2log

243log32lg

21,0

5,0

++

; 6) 25log9log

25log91log

31

21

32

+

−.

14.9. 1) 16loglog 22 ; 2) 243loglog 351 ;

3) 64logloglg 43 ; 4) 125logloglog 592 ;

5) 27logloglog 394 ; 6) 25logloglog 529 .

14.10. 1) 3log2log 29 ⋅ ; 2) 2log7log712 ⋅ ;

3) 36log3log2log 326 ⋅⋅ ; 4) 8log7log6log5log 7654 ⋅⋅⋅ .

14.11. 1) ipoveT 63log a , Tu ba =27log ;

2) ipoveT 8log30 , Tu a=5lg , b=3lg ;

3) ipoveT 56lg , Tu a=2lg , b=7log2 ;

4) ipoveT 60log275 , Tu a=5log12 , b=11log12 ;

5) ipoveT 56log175 , Tu a=7log14 , b=5log14 ;

6) ipoveT ba

ab

3log , Tu 4log =aab ;

7) ipoveT 28log2

1 , Tu a=2log7 ;

8) ipoveT 16log6 , Tu a=27log12 .

14.12. 1) 20log6 gamosaxeT 12log4 da 9log20 ricxvebis

saSualebiT;

2) 15log6 gamosaxeT 6log9 da 15log8 ricxvebis

saSualebiT.

14.13. 1) mocemulia geometriuli progresia 105963 81 ,81 ,81 ,81 ,1 K .

yoveli wevri gaalogariTmeT 9-is fuZiT da

gamoTvaleT miRebuli ricxvebis jami;

2) mocemulia geometriuli progresia 102642 25 ,,25 ,25 ,25 ,1 −−−− K .

yoveli wevri gaalogariTmeT 5-is fuZiT da

gamoTvaleT miRebuli ricxvebis jami.

bnpytfojU!hboupmfcfcj!)$$25/25.25/58*;!

14.14. 1) 6255 =x; 2) 813 =−x

; 3) 328 =x; 4) 15 =x

;

Page 344: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

344

5) 5125 =x; 6) 24 =x

; 7) 3 218 =x

; 8) 4 51125 =x

.

14.15. 1) 331

=⎟⎠⎞

⎜⎝⎛

x

; 2) ( ) 425,0 =x; 3) ( )

16975,0 =x

;

4) 322 1 =+x; 5)

913 1 =+x; 6) 813 12 =−x

;

7) 3 255 =x; 8) 246 12 =−x

.

14.16. 1) 12 2 =−x; 2) 13 12 =−x

; 3) ( )( ) 13 32 =−− xx

;

4) xx 21711 −= ; 5)

xx 47 74 = ; 6) 5525 43 −− = xx;

7) 13616

21

=⎟⎠⎞

⎜⎝⎛⋅

−x

; 8) 494917

21

=⎟⎠⎞

⎜⎝⎛⋅

−x

.

14.17. 1) 3 24 1 55 −+ = xx

; 2)

2

34

43

⎟⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛

x

;

3)

3

23

94

⎟⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛

x

; 4)

61

25

254 −−

⎟⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛

x

.

14.18. 1) 27515 =⋅ −xx; 2) 100

215 =⎟⎠⎞

⎜⎝⎛⋅

−xx

;

3) 6427

89

32

=⎟⎠⎞

⎜⎝⎛⋅⎟

⎠⎞

⎜⎝⎛

xx

; 4) 83

89

32 1

=⎟⎠⎞

⎜⎝⎛⋅⎟

⎠⎞

⎜⎝⎛

−xx

;

5) 35

12527

925 32

=⎟⎠⎞

⎜⎝⎛⋅⎟

⎠⎞

⎜⎝⎛

−− xx

; 6) ( )5110101

512 −

=⎟⎠⎞

⎜⎝⎛⋅ x

xx

.

14.19. 1)

332

49

278 −

⎟⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛ x

; 2) 2121

9271

−−

=⎟⎠⎞

⎜⎝⎛

xx

;

3) xx 1001,01000

1=⋅ ; 4)

1212

927 −−

= xxx

;

5) ( ) 22

225625,0 +

− = xx

; 6) ( ) 2475,03443 −− =⋅ xxx

.

14.20. 1) 317

75

12825,032 −+

−+

⋅= xx

xx

; 2) 122 6425,0

2 −+ =⋅ xx;

3)

xx

−−

⎟⎟⎠

⎞⎜⎜⎝

⎛=⋅

824125,0 32

; 4) ( )x

x ⎟⎠⎞

⎜⎝⎛⋅=

53

3216,0 ;

Page 345: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

345

5) 11 2644 ++ ⋅= xx; 6)

21365

616

+−−+ ⎟

⎠⎞

⎜⎝⎛=

xx

.

14.21. 1) 10833 1 =++ xx; 2) 9622 2 =−+ xx

;

3) 677 1 =− −xx; 4) 322 2 =− −xx

.

14.22. 1) 2833 12 =+ −+ xx; 2) 2455 11 =− −+ xx

;

3) 315333 422212 =−+ −−− xxx; 4) 448222 321 =++ −−− xxx

.

14.23. 1) 140535 2 =⋅+ −xx; 2) 345727 12 =⋅+ −+ xx

;

3) 0625232 11 =+⋅−⋅+ −+ xxx; 4) 884523 12 =⋅+⋅ + xx

.

14.24. 1) 39933 1212 =++ −+ xxx; 2) 042324 2212 =+⋅−− −− xxx

;

3) 9225232 13 =⋅+⋅− −+ xxx; 4) 3525 1917 =− −− xx

;

5) 1633927 112

13 =−+ ++− x

xx

; 6) 675393 2132 =+− −− xxx.

14.25. 1) xxxxxx 57535333 1212 ⋅−⋅−=−− ++++;

2) xxxx −−−− −=− 3523 2277 ; 3)

3421 53537 ++++ −=−⋅ xxxx;

4) 112 95,0469

3143 +++ ⋅−⋅=⋅+⋅ xxxx

.

14.26. 1) 702332 =− xx; 2) 057672 =+⋅− xx

;

3) 063532 =+⋅− xx; 4) 013233532 2 =−⋅−⋅ xx

;

5) 8024 1 =+ +xx; 6) 1622 212 =+ ++ xx

;

7) 081093 12 =−+ ++ xx; 8) 233 252 += ++ xx

.

14.27. 1) 03343 24 =+⋅− xx; 2) 3329

33=⋅− xx

;

3) 122 1 =− − xx; 4) 033369 222 22

=+⋅− −−− xxxx;

5) 625,24 22 22=⋅− −+−+ xxxx

; 6) 025,13333

=−+

xx

xx.

14.28. 1) xxx 926349 ⋅=⋅−⋅ ; 2)

xxx 222 2512155925 ⋅=⋅+⋅ ;

3) 222 652934 −−− =⋅−⋅ xxx; 4)

5102102 652934 +++ ⋅=⋅−⋅ xxx;

5) xxx 365812163 ⋅=⋅+⋅ ; 6) 042763098

111=⋅+⋅−⋅ xxx .

14.29. 1) 0log5 =x ; 2) 1log8 =x ;

3) 5log2 =x ; 4) 1log10 −=x ;

5) 3log2

1 −=x ; 6) 4log 2 =x ;

Page 346: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

346

7) ( ) 132log3 =− x ; 8) ( ) 14log51 −=−x ;

9) 32log 33 −=x ; 10)

43log 3 44 −=x .

14.30. 1) ( ) 0lglg =x ; 2) ( ) 05loglog 24 =−x ;

3) ( ) 0log1log 32 =+ x ; 4) ( ) 1log4log 23 =− x ;

5) 0logloglog 432 =x ; 6) ( ) 02logloglog 423 =− x ;

7) ( ) 05logloglg 49 =−− x ; 8) ( )( ) 0log1log1log 343 =++ x .

14.31. 1) 2log3log2 33 −= xx ; 2) xx 272 log249log3log5 =− ;

3) ( ) ( )13lg2lg313lg +=+− xx ;

4) ( ) ( )6log2log31log 333 +=+− xx ;

5) ( ) ( ) 2log1log3log 444 =−−+ xx ;

6) ( ) ( )xx −=−− 10lg3lg214lg ;

7) ( ) ( )97log15log4log 222 −+=+− xx ;

8) ( ) ( ) ( ) 1log12log3log3log 5555 +−=−++ xxx ;

9) 12logloglog 33

233 =++ xxx ;

10) 36logloglog 62

222 =++ xxx ;

11) 27log6log 255 =+ xx ; 12) 11logloglog 842 =++ xxx .

14.32. 1) ( ) 2217log 23 =+− xx ; 2) ( ) 296log 2

5 =+− xx ;

3) ( ) ( ) 3lg115lg22lg +=++− xx ;

4) ( ) ( )43lg2lg32lg =−+− xx ; 5) ( ) ( ) xxx lg192lg203lg =−−− ;

6) ( ) 002,0lg5lglg =+++ xx ; 7) ( ) 9lg112lg5,0 −−=− xx ;

8) ( ) 195,0lg1lg5,0 =−−+−− xx ;

9) ( ) ( ) 5lg124log13log21

10110 +=+−− xx ;

10) ( ) ( ) 4log5lg

28log412log32

504,03 5−=−+− xx .

14.33. 1) ( ) 02log3log 32

3 =+− xx ; 2) ( ) 02loglog 22

2 =−− xx ;

3) 1lg12

lg51

=+

+− xx

;

Page 347: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

347

4) ( ) ( ) 31lg1

41lg45

1=

+++

+− xx.

14.34. 1) ( ) xx =− 36log3 ; 2) ( ) 1224log2 +=− xx;

3) ( ) xx =− 69log3 ; 4) ( ) xx −=− 145log5 ;

5) ( ) 165log6 +=+ − xx; 6) ( ) xx −=− 283log3 .

14.35. 1) ( ) ( )62lg54lg2lg 11 +=−+ +− xx;

2) ( ) ( )1425lg1155lg 11 −+=− −+ xx;

3) ( ) ( )49lg6lg33lg 11 −+=+ −+ xx;

4) ( ) ( )12log3log24log 222

12 ++=+ −− xx

.

14.36. 1) 3logloglog 232 =xx ; 2) 15logloglog 353 =+ xx ;

3) 32loglogloglog 812793 =xxxx ;

4) 59logloglog 3282 =⋅⋅ xxx .

14.37. 1) 65619log =xx ; 2) 10002lg =+xx ;

3) 1lg4

7lg

10 ++

= xx

x ; 4) 3lg100 xx x =⋅ ;

5) 0001,0lg5lg3=− xxx ; 6) ( ) 23lg 10000100 xx x =+

;

7) ( ) 252 5lg =x ; 8) xx 5,125 lg3 = .

14.38. 1) ( ) ( ) 32 lg21lg 25,64,0 xx −+ = ; 2) 1225,0 6lg7lg2=⋅ −+ xx

;

3) ( ) ( ) 160085 82lg82lg =⋅ −− xx

; 4) ( ) ( ) 14443 10lg10lg =++ xx

.

14.39. 1) ( )( )1lg3lg5,02lg2lg −−=−− xx ;

2) ( ) 2lg10lg2lg5,04lg −+=−− xx ;

3) ( )xxx −−=−+ 255 53log22log3 ;

4) ( ) xxxx −=−+ 30lg153lg ; 5) ( ) 5,48 1lg8lg3 3=+ +xx ;

6) ( ) 9log3log12log2 324 =−+− xx.

14.40. 1) ( )( )( )422 1111 aaaaaa x +++=++++ L ;

2) 13log4log 99

3 =− xx ; 3) 02264 27logloglog 333 =+⋅− xx;

4) 08log31093 2loglog 44 =+⋅−⋅ xx

.

Page 348: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

348

14.41. 1) 5)(loglog3 22

22 =−− xx ; 2) 1log2)(log4 2

424 −=+− xx ;

3) 4log3)(log2 22

22 −=−− xx ; 4) 9)(lglg3 22 =−− xx .

14.42. 1) ⎟⎠⎞

⎜⎝⎛ −=+⎟

⎠⎞

⎜⎝⎛ + x

x1

327lg2lg3lg211 ;

2) 6lg5lg)21lg( +=++ xx x;

3) ( )2

4lg16lg41223lg 4 xxx −+=− −

;

4) ( ) 2log2log2 55 525 ++ =− xx

;

5) ( ) ( ) ( ) ( ) 11lg11lg11lg1lg 5335 −+++−++ −=− xxxx

;

6) 211 2222

2332 +−− −=− xxxx.

14.43. 1) ( )[ ] 09lg9lg =+

++x

xxx ;

2) ( ) ( )x

xx 1lg1410lg100lg 22 +=+ ;

3) ( ) 4010000lg100lg 224

2 =+ xx

; 4) xxxx 42

2 log221log +=+ ;

5) 1loglog 32 =+ xx ; 6) ( ) ( ) 6lg12lg15lg −+=− xx .

14.44. 1) ( ) ( )32log44log 122 −+=+ +xx x ;

2) ( ) ( )12log12log41444log 2555 ++=−+ −xx

;

3) ( ) 0loglog2 288 =−− xx ; 4) [ ] 4)lg(lg2 22 =−− xx ;

5) ( ) ( ) 344

22 log16log2log xxx =⋅ ;

6) 13log1log 2,004,0 =+++ xx .

14.45. 1) 40052 32

3 loglog =⋅ xx;

2) ( ) 27log3934log 123

12 xxxx −=−+ ;

3) ( ) 216

1loglog16loglog 231

21

232 =

−−−

xx ;

4) ( ) 06252424

22=−⋅−

−+−−+ xxxx.

14.46. 1) ( ) xxxx =+−+ 2lg75lg ;

2) 270loglogloglog 1643 17171717 =++++ xxxx L ;

3) 2loglogloglog 4224 =+ xx ; 4) 5lglg 505 xx −= ;

Page 349: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

349

5) ( ) ( ) 251lg1lg 3224 =−+− xx ; 6) ( )( )( )2log8log1

2log2log42

6

6

12

12+−

=−+

−x

xx

.

14.47. 1) 14487487 =⎟⎠⎞⎜

⎝⎛ −+⎟

⎠⎞⎜

⎝⎛ +

zz;

2) 43232 =⎟⎠⎞⎜

⎝⎛ ++⎟

⎠⎞⎜

⎝⎛ −

xx;

3) 8154154 =⎟⎠⎞⎜

⎝⎛ ++⎟

⎠⎞⎜

⎝⎛ −

xx;

4) ( ) ( ) ( )32101013232

1212 22

−=−++

−−+− xxxx.

bnpytfojU!hboupmfcbUb!tjtufnfcj!)$$25/59.25/64*;!

14.48. 1) ⎪⎩

⎪⎨⎧

=

=++ 273

1233yx

yx

2)

⎪⎪⎩

⎪⎪⎨

=⋅

=+

9832

91832

yx

yx

3)

⎪⎪⎩

⎪⎪⎨

−=−

=⋅+⋅

4332

4113223

yx

yx

4)

⎪⎩

⎪⎨

=

=−

−−

yxy

yx

2

11

11

93

34349

14.49. 1)

⎪⎩

⎪⎨⎧

=−

=⋅

29123

xy

yx 2)

⎪⎩

⎪⎨⎧

=+=⋅ −

120052

yx

xy

3) ⎪⎩

⎪⎨⎧

=−

=−

0494

0167

y

yx

x

4) ⎪⎩

⎪⎨⎧

=⋅

=− 243381

927yx

yx

14.50. 1) ⎪⎩

⎪⎨⎧

=⋅

=⋅

5432

2432xy

yx

2) ⎪⎩

⎪⎨⎧

=⋅

=⋅

4553

7553xy

yx

3)

( )⎪⎩

⎪⎨⎧

=⋅

=⋅

2005125

366431

1

xy

xy 4)

⎪⎩

⎪⎨⎧

=+

=⋅

68925

20025223

3

yx

yx

14.51. 1) ⎩⎨⎧

=−=+

152lglg

yxyx

2) ⎩⎨⎧

=−+=+

169log1loglog 444

yxyx

Page 350: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

350

3) ( )⎩⎨⎧

=++=+

2log7log2loglog

4

333

yxyx

4) ⎩⎨⎧

=−++=+

0209log1loglog 444

yxyx

14.52. 1) ⎩⎨⎧

=+=+

5loglog4loglog

24

42

yxyx

2)

( ) ( )

⎪⎩

⎪⎨

−=−−

+−=−

13lglg4lglg

log5log 22

yx

yxyx

3) ( )( ) ( )⎪⎩

⎪⎨⎧

=−−++=+

3lglglg8lg1lg 22

yxyxyx

4) ( ) ( )( ) ( )⎪⎩

⎪⎨⎧

+=+

+=−

yxyx

yxyx

333

9

322

3

loglog

loglog

14.53. 1) ( )⎪⎩

⎪⎨⎧

=−=⋅

2log97223

3 yx

yx

2) ( )⎪⎩

⎪⎨⎧

=−+=⋅

3lg2lglg28193

xyx

xy

3) ( )⎪⎩

⎪⎨⎧

=+=+

1log422

2 yx

yx 4)

( )⎪⎩

⎪⎨⎧

=−+

=⋅

3lg2lglg

81932 xxy

xy

14.54. ipoveT x -is yvela mniSvneloba, romlisTvisac

mocemuli mimdevroba iqneba ariTmetikuli

progresia:

1) ( )203log21

21 −−− x , ( )x−4log , ( )192log 5,0 −− x ;

2) ( )20log 22 +−− xx , )(log

21

4 x−+ , ⎟⎠⎞

⎜⎝⎛ −

x41log 5,0 ;

3) x+21

, ( )14log21

2 +x, ⎟

⎠⎞

⎜⎝⎛ ⋅+− − x4

27

21log 25,0 ;

4) 3lg , ( )23log 1,0 +− x, ⎟

⎠⎞

⎜⎝⎛ +

3103log

21

10x

.

14.55. ipoveT x -is yvela mniSvneloba, romlebisTvisac

mocemuli mimdevroba iqneba geometriuli progre-

sia:

1) ( )910lg +x, 2 , ( )9,010lg 1

1,0 +− −x;

2) ( )24log41

21 +− x

, 2 , ⎟⎠⎞

⎜⎝⎛ +−

214log

21 1

2x

;

Page 351: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

351

3) ( )73log3 +x, 12 , ⎟

⎠⎞

⎜⎝⎛ +− −

373log

21 1

31

x;

4) ( )310lg +x, 6 , ( )3010log

21 1

1,0 +− +x.

14.56. ipoveT a parametris yvela mniSvneloba, romlis-

Tvisac gantolebas aqvs erTi amonaxsni:

1) 0324 =+−⋅− aa xx; 2) ( ) 05325 =−⋅+− aa xx

;

3) ( ) 06339 =−+⋅−− aa xx; 4) ( ) 026326 2 =−⋅+− aa

xx

.

14.57. a parametris ra mniSvnelobebisaTvis aqvs ori

amonaxsni gantolebas:

1) ( ) xax =+ 33 29log ; 2) ( ) xax =−4log2 ;

3) 0414log 3

21 =⎟

⎠⎞

⎜⎝⎛ ++ ax x

; 4) ( ) 029log3

1 =−+ ax x.

14.58. ipoveT a -s yvela mniSvneloba, romelTaTvisac

( ) 022441 =++⋅−⋅− aa xx

gantolebas aqvs erTi mainc amonaxsni.

14.59. rogori unda iyos k , rom

( ) ( ) 42422 11 =⋅+−⋅+ −+ xx kk

gantolebis amonaxsni iyos dadebiTi?

2) rogori unda iyos k , rom

( ) 45335 22 =⋅−⋅− −+ xx kk

gantolebis amonaxsni iyos uaryofiTi?

14.60. ipoveT a -s yvela mniSvneloba, romelTaTvisac

gantolebas aqvs sxvadasxva niSnis fesvebi:

1) ( ) ( ) 0522122 2 =−+⋅−−⋅− − aaa xx;

2) ( ) ( ) 0123231 2 =++⋅+−⋅+ − aaa xx.

§15. nbDwfofcmjboj!eb!mphbsjUnvmj!!vupmpcfcj!

!15.1. daadgineT 1-ze metia Tu naklebi Semdegi gamosaxule-

bis mniSvneloba:

Page 352: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

352

1) 2

155log7

1

32

⎟⎠⎞

⎜⎝⎛

; 2) 3

156log2

23

⎟⎠⎞

⎜⎝⎛

;

3) 4

137log7

2

54

⎟⎠⎞

⎜⎝⎛

; 4) 4

127log3

54

⎟⎠⎞

⎜⎝⎛

.

15.2. WeSmaritia Tu ara utolobebi. pasuxi daasabuTeT:

1) 183 5

126log4

1

<⎟⎠⎞

⎜⎝⎛

; 2) 135 11

1815log7

2

>⎟⎠⎞

⎜⎝⎛

;

3) 192 3

217log4

5

<⎟⎠⎞

⎜⎝⎛

; 4) 125 3

727log5

>⎟⎠⎞

⎜⎝⎛

.

15.3. ipoveT a -s yvela mniSvneloba, romlisTvisac uto-

loba iqneba marTebuli:

1) 13,0311log

52

<−

a ; 2) 15,0195log

34

<−

a ;

3) 158 8

134log

>⎟⎠⎞

⎜⎝⎛

+a

; 4) 132 2

321log

>⎟⎠⎞

⎜⎝⎛

−a

.

15.4. romelia meti

1) 1,02 5log3 − Tu 2log35 ? 2)

72log7 5,0

3lg + Tu 7lg3 ?

3) ( ) 21,0 3log2 + Tu 310log 33 2 +−?

4) 2lg3

15log 103 2 + Tu 1032log 105 + .

!

! bnpytfojU!vupmpcfcj!)$$26/6.26/28*;!

15.5. 1) 24 <x; 2) 16 ≥x

; 3) 212 >x;

4) 173

≤⎟⎠⎞

⎜⎝⎛

x

; 5) ( ) 09,03,0 >x; 6) ( )

2512,0 ≤x

.

15.6. 1) 212 1 >+− x; 2)

2515 2 <+− x

; 3) ( ) 09,03,0 1 >−x;

4) ( )2512,0 13 <−x

; 5) 3616 23 >− x

; 6) 152 63

≤⎟⎠⎞

⎜⎝⎛

− x

.!

Page 353: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

353

15.7. 1) 913 32

≤− xx; 2) 15

24 ≥− xx; 3)

56

41

41

2

⎟⎠⎞

⎜⎝⎛>⎟

⎠⎞

⎜⎝⎛

− xx

;

4)

xxx −+

⎟⎠⎞

⎜⎝⎛≤⎟

⎠⎞

⎜⎝⎛

162

91

31

2

; 5) 2

25,05,0 xx ≤ ;

15.8. 1) ( ) 0625,05,0 21

<x ; 2)

xx

−−

⎟⎟⎠

⎞⎜⎜⎝

⎛<⋅

824125,0 32

;

3) 2516

25 3

14

<⎟⎟⎠

⎞⎜⎜⎝

⎛ −−x

x

; 4) 04,05 132

≥−−x

x

; 5) 12551 1

12

>⎟⎠⎞

⎜⎝⎛ −

+x

x

;

6) 5,252 1

34

>⎟⎠⎞

⎜⎝⎛ −

+xx

; 7) 252,0 12

2

2

>−

+

xx

; 8) ( )xx

81,0310

452

>⎟⎟⎠

⎞⎜⎜⎝

⎛−

.

15.9. 1) 14423 221 >⋅ −− xx; 2)

32

427

92 33

<⎟⎠⎞

⎜⎝⎛⋅⎟

⎠⎞

⎜⎝⎛

−− xx

;

3) xxxx 3333 7373 ⋅≤⋅ ++; 4) xxxx 7272 ⋅<⋅ ;

5) 425

8125

52 22

>⎟⎠⎞

⎜⎝⎛⋅⎟

⎠⎞

⎜⎝⎛

−− xx

; 6) 722642 3,03,0 >++++ xL.

15.10. 1) 1604243 1 >⋅−⋅ −xx; 2) 2425232 11 −>⋅−⋅+ −+ xxx

;

3) 57333 31323 <−+ +− xxx; 4)

( ) ( )52824

23212 >+−

−− xxx;

5) 11333 21 <−+ −− xxx; 6) 6655253 21 <+⋅−⋅ −− xxx

.

15.11. 1) 224 ≤− xx; 2) 455 12 +>+ xx

; 3) 55625 −⋅< xx

; 4) 01232 232 >+⋅− −− xx;

5) 013109 1 <+⋅− −xx; 6) 3

312

91

>⎟⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛

xx

;

7) 03242111

≤−−−− xx ; 8)

xxx 5555 12 +<+ +.

15.12. 1) 112 51154323 −−+ ⋅−⋅≤⋅− xxxx;

2) 21432 55222 +++++ −>−− xxxxx;

3) 42

72

952 4332 ++++ −≤− xxxx; 4) 2

12221

5395 −−+−≥−

xxxx.

15.13. 1) 0365812163 <⋅−⋅+⋅ xxx; 2) 03674213496 ≤⋅+⋅−⋅ xxx ;

3) 0982411643 ≥⋅+⋅−⋅ xxx; 4) 0257352495 >⋅−⋅−⋅ xxx

;

Page 354: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

354

5) xxx111

946549 ⋅≤⋅+⋅ ; 6) xxx111

42103255 ⋅≥⋅+⋅ ;

7) xxx111

6134696 ⋅<⋅+⋅ ; 8) xxx111

49203525 ⋅≥+ .

15.14. 1) 12

112

12 −

>− +xx ; 2)

131

531

1 −≤

+ +xx ;

3) 015

55451

2<

−−⋅−

+x

xx; 4) 0

313329

1 ≥−

−⋅++x

xx.

15.15. 1) 112

34

33 −−

<+ x

x

; 2) 2

22

56

55 −−

<+ x

x

;

3) 222 363 −− ≤− xx; 4) 0105325 44 ≤−⋅− ++ xx

.

15.16. 1) xx

−+

>⎟⎠⎞

⎜⎝⎛ 3

31 2

; 2)

xx

−+ ⎟

⎠⎞

⎜⎝⎛<

412 3

;

3) xx −− ⋅<+⋅ 22 310393 ; 4) 28339 133 22

⋅<+ −−− xx.

15.17. 1) ( ) 3231

4324324 +

≥− +−x

x

; 2) ( )98

210210 321 +<− +

−xx

;

3) ( ) ( )( )1

2

36363

+−−

⎟⎟⎠

⎞⎜⎜⎝

⎛ +≥−

xxx

;

4) ( ) 21

3178

317+

−−≤⎟

⎟⎠

⎞⎜⎜⎝

⎛ + xxx

x

.

15.18. 1) amoxseniT utoloba xxx aa 391272 −+− < , Tu

cnobilia, rom igi samarTliania, roca 2=x ;

2) amoxseniT utoloba 8823 2 −−+ < xxx aa , Tu cnobilia,

rom igi samarTliania, roca 9=x ;

3) amoxseniT utoloba 4112 ++ > xx aa , Tu cnobilia,

rom 2=x ar aris misi amonaxsni;

4) amoxseniT utoloba xx aa <+7, Tu cnobilia, rom

4=x ar aris misi amonaxsni.

bnpytfojU!vupmpcfcj!)$$26/2:.26/44*;!

15.19. 1) 2log3 >x ; 2) 1,0log7 <x ; 3) 5log 7,0 >x ;

Page 355: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

355

4) 2log 2,0 −<x ; 5) 1log3

1 >x ; 6) 1log4

3 −<x .

15.20. 1) ( ) 032log2

1 >+x ; 2) ( ) 123,2log 3,0 <− x ;

3) ( ) 123log 7,0 >−x ; 4) ( ) 5,02log9 >+ x ;

5) ( ) 13log5 −<− x ; 6) ( ) 252log 3,0 >− x .

15.21. 1) ( ) ( )xx 21lg32lg −>+ ; 2) ( ) ( )xx 21log75log 3,23,2 −>− ;

3) ( ) ( )1log42log 55 +>− xx ; 4) ( ) ( )xx −>+ 5lg1lg ;

5) ( ) xx7

17

1 log62log <− ; 6) ( ) ( )3lg3lg 2 +>− xx .

15.22. 1) ( ) 11log 25 >−+ xx ; 2) ( ) 0114log 2

7 >−− xx ;

3) ( ) 22log 2

21 −>−+ xx ; 4) ( ) 23log 2

2 <+ xx ;

5) ( ) 075log 2

31 >+− xx ; 6) ( ) 1186lg 2 <+− xx .

15.23. 1) ( ) ( )xxx 28lg43lg 2 −>+− ; 2) ( ) ( )10log123log 22

22 +>− xx ;

3) ( ) 34log 22 >−− xx ; 4) ( ) 2212log 2

2 >−− xx ;

5) ( ) 18lg 2 ≥+− xx ; 6) ( ) ( )52log1log 7,02

7,0 −<+ xx .

15.24. 1) ( ) 03loglog 52

1 <−x ; 2) ( ) 07loglog 34 <−x ;

3) 0logloglog 53

12 >x ; 4) ( ) 05logloglog 432 >−x .

15.25. 1) ( ) 034loglog 2

1693 ≤+− xx ; 2) ( ) 06loglog 2

21

38 ≥−− xx ;

3) ( ) 032loglog 25

4127 ≥−− xx ; 4) ( ) 043loglog 2

21

1112 ≤−+ xx .

15.26. 1) 3lg2lg2 >+ xx ; 2) 08lg2lg2 ≤−− xx ;

3) 02loglog 5,02

5,0 ≤−+ xx ; 4) 3loglog 22

25,0 >− xx .

15.27. 1) ( ) ( ) 62log14log 22 <+++ xx ;

2) ( ) ( )22log12loglog 555 +<−+ xxx ;

3) ( ) ( ) ( ) 15log1log1log 333

1 <−++−− xxx ;

4) ( ) ( ) ( )14log22log212log 9

313 +<−−+ xxx ;

5) ( ) ( ) 242log1log4 22 ≤−−− xx .

15.28. 1) 023log2 <

+−

xx

; 2) 0282log 5,1 <

−−

xx

;

Page 356: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

356

3) 064log2

7,0 <+−

xxx

; 4) 25lg

43lg

++

>++

xx

xx

.

15.29. 1) 132lg <−x ; 2) 152log3

1 −>−x ;

3) ( ) xx >−⋅ 932log3 ; 4) ( ) xx <−+ 42log 12 .

15.30. 1) ( ) 014log

5

2≥

−−−

xx

; 2) ( )

0541log

22 >

−−

xxx

;

3) ( ) 033log

322

2

>+−

−xx

x; 4) ( )( ) 031log4 2

2 <−−⋅− xx ;

5) 01log

1

3≤

−−x

x; 6) ( )( ) 011log42 3 ≤−−− xx .

15.31. 1) 1lg12

lg51

<+

+− xx

; 2) 1lg

6lg2lg2<

−+x

xx;

3) 21

log1log1

2

4 ≤+−

xx

; 4) 2log

1log

1

22 +≤

xx.

15.32. 1) ( ) 30lg2lg15log21

10 +<++ xxx;

2) ( ) 23log12log21

22 <−+− xx;

3) ( ) 524log2 <++ xx ;

4) ( ) 6lg5lg21log21

10 +<++ xx x;

5) ( ) xxxx −>−+ 30lg153log21

10 ;

6) ( ) 20lg22log21

10 xxxx >+−+ .

15.33. 1) ( ) 123log22log 3

23 −<− xx ;

2) ( ) ( )24log213log 2

25,0 −−>− xx ;

3) ( ) ( )36log4log 3,02

3,0 −>− xx ;

4) ⎟⎠⎞

⎜⎝⎛ −<− 3

37log5log2 4

24 xx .

Page 357: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

357

15.34. cnobilia, rom mocemuli utoloba samarTliania,

roca 0xx = . ipoveT am utolobis yvela amonaxsni:

1) ( ) ( )xxx aa −<+− 3log385log 2, 20 −=x ;

2) ( ) ( )1log132log 2 −<+− xxx aa , 20 =x ;

3) ( ) ( )25log532log 2 −<−+ xxx aa , 50 =x ;

4) ( ) ( )xxx aa −>+− 14log3011log 2, 70 =x .

$16. gvordjb/!gvordjjt!hsbgjlj!!

16.1 romel sakoordinato meoTxedSi mdebareobs werti-

li:

1) ( )5;2M − ; 2) ( )7;3M −− , 3) ( )2;5M − ; 4) ( )9;2M .

16.2. daadgineT, romel sakoordinato meoTxedebs SeiZle-

ba ekuTvnodes ( )yxM ; wertili, Tu:

1) 0>xy ; 2) 0<xy ; 3) 0=− yx ;

4) 0=+ yx ; 5) 0>+ yx ; 6) 0<− yx .

16.3. ipoveT ( )5;2M , )1;3(−N , )3;5( −−P da )1;7( −Q wertile-

bis simetriuli wertilebis koordinatebi:

1) Ox RerZis mimarT; 2) Oy RerZis mimarT;

3) koordinatTa saTavis mimarT;

4) pirveli da mesame sakoordinato sibrtyeebis

biseqtrisis mimarT;

5) meore da meoTxe sakoordinato sibrtyeebis

biseqtrisis mimarT;

6) 1=x wrfis mimarT; 7) 2−=y wrfis mimarT.

16.4. ipoveT manZili M da N wertilebs Soris, Tu:

1) M (1;0), N (3;0); 2) M (-2;0), N (-5;0);

3) M (-1;0), N (3;0); 4) M (0;2), N (0;5);

5) M (0;-3), N (0;-7); 6) M (0;-4), N (0;3);

7) M (3;2), N (-5;2); 8) M (-3;4), N (-3;-4);

9) M (1;6), N (4;2); 10) M (-7;8), N (5;3).

16.5. gamoTvaleT

1) ))2((gf , Tu 13)( −= xxf , 32)( += xxg ;

2) ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛

3πgf , Tu 14)( 2 −= xxf , xxg sin)( = ;

Page 358: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

358

3) ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛

41gf , Tu

xxf 9)( = , xxg 31log)( = ;

4) ))24((gf , Tu xxf3

log)( = , xxg 27)( = .

16.6. ipoveT 1) ))(( xff , Tu 15)( −= xxf ;

2) ))(( xff , Tu xxf 43)( −= ,

3) ))(( xff , Tu 1)( 2 += xxf ,

4) ))(( xgf , Tu 12)( += xxf , xxg −= 5)( .

jqpwfU!gvordjbUb!hbotbSwsjt!bsf!)$$27/8.27/26*;!

16.7. 1) 123

1−

=x

y ; 2) 392

+−

=xxy ;

3) 492 −= xy ; 4) 29144 xy −= .

16.8. 1) 1−+= xxy ; 2) 1316 +−−= xxy ;

3) 1

17−

+−=x

xy ; 4) xx

y −+−

= 5113

7.

16.9. 1) ( )( )xxy 511 +−= ; 2) 6322 −−= xxy ;

3) 422 ++−= xxy ; 4) 1582 ++= xxy .

16.10. 1) 6223

+−

=xxy ; 2)

xxy−−

−=2

4;

3) 11−=

xy ; 4)

xxy−

+=1

2 .

16.11. 1) 802

32 −−

−=

xxxy ; 2)

8025

2 −−−

=xx

xy ;

3) 2

42

2

−−−

=xx

xy ; 4) 2

2

9

6

x

xxy−

−+= .

16.12. 1) ( )5log3 −= xy ; 2) ( )xy −= 7log 3,0 ;

3) ( )23,0 9log xy −= ; 4) ( )26log xxy −+= π ;

5) ⎟⎠⎞⎜

⎝⎛ −−= 322

2log xxy ; 6) ( )27log xxy −= .

Page 359: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

359

16.13. 1) 53

2ln+−

=x

xy ; 2) 26 25logxx

xy−+−

= ; 3) xy lg= ;

4) ( ) xxy lg10−= ; 5) xxy

lg2 −

= ; 6) 51log 3,0 +

−=

xxy .

16.14. 1) ( ) 21lg1

++−

= xx

y ; 2) ( )32lg2

13 −−−

+= xx

xy ;

3) ( )xxx

y −+−

= 22 lg

43

; 4) 32 5

24105lg +−+−

−= x

xxxy .

16.15. 1) =y 54log822log −+ xx ; 2)

3loglog8

1

31

29 ++−

=xx

y ;

3)⎟⎟

⎜⎜

⎛−−= 2log4loglog

91

232 xxy ; 4) ( )( )5,22log2log 2

5,03 −−−= xxy ;

5) ( )( )4234log2lg 2 +⋅−−+= xxxy ; 6) ( )xxy −+= 3log3

4 .

jqpwfU!gvordjjt!nojTwofmpcbUb!tjnsbwmf!)$$27/27.27/33*;!

16.16. 1) 222 ++= xxy ; 2) 142 +−= xxy ;

3) 228 xxy −−= ; 4)

265 xxy −+= .

16.17. 1) 522 ++= xxy ; 2) 228 xxy −−= ;

3) 12

2

+=

xxy ; 4) 2

2 1x

xy += .

16.18. 1) xxy sinsin += ; 2) 5sin2

3−

=x

y ;

3) xy cos21−= ; 4) xxy 44 cossin += .

16.19. 1) 2

10 xy −= ; 2) 5423 ++= xxy ;

3)

222

31 +−

⎟⎠⎞

⎜⎝⎛=

xx

y ; 4)

116 2

51 −−

⎟⎠⎞

⎜⎝⎛=

xx

y .

16.20. 1) ( )10lg 2 += xy ; 2) ( )27log 23 += xy ;

3) ( )25log 2

51 += xy ; 4) ( )64log 2

41 += xy .

Page 360: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

360

16.21. 1) xy sin2= ; 2)

x

ycos

21⎟⎠⎞

⎜⎝⎛= ;

3) xy sinlog 5,0= ; 4) ( )xxy coscoslog2 += .

16.22. 1) ( )1log 222 += xy ; 2)

( )1log 255 −= xy ;

3)

( )94log 2

41

41 −−

⎟⎠⎞

⎜⎝⎛=

xx

y ; 4) ( )2

7 48log7 xxy −+= .

jqpwfU! gvordjjt! nojTwofmpcbUb! tjnsbwmf! njUjUfcvm!

Tvbmfef!)$$27/34<!27/35*;!

16.23. 1) 23 −= xy , ∈x [-1;4]; 2) xy 53−= , ∈x [0;3];

3) 742 −−= xxy , ∈x [2;4]; 4) 265 xxy −+= , ∈x [-3;-1].

16.24. 1) 2+= xy , ∈x [-1;1]; 2) 1−= xy , ∈x [0;2];

3) xxy −= 2, ∈x ⎥⎦

⎤⎢⎣⎡

43;0 ; 4)

26 xxy −= , ∈x [-2;1].

jqpwfU!gvordjjt!vejeftj!nojTwofmpcb!)$$27/36<!27/37*;!

16.25. 1) 322 ++−= xxy ; 2) 1282 +−−= xxy ;

3)212 xy −= ; 4)

222

31 −+

⎟⎠⎞

⎜⎝⎛=

xx

y ;

5) ( )186log 2

31 +−= xxy ; 6) ⎟

⎠⎞

⎜⎝⎛ ++=

4455log 2

51 xxy .

16.26. 1) 3sin5 −= xy ; 2) x

ycos352

−= ;

3) x

ysin34

2+

= ; 4) xxy cossin3 += ;

5) xy sinlog2= ; 6) xy cos2= .

jqpwfU!gvordjjt!vndjsftj!nojTwofmpcb!)$$27/38<!27/39*;!

16.27. 1) 652 +−= xxy ; 2) 132 2 +−= xxy ;

3) 122

7 +−= xxy ; 4)

542

21 −+−

⎟⎠⎞

⎜⎝⎛=

xx

y ;

Page 361: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

361

5) ( )25124log 22 +−= xxy ; 6) ( )172log 2

4 ++= xxy .

16.28. 1) xy sin3= ; 2) 12sin3 −= xy ; 3) x

ycos23

−= ;

4) xxy cos3sin −= ; 5) xy coslog6

1= ; 6) xy sin3= .

jqpwfU! gvordjjt! vejeftj! nojTwofmpcb! njUjUfcvm! tfhnfouf!

)$$27/3:<!27/41*;!

16.29. 1) xy 56 −= , [ ]3;1∈x ; 2) 142 +−−= xxy , [ ]3;0∈x ;

3) xy 34 −= , [ ]5;2∈x ; 4) 26 xxy −= , [ ]7;3∈x .

16.30. 1) xy sin3= , ⎥⎦⎤

⎢⎣⎡ ππ

∈3

;4

x ; 2) xy cos6= , ⎥⎦⎤

⎢⎣⎡ ππ−∈

4;

4x ;

3) xy cos21−= , [ ]π∈ ;0x ; 4) xxy 66 cossin += , ⎥⎦⎤

⎢⎣⎡ ππ

∈4

;6

x .

jqpwfU!gvordjjt!vndjsftj!nojTwofmpcb!njUjUfcvm!tfhnfouf!

)$$27/42<!27/43*<!

16.31. 1) xy 38 −= , [ ]4;1∈x ; 2) 123 2 +−−= xxy , [ ]2;4 −−∈x ;

3) 17 += xy , [ ]1;3 −−∈x ; 4) 2082 ++−= xxy , [ ]10;2−∈x .

16.32. 1) xy sin7= , ⎥⎦⎤

⎢⎣⎡ ππ

∈32;

4x ; 2) xy cos5= , ⎥⎦

⎤⎢⎣⎡ ππ−∈

6;

3x ;

3) ⎟⎠⎞

⎜⎝⎛ π

++=3

sinsin xxy ; [ ]0;π−∈x ;

4) xxy cossin += ; ⎥⎦⎤

⎢⎣⎡ π

∈4

;0x .

16.33. ipoveT funqciis zrdadobisa da klebadobis

Sualedebi:

1) 12 −= xy ; 2) 1

3+

−=x

y ; 3) x

y−

=2

1;

4) 182 2 +−= xxy ; 5) 2215 xxy −−= ; 6) ( )( ) 232 +−−= xxy .

16.34. ipoveT, ra simravleze asaxavs funqcia mocemul

Sualeds:

1) 15 −= xy , [ ]2;1− ; 2) xy 23−= , [ ]1;4− ;

Page 362: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

362

3) 1

3−

=x

y , [ ]4;2 ; 4) xxy 62 −= , [ ]4;1 ;

5) 542 2 +−= xxy , [ [∞;0 ; 6) 342 2 −+−= xxy , [ ]2;1− ;

7) xy 3log= , [ ]3;1 ; 8)

2

31 −

⎟⎠⎞

⎜⎝⎛=

x

y , [ ]2;0 .

16.35. M (9;2), N (-2;4), K (-1;-4), E (1;-1), F (3;3) da G (-2;-40)

wertilebidan romeli mdebareobs:

1) 13 −= xy funqciis grafikze;

2) 2

3−

=x

y funqciis grafikze;

3)

x

y ⎟⎠⎞

⎜⎝⎛=

21

funqciis grafikze;

4) xy 3log= funqciis grafikze.

16.36. a -s ra mniSvnelobisaTvis mdebareobs M ( a ,3) wertili:

1) 52 += xy funqciis grafikze;

2) 1

3−

−=x

y funqciis grafikze;

3) xy 3= funqciis grafikze;

4) xy 2log= funqciis grafikze.

16.37. b -s ra mniSvnelobisaTvis mdebareobs M (2;b ) wertili:

1) 12 −= xy funqciis grafikze;

2) xxy 32 2 +−= funqciis grafikze;

3) xy 4log2= funqciis grafikze;

4) xy 3= funqciis grafikze.

16.38. 1) a -s ra mniSvnelobisaTvis mdebareobs M wertili

funqciis grafikze, Tu:

1) M (1; a ), xy 24 −= ; 2) M ( a ;2), 242 +−= xxy ;

3) M (1;1), axxy +−= 32 2; 4) M (-1;5), 322 +−= xaxy .

16.39. ipoveT funqciis grafikis Ox RerZTan gadakveTis

wertilis koordinatebi:

1) xy 26 −= ; 2) 25 xxy −= ; 3) xy 5log1−= ; 4) 4

21

−⎟⎠⎞

⎜⎝⎛=

x

y .

Page 363: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

363

16.40. ipoveT funqciis grafikis Oy RerZTan gadakveTis

wertilis koordinatebi:

1) xy −= 6 ; 2) 1

3−

=x

y ; 3) xy 32 ⋅= ; 4) xy cos3= .

16.41. ipoveT sakoordinato RerZebiTa da mocemuli

wrfeebiT SemosazRvruli figuris farTobi:

1) 3=x , 5=y ; 2) 4−=x , 6−=y ; 3) 6+−= xy ; 4) 623 =− yx .

16.42. ipoveT funqciaTa grafikebis gadakveTis wertilebi:

1) 13 −= xy , xy −= 3 ; 2) 22 xxy −+= , 0=y ;

3) 532 +−= xxy , 2+= xy ; 4) 2xy = ,

22 xxy −= .

16.43. ipoveT parabolis wveros koordinatebi:

1) xxy 42 −= ; 2) 46 2 −−= xxy ;

3) 2483 xxy −−= ; 4) ( ) 363 2 +−= xy .

16.44. SeadgineT im wrfis gantoleba, romelic gadis M

wertilze mocemuli wrfis paralelurad:

1) M (-2;3), 5=y ; 2) M (0;0), 12 +−= xy ;

3) M (1;-2), 132 =− yx ; 4) M (-1;3), 32 −=+ yx .

16.45. 1) ipoveT cxxy ++= 62 parabolis Ox RerZTan

gadakveTis wertilebi, Tu is Oy RerZs kveTs (0;8)

wertilSi.

2) ipoveT cxxy ++= 32 parabolis Oy RerZTan

gadakveTis wertili, Tu misi Ox RerZTan gadakveTis

erT-erTi wertilia (3;0).

3) M da N Sesabamisad 42 +−= xy parabolis Ox da Oy RerZebTan gadakveTis wertilebia. ipoveT manZili

M da N wertilebs Soris.

4) ipoveT b da c , Tu cbxxy ++= 2 funqciis grafiki

Oy RerZs kveTs (0;5) wertilSi, xolo Ox RerZs (1;0) wertilSi.

5) ipoveT b da c , Tu cbxxy ++−= 2 funqciis grafiki

Ox RerZs kveTs (1;0) da (3;0) wertilebSi.

6) ipoveT b da c , Tu cbxxy ++= 22 funqciis grafiki

Ox RerZs exeba (1;0) wertilSi.

7) ipoveT cbxxy ++= 2 parabolis wvero, Tu es

parabola Ox RerZs kveTs wertilebSi (1;0) da (3;0).

Page 364: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

364

8) ipoveT a da c , Tu cxaxy +−= 82 funqcia umcires

mniSvnelobas iRebs 2=x wertilSi da es

mniSvneloba 0-is tolia.

9) ipoveT a da c , Tu cxaxy ++= 42 funqcia udides

mniSvnelobas iRebs 1=x wertilSi da es

mniSvneloba 8-is tolia.

10) ipoveT b da c , Tu cbxxy ++−= 2 funqcia nuli

xdeba mxolod 2−=x -sTvis.

11) ipoveT b da c , Tu cbxxy ++= 22 funqcia nuli

xdeba mxolod 3=x -sTvis.

12) ipoveT b da c , Tu cbxxy ++= 2 funqciis

grafikis simetriis RerZia 1=x wrfe da es grafiki

Oy RerZs kveTs (0;3) wertilSi.

13) ipoveT k -s yvela mniSvneloba, romlisTvisac

( ) 2321 2 −++−= kkxxky parabolas Ox RerZTan aqvs

erTaderTi saerTo wertili.

14) ipoveT k -s yvela mniSvneloba, romlisTvisac

6+= kxy wrfes 42202 ++= xxy parabolasTan

erTaderTi saerTo wertili aqvs.

15) ipoveT k -s yvela mniSvneloba, romlisTvisac

12 += kxy wrfes 382 ++= xkxy parabolasTan aqvs

erTaderTi saerTo wertili.

16) cbxaxy ++= 2 funqciis grafiki Ox RerZs kveTs

1−=x da 3=x wertilebSi, xolo Oy RerZs 2−=y

wertilSi. ipoveT a , b da c . 17) ipoveT a , b Dda c , Tu cbxaxy ++= 2

parabolis

wveroa (1;2) wertili da gadis (0;3) wertilze.

18) ipoveT a da b , Tu axy += 2 wrfe da

102 ++−= bxxy parabola erTmaneTs kveTs sakoordi-

nato RerZebze.

19) ipoveT a , b da c , Tu cbxxy ++−= 2 parabola da

axy +−= wrfe erTmaneTs kveTs M (5;7) wertilSi,

xolo meore TanakveTis wertili Oy RerZze

mdebareobs.

Page 365: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

365

20) ipoveT a , b Dda c , Tu axy +−= wrfes da

cbxxy ++= 2

41

parabolas aqvs erTaderTi saerTo

wertili M (2;8).

21) a -s ra mniSvnelobebisaTvis axy = wrfes da

922 +−= xxy parabolas aqvT erTaderTi saerTo

wertili. ipoveT am wertilis koordinatebi.

22) a -s ra mniSvnelobebisaTvis axy += wrfes da

1032 +−= xxy parabolas aqvT erTaderTi saerTo

wertili. ipoveT am wertilis koordinatebi.

16.46. aageT Semdegi gantolebiT mocemuli wrfe:

1) 02 =−y ; 2) 032 =+x ; 3) 023 =+ yx ;

4) 032 =− yx ; 5) 0532 =++ yx ; 6) 02153 =−+− yx .

bbhfU!gvordjjt!hsbgjlj!)$$27/58.27/76*;!

16.47. 1) 2=y ; 2) 8,0−=y ; 3) xy 2= ; 4) xy21

−= .

16.48. 1) 23 += xy ; 2) 212 +−= xy ; 3) xy = ;

4) xy −= ; 5) 1+= xy ; 6) 2−−= xy .

16.49. 1) xy −= 2 ; 2) 42 ++= xy ;

3) 31 +−= xy ; 4) 231 +−−= xy .

16.50. 1) x

y 2= ; 2)

xy 3−= ; 3)

12−

=x

y ;

4) 1

1−−

=x

y ; 5) 121+=

xy ; 6) 22

−−

=x

y ;

16.51. 1) 21

2+

−=

xy ; 2) 2

13

−−−

=x

y ; 3) 31

2−

+=

xy ; 4) 4

12

+−

=x

y ;

16.52. 1) x

y 2= ; 2)

xy 3

−= ; 3) 1

2−

=x

y ; 4) 2

3+

=x

y ;

5) 32+−=

xy ; 6) 21

−=x

y ; 7) 41

2+

+−

=x

y ; 8) 22

3−

−=

xy .

16.53. 1) 23

−+

=xxy ; 2)

253

++

=xxy ; 3)

425−−

=x

xy ; 4) 12

45+

−=

xxy .

Page 366: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

366

16.54. 1) 22xy = ; 2) 2

21 xy = ; 3)

23xy −= ; 4) 23,0 xy −= ;

5) 13 2 += xy ; 6) 24 2 +−= xy ; 7) 32 2 −= xy ; 8) 35 2 −−= xy .

16.55. 1) ( )22−= xy ; 2) ( )235,0 += xy ; 3) ( )21+−= xy ;

4) ( )22 xy −−= ; 5) ( ) 23 2 +−= xy ; 6) ( ) 322 2 −+= xy ;

7) ( ) 3,05,1 2 −+−= xy ; 8) ( )212 2 +−−= xy .

16.56. 1) xxy 42 += ; 2) xxy 62 +−= ; 3) ( )1−= xxy ; 4) xxy 42 2 +−= .

16.57. 1) 962 ++= xxy ; 2) 169 2 ++= xxy ;

3) 1682 −−−= xxy ; 4) 144 2 −+−= xxy .

16.58. 1) 342 +−= xxy ; 2) 4542 ++−= xxy ; 3) 253 2 +−= xxy ;

4) 543 2 −+−= xxy ; 5) 6720 2 ++−= xxy ; 6) 1742 2 ++= xxy .

16.59. 1) 13 2 −= xy ; 2) 22 +−= xy ; 3) 12 −−= xy ; 4) 32 2 +−= xy .

16.60. 1) ( ) 32 2 −−= xy ; 2) 244 2 −+= xxy ;

3) xxy += 2; 4) 122 −−= xxy .

16.61. 1) 31072 ++−= xxy ; 2) 223

212 −−−= xxy ;

3) 132

112 2 ++−= xxy ; 4) 489

433 2 ++−−= xxy .

16.62. 1) 3

21 xy = ; 2)

3xy −= ; 3) 4

31 xy = ; 4)

42xy −= .

16.63. 1) xy 2sin= ; 2) ⎟⎠⎞

⎜⎝⎛ π

+=4

sin xy ; 3) 13cos += xy ; 4) 3

cos2 xy = ;

5)3

sin xy = ; 6) 1cos −= xy ; 7) 2xtgy = ; 8) xtgy 2= ;

9) xxy sinsin += ; 10) xxy coscos −= .

16.64. 1) 13 −= xy ; 2) 352 +⋅= xy ; 3) 42 += −xy ;

4) 231

−⎟⎠⎞

⎜⎝⎛=

x

y ; 5) xy 2= ; 6)

x

y ⎟⎠⎞

⎜⎝⎛=

31

.

16.65. 1) 1log2 −= xy ; 2) 2log3

1 += xy ; 3) 1log2 5 +−= xy ;

Page 367: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

367

4) 4log32

1 +−= xy ; 5) xy 3log= ; 6) 1log2 +−= xy ;

7) 1log4 −= xy ; 8) 2log3

1 += xy .

%28/!tjnsbwmffcj/!pqfsbdjfcj!tjnsbwmffcf!

17.1. marTebulia Tu ara Semdegi Canaweri?

1) 6 ;2 ;2 ;02 −∈ 2) 0 ;3 ;5 ;63 −∈−

3) N∈3 4) N∉7

5) |127 Nnn ∈−∈ 6) )|29 Znn ∈∉

7) Q∈π 8) Q∈3

17.2. CawereT mocemuli simravle misi elementebis CamoTv-

liT.

1) ,712| ZxxxA ∈−<≤−= ; 2) ,45| NxxxA ∈≤<−= ;

3) ,0)3)(1(| 22 ZxxxxA ∈=−−= ;

4) ,5|| | NxxxA ∈<= ; 5) ,2|1| | ZxxxA ∈<−= ;

6) ,12| NxyxxA ∈=⋅= ;

7) , , ,18),(),(| baNbNababaxxA <∈∈=== usj ;

8) ),(| baxxA == usg 6),( =ba , ,20<a ,20<b ,ba <

, NbNa ∈∈ .

17.3. CamoTvaleT A simravlis yvela qvesimravle, Tu:

1) ; baA = ; 2) ; ; cbaA = .

17.4. CamoTvaleT A=a; b; c; d simravlis:

1) yvela orelementiani qvesimravle;

2) yvela samelementiani qvesimravle.

17.5. CamoTvaleT 6 ;5 ;4 ;3 ;2=A simravlis yvela is qvesim-

ravle, romlisTvisac 3; 5; 6 iqneba erT-erTi qvesim-

ravle.

17.6. WeSmaritia Tu ara Semdegi Canaweri?

1) 4 ;3 ;22 ⊂ ; 2) ; ;2 caa ⊂ .

17.7. vTqvaT 4 ;1;3 ;2;3 ;2=A . WeSmaritia Tu ara Semdegi

Canaweri?

1) A∉2 ; 2) A⊂3 ;2 ;3 ;

3) A⊂4 ;1 ; 4) A∈3 ;2 .

Page 368: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

368

17.8. Tu BAx \∈ , maSin marTebulia Tu ara Semdegi

Canaweri?

1) Ax∈ da Bx∈ ; 2) Ax∉ da Bx∉ ;

3) Ax∈ da Bx∉ ; 4) Bx∉ da Bx∈ .

17.9. Tu BAx I∈ , maSin marTebulia Tu ara Semdegi

Canaweri?

1) Ax∈ da Bx∉ ; 2) Ax∈ da Bx∈ ;

3) Ax∉ da Bx∈ ; 4) Ax∉ da Bx∉ .

17.10. ipoveT BAU , Tu

1) 5 ;4 ;2 ;1=A , 6 ;5 ;4 ;3=B ; 2) 4 ;3 ;1=A , 7 ;5 ;3=B ;

3) ]5 ;2[=A , ]7 ;3[=B ; 4) [ )8 ;∞−=A , ( ]10 ;2−=B .

17.11. ipoveT BAI , Tu

1) 6 ;4 3; ;2=A , 6 ;5 ;3=B ; 2) 8 ;6 ;4 ;3=A , 8 ;7 ;4 ;2=B ;

3) ]4 ;2[=A , ]6 ;3[=B ;

4) A aris rombebis simravle, B aris marTkuTxedebis

simravle.

17.12. ipoveT BA \ , Tu

1) 7 ;5 3;=A , 8 ;6 ;5=B ; 2) 6 ;4 ;2 ;1=A , 8 ;7 ;4 ;2=B ;

3) ]5 ;3[=A , ]6 ;4[=B ; 4) ]6 ;2[=A , ]5 ;3]=B .

17.13. vTqvaT 4 ;3 ;1=A da 5 ;3 ;2=B . ipoveT:

1) BAU 2) BAI 3) BA \

4) AB \ 5) )(\ BAA U 6) )(\ BAA I .

17.14. vTqvaT A, B da C nebismieri simravleebia. aris Tu

ara Semdegi Canaweri aucileblad WeSmariti?

1) ACBA ⊂\)( I 2) ACBA ⊂IU )(

3) ACBBA ⊂)(\)( UU 4) ACBBA ⊂)()( IUI

17.15. cnobilia, rom

9 ;7 ;6 ;4 ;2 ;0 ;1 ;2 ;3 −−−=BAU ;

1 ;2 ;3\ −−−=BA ; 9 ;6 ;4\ =AB

ipoveT:

1) A; 2) B; 3) BAI ; 4) )(\ BAA I .

17.16. cnobilia, rom

2 ;1 0; ;1\ −=BA , 8 ;7 ;6 5; ;4 3; ;2 ;1 ;0 ;1−=BAU ;

11 ;10 ;9 ;2\ =BC , 5 ;3=BAI ; 8=CB I .

ipoveT:

Page 369: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

369

1) A 2) B 3) C 4) CA \ 5) CAI

17.17. cnobilia, rom

5 ;1 ;0=BAI , 7 ;6 ;1 ;0 ;1 ;2 −−=C ,

ipoveT )()( CBCA UIU .

17.18. cnobilia, rom

6 ;4 2; ;0 ;1 ;2 ;3 −−−=BAU ,

10 ;9 8; 7; 4; 0; ;2−=C .

ipoveT: )()( CBCA IUI .

17.19. Tu 10)( =An , 10)( =Bn , 20)( =BAn U , maSin WeSmaritia,

Tu ara Semdegi Canaweri?

1) BA = 2) ∅=BAI

3) BABA UI = 4) 10)( =BAn I .

17.20. Tu 10)( =An , 10)( =Bn , 10)( =BAn I , maSin WeSmaritia,

Tu ara Semdegi Canaweri?

1) \ 0=BAI 2) 20)( =BAn U

3) BA = 4) ABA =\ .

17.21. cnobilia, rom 60)( =An , 85)( =Bn , 120)( =BAn U .

ipoveT )( BAn I .

17.22. cnobilia, rom 50)( =An , 75)( =Bn , 40)( =BAn I . ipoveT

)( BAn U .

17.23. meaTe klasSi 42 moswavlea. maTgan TiToeuli swav-

lobs inglisuri da germanuli enebidan erTs mainc.

am klasis 32 moswavle swavlobs inglisurs da 24-

germanuls. ramdeni moswavle swavlobs orive am

enas?

17.24. saWidao darbazSi myofi sportsmenebidan 45

varjiSobs ZiudoSi, 24 samboSi, 12 – rogorc samboSi

aseve ZiudoSi, xolo 8 – am saxeobebidan arc erTSi.

ramdeni sportsmenia darbazSi?

17.25. qalaqis yovelma mcxovrebma icis qarTuli da

rusuli enebidan erTi mainc. qarTuli icis

mosaxleobis 85%-ma, xolo rusuli – 65%-ma. qalaqis

mosaxleobis ramdenma procentma icis orive es ena?

17.26. klasis yoveli moswavlidan TiToeuli dadis cekvisa

da simReris wreebidan erTSi mainc. cekvis wreSi

Page 370: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

370

dadis moswavleTa 43 nawili, xolo simReris wreSi

_ 54 nawili. klasis moswavleTa ra nawili dadis

orive am wreSi erTdroulad?

§18. lpncjobupsjljt!fmfnfoufcj!!

18.1. gamoTvaleT

1) 4! 2) 5! 3) 6! _ 5! 4) 3! + 4!

5) !6!8 6)

!7!10 7)

!5!6!8− 8)

205!5!7 −

18.2. gaamartiveT gamosaxuleba

1) )!3(

!−nn

2) )!1()!1(

−+

nn

3) )!3(

)13(3nnn −⋅

4) )!2(

1)!1(

1+

−+ nn

gamoTvaleT (##18.3-18.5)

18.3. 1) P3 2) P5 3) 4

6

PP

4) 42 PP ⋅ 5) 5

67

PPP +

6) 1230

!15P⋅

18.4. 1) 36A 2)

25A 3) 3

5

57

AA

4) 25

35

45

AAA +

18.5. 1) 25C 2)

35C 3)

45C

4) 110C 5)

46

35 CC + 6) 2

4

56

27

CCC −

18.6. ramdeni xerxiT SeiZleba davsvaT merxze erTmaneTis

gverdiT sami bavSvi?

18.7. ramdeni xerxiT SeiZleba SevadginoT sia 4 moswavli-

sagan?

18.8. pirveli klasis moswavleebi orSabaTobiT swavloben

sam sagans. cxrilis Sedgenis ramdeni varianti arse-

bobs orSabaTisTvis?!

Page 371: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

371

18.9. azartuli TamaSebis mrgval magidasTan 8 adgilia.

ramdeni sxvadasxva xerxiT SeiZleba davsvaT rva

moTamaSisagan Semdgari jgufi am magidasTan?

18.10. mrgvali magidis garSemo 10 adgilia. ramdeni xerxiT

SeiZleba davsvaT am adgilebze 3 bavSvi?

18.11. banks SeuZlia 2 erTmaneTisagan gansxvavebuli

kreditis gacema. msurvelTa ricxvia 8. kreditis

gacemis ramdeni varianti arsebobs?

18.12. ramdeni xerxiT SeiZleba oTxi kacis arCeva oTx

sxvadasxva Tanamdebobaze, Tu am Tanamdebobebis kandidatTa

ricxvia 9?

18.13. moswavlem unda Caabaros 3 gamocda 6 dReSi. ramdeni

xerxiT SeiZleba SevadginoT gamocdebis cxrili?

(erT dRes iniSneba mxolod erTi gamocda).

18.14. moswavlem 6 dReSi unda Caabaros 3 gamocda:

qarTulSi, inglisurSi da maTematikaSi. ramdeni

xerxiT SeiZleba SevadginoT gamocdebis cxrili, Tu

maTematikis gamocda unda dainiSnos bolo dRes?

18.15. moswavlem unda Caabaros 4 gamocda 8 dReSi. ramdeni

xerxiT SeiZleba SevadginoT gamocdebis cxrili, Tu

erT-erTi gamocda unda dainiSnos merve dRes?

18.16. moWadrakeTa gundisaTvis 4 kandidatidan unda

SeirCes 3. ramdeni xerxiT SeiZleba SevadginoT

gundi?

18.17. 7 kandidatidan unda SevadginoT 3 kaciani komisia.

ramdeni xerxiT SeiZleba amis gakeTeba?

18.18. oTaxSi 6 naTuraa. ramdeni xerxiT SeiZleba oTaxis

ganaTeba ise, rom anTebuli iyos zustad 2 naTura.

18.19. ramdeni xerxiT SeiZleba 15 moswavlisagan Sedgenili

klasis or jgufad gayofa ise, rom erT-erT jgufSi

oTxi moswavle iyos?

18.20. wrewirze mocemulia 9 wertili. ramdeni iseTi samku-

Txedi arsebobs, romelTa wveroebi am wertilebs emT-

xveva?

18.21. wrewirze mocemulia A, B, C, D, E da F wertilebi.

ramdeni samkuTxedi arsebobs romelTa erT-erTi

wvero A wertilSia?

18.22. qvedanayofSi 10 jariskaci da 5 oficeria. ramdeni

xerxiT SeiZleba 3 jariskacisa da erTi oficrisagan

Sedgenili razmis gamoyofa?

Page 372: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

372

18.23. ipoveT im orniSna ricxvebis raodenoba, romelTa

orive cifri luwia.

18.24. meaTe klasSi iswavleba 10 sagani. orSabaTs am klasis

moswavleebs aqvT 6 gakveTili, amasTan yvela

gakveTili gansxvavebulia. ramdeni xerxiT SeiZleba

orSabaTis gakveTilebis cxrilis Sedgena.

18.25. CempionatSi monawileobs 16 gundi. ramdeni xerxiT

SeiZleba ganawildes pirveli da meore adgilebi?

18.26. ramdeni samniSna ricxvi SeiZleba SevadginoT

cifrebisagan 1, 2, 3, 4, 5?

18.27. ipoveT im xuTniSna ricxvebis raodenoba, romelSiac

yvela cifri kentia.

18.28. ramdeni sxvadasxva oTxniSna ricxvi SeiZleba

SevadginoT 0, 1, 2, 3 cifrebis saSualebiT? (cifrebi

SeiZleba ganmeordes).

18.29. ipoveT yvela im oTxniSna ricxvis cifrebis jami,

romelic Sedgenilia cifrebisagan 1, 2, 3, 4?

(TiToeuli cifri gvxvdeba mxolod erTjer).

18.30. ramdeni oTxniSna ricxvi SeiZleba SevadginoT

cifrebisagan 0, 1, 2, 3, 4, 5, Tu: 1) TiToeuli cifri

gvxvdeba mxolod erTjer; 2) cifrebi SeiZleba

ganmeordes; 3) miRebuli ricxvi unda iyos kenti

(cifrebi SeiZleba ganmeordes).

18.31. jgufSi 10 adamiania: 4 kaci, 4 qali da 2 bavSvi.

ramdeni 3 adamianisagan Sedgenili jgufis Sedgena

SeiZleba am pirovnebebisgan ise, rom TiToeul

jgufSi iyos erTi kaci, erTi qali da erTi bavSvi?

18.32. ramdeni xerxiT SeiZleba davalagoT kedlis gaswvriv

5 skami, romelTagan 3 erTnairia, xolo danarCeni 2

erTmaneTisagan gansxvavebuli?

18.33. gvaqvs 4 TeTri da 3 Savi burTi. ramdeni xerxiT

SeiZleba davalagoT erT rigSi es burTebi?

18.34. CogburTelTa gundi Sedgeba 3 biWisa da 2 gogosagan.

ramdeni xerxiT SeiZleba aseTi gundis Sedgena 10

biWisa da 6 gogosagan?

18.35.zuras daaviwyda nacnobis telefonis 6-cifriani

nomeri, magram mas axsovda rom es nomeri Sedgeba

xuTive kenti cifrisagan da cifri 6-gan, romelic

mosdevs cifr 3-s. ramdeni gansxvavebuli nomeri unda

akrifos zuram, rom aucileblad SeZlos Tavis

nacnobTan dakavSireba?

Page 373: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

373

%2:/!npobdfnUb!bobmjj!eb!tubujtujlb!

19.1. ipoveT Semdegi monacemebis saSualo:

1) 5; 7; 7; 10; 11; 2 2) 3; _4; 12; 0; 8; 5; 11

3) 1,5; _1,3; 0,8; 3,8 4) 32;

61

− ; 41

− ; 433 ; 6

19.2. ipoveT x, Tu: 1) _2; 0; 3; x; 4 ricxvebis saSualoa 1.

2) x _1; 2; _4; 3x ricxvebis saSualoa 2.

19.3. ipoveT Semdegi monacemebis mediana:

1) _2; 3; _4; 5; 0; 7; 8 2) _1; 4; _3; 6; 5; _6; 10; 0; 8

3) 2; _7; 0; _1; 8; 4 4) 1; _1; 5; _6; 7; _2; 8; 9

5) 0,75; 1211

; 0,4; 65;

32;

54 6)

75;

3019

; 4231

; 32; 0,3

7) 32 ; 23 ; 3; 52 ; 13

8) 6; 34 ; 55 ; 74 ; 72 ; 36

19.4. ipoveT x, Tu: 1) 3; 0; _0,9; 4; 5; x; 7; _1,2 monacemebis medianaa 2,5.

2) 0; 311 ;

211− ; 0,8; x; _2,5 monacemebis medianaa

31.

19.5. ipoveT Semdegi monacemebis gabnevis diapazoni:

1) 1; _2; 3; _6; _5; 4; 6 2) _2; 7; 0; _3,7; 2,5; 9,3; 7

3) 2,5; _2; 0; 322 ; _3; _3,2;

542

4) 25 ; 192 ; 54 ; 52− ; 23− ; 132

19.6. SeadgineT Semdegi monacemebis sixSireTa da fardo-

biT sixSireTa cxrili:

1) 3; 5; 4; 4; 3; 5; 6; 0; 5; 6; 0; 3

2) _2; 3; 0; 1; 4; 3; 4; 0; _2; 1; 4; 4; 3; 3

19.7. ipoveT Semdegi monacemebis moda:

1) 2; _1; _2; _2; 3; 4; _2; 4; 1; 2; _2

2) 3; 5; 0; 1; _2; 5; 2; 5; 2; 3; 2

3) 2; 0; _3; 1; 5; _2; 4; 7; 8

4) 4; 2; 0; _1; 4; 2; 1; 3; _2

19.8. ipoveT Semdegi monacemebis saSualo kvadratuli

(standartuli) gadaxra:

1) _2; 3; 0; 5 2) _2; _1; 0: 5: 8

3) 3; _2; 2; 1; 3; 5 4) _7; _1; 2; 3; _1; 8; _11

Page 374: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

374

19.9. ipoveT Semdegi monacemebis saSualo, mediana, diapazo-

ni, moda da saSualo kvadratuli gadaxra:

1) 1; 3; 5; 11 2) _8; 1; 0; 1; 4; 1; _6

19.10. 10-jer Catarebuli cdis Sedegebi mocemulia sixSire-

Ta cxriliT

ipoveT n-is mniSvneloba, saSualo, moda, mediana, dia-

pazoni da saSualo kvadratuli gadaxra.

19.11. 20-jer Catarebuli cdis Sedegebi mocemulia sixSire-

Ta cxriliT

cnobilia, rom am monacemebis saSualoa 0,7. ipoveT m-

is da n-is mniSvnelobebi, moda, mediana da gabnevis

diapazoni.

19.12. eqsperimentis Catarebis dros miRebuli 6 monacemidan

5-is fardobiTi sixSireebia 201

; 121

; 61;

203

; 21.

ipoveT meeqvse monacemis fardobiTi sixSire.

19.13. eqsperimentis Catarebis dros miRebuli 5 monacemidan

3-is fardobiTi sixSireebia 161

; 163

; 83. ipoveT meoTxe

monacemis fardobiTi sixSire, Tu is 2-jer metia

mexuTe monacemis fardobiT sixSireze.

19.14. saskolo weraze moswavleebis mier maTematikaSi

miRebuli dadebiTi Sefasebebis fardobiT sixSireTa

cxrilia

1) ramdenma moswavlem miiRo dadebiTi Sefaseba, Tu

eqvsianebis sixSire 4-iT naklebia aTianebis sixSi-

reze?

2) ramdenma moswavlem miiRo dadebiTi Sefaseba, Tu

Svidianebis sixSire 2-iT metia cxrianebis sixSi-

reze?

mniSvnelobebi _1 0 1 2 3

sixSire 2 1 n 1 2

mniSvnelobebi _3 _1 0 2 3 4

sixSire n 2 8 m 4 1

qula 6 7 8 9 10

fardobiTi

sixSire 203

81

83

101

41

Page 375: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

375

3) ramdenma moswavlem miiRo 9 qula, Tu rvianebisa

da aTianebis sixSireTa jamia 100?

4) ramdenma moswavlem miiRo 8 qula, Tu eqvsianebisa

da Svidianebis sixSireeebis jami 10-iT metia aTia-

nebis sixSireze?

19.15. tyviis msrolelma Sejibrebis dros 10-ianSi moartya

erTxel, 9-ianSi – samjer, 8-ianSi – samjer, 7-ianSi –

erTxel da 6-ianSi – orjer. am monacemebiT SeadgineT

msrolelis mier Sejibrebaze miRebuli qulebis

sixSireTa da fardobiT sixSireTa cxrili. ipoveT am

monacemebis saSualo, diapazoni, moda, mediana da

saSualo kvadratuli gadaxra.

19.16. kamaTlis 12-jer gagorebis dros 1-iani movida orjer,

3-iani – orjer, 4-iani – orjer, 5-iani – oRxjer da 6-

iani – erTxel. am monacemebiT SeadgineT mosuli

ricxvebis sixSireTa da fardobiT sixSireTa cxrili.

ipoveT am monacemebis saSualo, diapazoni, moda,

mediana da saSualo kvadratuli gadaxra.

19.17. moswavlem saswavlo wlis ganmavlobaSi maTematikis

sakontrolo werebze 10 qula miiRo eqvsjer, 9 qula

– oTxjer, 8 qula – samjer da 6 qula – erTxel. am

monacemebiT SeadgineT moswavlis mier miRebuli

qulebis sixSireTa da fardobiT sixSireTa cxrili.

ipoveT am monacemebis saSualo, diapazoni, moda,

mediana da saSualo kvadratuli gadaxra.

19.18. sayofacxovrebo teqnikis maRaziis mier erTi kviris

ganmavlobaSi gayiduli macivrebis, televizorebis,

mtversasrutebis da gazqurebis sixSireTa da

fardobiT sixSireTa cxrilia

dasaxeleba macivari televizori mtversasruti gazqura

sixSire x 81 54 30

fardobiTi

sixSire 121

209

103

y

ipoveT: 1) CamoTvlili teqnikis ra raodenoba gaiyida

mTlianad am kviris ganmavlobaSi; 2) macivris gayid-

vis sixSire; 3) gazquris gayidvis fardobiTi sixSire.

19.19. saqarTvelos satelevizio arsebiT erTi kviris ganma-

vlobaSi gadacemuli sainformacio gamoSvebis sixSi-

re da fardobiTi sixSirea Sesabamisad 200 da 72, spor-

Page 376: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

376

tuli gadacemebis _ 40 da 352, xolo gasarTobi ga-

dacemebis _ 60 da 353. ipoveT yvela sxva gadacemebis

sixSire da fardobiTi sixSire.

19.20. arCevnebSi 5 kandidatis mier miRebuli xmebis fardo-

biT sixSireTa cxrilia (igulisxmeba, rom arc erTi

biuleteni ar gafuWebula)

kandidati I II III IV V

fardobiTi

sixSire 51

152

x 61

154

ramdeni xma miiRo III kandidatma, Tu I-ma miiRo 40

xmiT naklebi V-ze?

19.21. avtogasamarTi sadguris mier erTi dRis ganmavloba-

Si gayiduli sawvavis fardobiT sixSireTa cxrilia

dasaxeleba normali regulari superi dizeli

fardobiTi

sixSire 152

52

154

x

ramdeni litri dizelis sawvavi gaiyida am dRes, Tu

superi gaiyida 1600 litriT naklebi, vidre normali

da regulari erTad?

!%31/!yepnjmpcjt!bmcbUpcb!

20.1. yuTSi mxolod wiTeli, TeTri da lurji burTebia.

Semdegi xdomilobebidan romelia aucilebeli, SemTx-

veviTi, SeuZlebeli?

1) amoRebuli burTi Savi ferisaa;

2) amoRebuli burTi lurjia;

3) amoRebuli burTi an TeTria an lurji an wiTeli;

3) amoRebuli burTi aris TeTri an Savi.

20.2. erTi kamaTlis gagorebisas CamoTvlili xdomilobe-

bidan romelia aucilebeli, SemTxveviTi, SeuZlebe-

li?

1) samze naklebi ricxvis mosvla;

2) luwi ricxvis mosvla;

3) Svidis jeradi ricxvis mosvla;

4) 60-is gamyofis mosvla;

5) xuTis jeradi ricxvis mosvla;

Page 377: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

377

6) luwi an kenti ricxvis mosvla.

20.3. erTi kamaTlis 13-jer gagorebisas CamoTvlili xdo-

milobebidan romelia aucilebeli, SemTxveviTi, SeuZ-

lebeli?

1) yvela gagorebisas mosuli qula erTidaigivea;

2) yvela gagorebisas mosuli qulebis jami 12-ia;

3) yvela gagorebisas mosuli qulebis jami araumetes

78-ia;

4) romeli qula samjer mainc mova.

20.4. 52 kartiani dastidan iReben 5 karts. CamoTvlili

xdomilobebidan romelia aucilebeli, SemTxveviTi,

SeuZlebeli?

1) amoRebuli kartebidan yvela rviania;

2) amoRebul kartebSi yvela eqvsiania;

3) amoRebul kartebSi sami erTi da imave feris Svidi-

ania;

4) amoRebul kartebSi erTi da imave raodenobis aTiani

da rviani.

20.5. ramdeni xdomilobisagan Sedgeba elementarul xdo-

milobaTa sivrce, Tu eqsperimenti mdgomareobs Sem-

degSi:

1) yuTidan, romelSic mxolod wiTeli, TeTri da Savi

burTulebia, viRebT erT burTulas;

2) kamaTels vagorebT erTxel;

3) kamaTels vagorebT orjer;

4) monetas vagdebT orjer;

5) monetas vagdebT samjer;

6) 36 kartiani dastidan viRebT 2 karts;

7) erTdroulad vagorebT erT kamaTels da vagdebT

erT monetas;

8) yuTSi 5 burTulaa, romlebic gadanomrilia ricx-

vebiT 1; 2; 3; 4; 5. viRebT jer erT burTulas, viniS-

navT nomers da vabrunebT, Semdeg meores – viniSnavT

nomers da vabrunebT;

9) yuTSi 5 burTulaa, romlebic gadanomrilia ric-

xvebiT 1; 2; 3; 4; 5. erTmaneTis miyolebiT viRebT jer

erT burTulas da viniSnavT nomers, Semdeg meores –

viniSnavT nomers;

10) gvaqvs kartis ori dasta: erTi 36 kartiani, xolo

meore 52 kartiani. TiTo dastidan viRebT TiTo

karts.

Page 378: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

378

20.6. ipoveT albaToba imisa, rom kamaTlis erTxel gago-

rebisas ganxorcieldeba Semdegi xdomiloba:

1) 3-is mosvla;

2) luwi ricxvis mosvla;

3) kenti ricxvis mosvla;

4) martivi ricxvis mosvla;

5) 4-ze meti ricxvis mosvla;

6) 5-ze aranaklebi ricxvis mosvla;

7) luwi martivi ricxvis mosvla;

8) 2-ze naklebi an 4-ze meti ricxvis mosvla;

9) 2-is ar mosvla;

10) martivi ricxvis ar mosvla;

11) 2-ze meti da 5-ze naklebi ricxvis ar mosvla;

12) 30-is gamyofis mosvla.

20.7. ipoveT albaToba imisa, rom monetis orjer agdebisas

ganxorcieldeba Semdegi xdomiloba:

1) orivejer safasuris movida;

2) safasuri erTxel mainc movida;

3) orivejer erTidaigive mosvla;

4) movida erTxel safasuri da erTxel gerbi;

5) safasuris ar mosvla;

6) pirvelad movida safasuri da meored – gerbi.

20.8. yuTSi 8 TeTri da 12 wiTeli burTulaa. ras udris

albaToba imisa, rom SemTxveviT amoRebuli burTula:

1) iqneba TeTri?

2) ar iqneba TeTri.

20.9. krebas eswreba 80 qali da 30 kaci. maTgan SemTxveviT

irCeven mdivans. ras udris albaToba imisa, rom

krebis mdivani iqneba qali?

20.10. yuTSi 25 wiTeli, 15 Savi da 10 TeTri burTia. ipoveT

albaToba imisa, rom:

1) SemTxveviT amoRebuli burTi Savia;

2) SemTxveviT amoRebuli burTi TeTria;

3) SemTxveviT amoRebuli burTi an wiTelia an Savi;

4) SemTxveviT amoRebuli burTi ar aris wiTeli.

20.11. yuTSi 11 Savi da 5 TeTri birTvia. ras udris alba-

Toba imisa, rom:

1) SemTxveviT amoRebuli 2 birTvidan orive TeTria;

2) SemTxveviT amoRebuli 2 birTvidan orive Savia?

3) SemTxveviT amoRebuli ori birTvi sxvadasxva feri-

saa?

Page 379: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

379

4) SemTxveviT amoRebuli ori birTvi erTi da igive

ferisaa?

5) SemTxveviT amoRebuli 3 birTvidan samive TeTria?

6) SemTxveviT amoRebuli 3 birTvidan samive Savia?

7) SemTxveviT amoRebuli 3 birTvidan samive erTi fe-

risaa?

8) SemTxveviT amoRebuli 3 birTvidan samive araa er-

Tnairi feris?

20.12. yuTSi 10 lurji, 6 mwvane da 4 yviTeli burTia. ras

udris albaToba imisa, rom:

1) SemTxveviT amoRebuli 2 burTidan orive iqneba

mwvane?

2) SemTxveviT amoRebuli 2 burTidan orive iqneba

yviTeli?

3) SemTxveviT amoRebuli 2 burTidan orive iqneba

lurji?

4) SemTxveviT amoRebuli 2 burTidan orive iqneba

erTnairi feris?

5) SemTxveviT amoRebuli 2 burTidan erTi iqneba

mwvane da erTi – lurji?

6) SemTxveviT amoRebuli 2 burTidan arc erTi ar

iqneba lurji?

7) SemTxveviT amoRebuli 3 burTidan samive iqneba

mwvane?

8) SemTxveviT amoRebuli 3 burTidan samive iqneba

erTi feris?

20.13. ipoveT albaToba imisa, rom kamaTlis orjer gagore-

bisas ganxorcieldeba Semdegi xdomiloba:

1) ori erTnairi ricxvis mosvla;

2) orive luwi ricxvis mosvla;

3) erTi luwi da erTi kenti ricxvis mosvla;

4) erTi mainc 1-ianis mosvla;

5) erTi mainc kenti ricxvis mosvla;

6) orive martivi ricxvis mosvla;

7) mosuli ricxvebis jami aris 11;

8) mosuli ricxvebis jami aris 8;

9) mosuli ricxvebis jami aris 7;

10) mosuli ricxvebidan pirveli meoreze 3-iT nakle-

bia;

11) mosuli ricxvebis jami aris 5;

12) mosuli ricxvebidan erT-erTi meoris kvadratia;

13) mosuli ricxvebis jami aris 13;

Page 380: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

380

14) mosuli ricxvebis jami aris 13-ze naklebi;

15) mosuli ricxvebi erTmaneTisagan 2-iT gansxvavdeba;

16) mosuli ricxvebidan erT-erTi meoris gamyofia;

17) mosuli ricxvebidan pirveli meoris gamyofia;

18) mosuli ricxvebis jami ar udris 9-s;

19) arc erTxel ar movida oriani;

20) ori erTnairi ricxvis ar mosvla;

21) arc erTxel ar movida 4-ze meti ricxvi.

20.14. ipoveT albaToba imisa, rom monetis samjer agdebisas

ganxorcieldeba Semdegi xdomiloba:

1) samivejer mova gerbi;

2) safasuri mova mxolod erTxel;

3) erTxel mainc mova safasuri;

4) orjer mainc mova gerbi;

5) gerbi ufro metjer mova, vidre safasuri;

6) safasuri orjer ar mova.

20.15. ipoveT albaToba imisa, rom 36-kartiani dastidan da-

rigebisas ganxorcieldeba Semdegi xdomiloba:

1) pirveli karti iqneba jvris tuzi;

2) pirveli karti iqneba tuzi;

3) pirveli karti iqneba wiTeli;

4) pirveli karti iqneba jvari;

5) pirveli karti iqneba tuzi an 10-iani;

6) pirveli karti ar iqneba 10-iani;

7) pirveli karti ar iqneba jvari;

8) pirveli karti ar iqneba arc tuzi da arc 6-iani;

9) pirveli ori karti iqneba tuzi;

10) pirveli da mesame karti iqneba jvari;

11) pirveli karti iqneba jvari, xolo meore yvavi;

12) pirveli karti iqneba tuzi, xolo merve – rviani;

13) pirveli iqneba tuzi, xolo meore ar iqneba 10-

iani;

14) arc pirveli da arc meore karti ar iqneba tuzi.

20.16. auzSi aris 5 cali Tevzi: murwa, kalmaxi, kefali, qa-

Sayi da oraguli. SemTxveviT amoyavT sami Tevzi. ras

udris albaToba imisa, rom maT Soris aucileblad

iqneba kalmaxi?

20.17. qisaSi 5 monetaa: 2 cali 10-TeTriani, 3 cali 20-TeTria-

ni. qisidan, masSi Cauxedavad, iReben or monetas. ipo-

veT albaToba imisa, rom amoRebuli monetebis Rire-

bulebebis jami aris 30 TeTri.

Page 381: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

381

20.18. maRaziam miiRo axali modelis fexsacmelebi: 40 zoma

20 wyvili, 41 zoma 30 wyvili, 42 zoma 40 wyvili da 43

zona 10 wyvili. ras udris albaToba imisa, rom:

1) SemTxveviT aRebuli erTi wyvili fexsacmeli aR-

moCndeba 41 zoma?

2) SemTxveviT aRebuli erTi wyvili fexsacmeli aR-

moCndeba 42 an 43 zoma?

3) SemTxveviT aRebuli ori wyvili fexsacmelidan

orive aRmoCndeba 40 zoma?

4) SemTxveviT aRebuli ori wyvili fexsacmelidan

erT-erTi aRmoCndeba 40 zoma, meore – 43?

5) SemTxveviT aRebuli ori wyvili fexsacmelidan er-

Ti mainc iqneba 40 zoma?

6) SemTxveviT aRebuli ori wyvili fexsacmelidan

arc erTi ar iqneba 42 zoma?

20.19. nikas daaviwyda megobris telefonis 6-cifriani nome-

ri, magram mas axsovda, rom am nomris pirveli cif-

ria 2, xolo danarCeni gansxvavebuli kenti cifrebia.

nikam akrifa pirveli cifri 2, xolo danarCeni – Sem-

TxveviT aRebuli erTmaneTisagan gansxvavebuli kenti

cifrebi. ras udris albaToba imisa, rom pirvelive

akrefiT nika daukavSirda megobars?

20.20. givis daaviwyda Tavisi seifis xuTniSna kodi, Tumca

mas axsovda, rom am kodis pirveli da bolo cifri

erTidaigivea, xolo danarCeni sami – erTmaneTisagan

gansxvavebuli kenti cifrebia. givim SemTxveviT akri-

fa pirveli da bolo erTidaigive cifri da danarCeni

erTmaneTisagan gansxvavebuli sami kenti cifri. ras

udris albaToba imisa, rom givi pirvelive cdaze

gaaRebs seifs?

20.21. asoebi, romlebic qmnis sityvas `urani~, xuT baraTzea

gamosaxuli. baraTebi yuTSia moTavsebuli. alalbed-

ze iReben erTmaneTis miyolebiT xuTive baraTs. ra

aris albaToba imisa, rom amoRebuli asoebi (amoRe-

bis Tanmimdevrobis gaTvaliswinebiT) qmnis sityvas

`unari~?

20.22. yuTSi moTavsebulia 5 birTvi, romlebic gadanomri-

lia ricxvebiT: 1; 2; 3; 4; 5. yuTidan erTmaneTis mi-

yolebiT viRebT birTvebs. ra aris albaToba imisa,

rom birTvebi amoRebuli iqneba maTi normebis klebis

mixedviT?

Page 382: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

382

20.23. samSobiaro saxlSi elodebian 4 bavSvis dabadebas.

ras udris albaToba imisa, rom yoveli bavSvis wona

mis win dabadebuli bavSvis wonaze metia?

20.24. sigrZeze xtomaSi Sejibrebis dros sportsmens aqvs 6

cdis ufleba. ras udris albaToba imisa, rom igi

yovel cdaze gaaumjobesebs wina cdis Sedegs?

20.25. klasSi 10 moswavlea. maT Soris mxolod orma icis

fraguli ena. ra aris albaToba imisa, rom am klasis

SemTxveviT SerCeul 5 moswavles Soris:

1) orma icis franguli ena?

2) mxolod erTma icis franguli ena?

3) erTma mainc icis franguli ena?

4) ar iqneba franguli enis mcodne?

20.26. 10 mgzavridan TiToeulma SemTxveviT SearCia 20-vago-

niani eleqtromatareblis TiTo vagoni. ra aris alba-

Toba imisa, rom yvela mgzavri sxvadasxva vagonSi

moxvdeba?

20.27. yuTSi moTavsebulia 4 birTvi, romlebzec dawerilia

nomrebi: 2; 3; 6; 9. erTmaneTis mimdevrobiT SemTxveviT

viRebT jer erT birTvs da viniSnavT mis nomers,

Semdeg meores da viniSnavT mis nomers. ra aris

albaToba imisa, rom CaniSnuli ricxvebis namravli

aris 18?

20.28. samSobiaro saxlSi elodebian 4 bavSvis dabadebas: 2

gogonas da 2 biWis. ras udris albaToba imisa, rom

pirveli ori dabadebuli bavSvi iqneba erTi da igive

sqesis?

20.29. ganaTlebis saministrom skolebisaTvis SeiZina kompi-

uterebi: 80 cali `pentium-3~ da 20 cali `pentium-4~,

romelTagan SemTxveviT aRebuli 2 kompiuteri gadas-

ca eqsperimentalur skolas. ra aris albaToba imisa,

rom:

1) am skolas Sexvdeba orive `pertium-4~?

2) am skolas Sexvdeba orive `pentium-3~?

3) am skolas Sexvdeba erTi `pentium-3~ da erTi `pen-

tium-4~?

4) am skolas Sexvdeba orive erTnairi kompiuteri?

20.30. studentma programiT gaTvaliswinebuli 50 sakiTxi-

dan moamzada 30. yovel bileTSi sami sakiTxia. stude-

nti alalbedze iRebs bileTs. ras udris albaToba

imisa, rom:

1) studentma samive sakiTxi icis?

Page 383: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

383

2) studentma arc erTi sakiTxi ar icis?

3) studentma ori sakiTxi icis da erTi ar icis?

4) studentma erTi sakiTxi icis da ori ara?

20.31. vTqvaT yuTSi 4 burTulaa, romlebic gadanomrilia

ricxvebiT: 1; 2; 3; 4. vixilavT cdas: viRebT erTma-

neTis miyolebiT jer erT burTulas, Semdeg – meores

da viniSnavT amoRebuli burTulebis nomrebs. ipoveT

albaToba imisa, rom am cdis dros amoRebul or

burTulaze:

1) orive luwi nomeria;

2) erTi luwi nomeria da meore – kenti.

20.32. yuTSi aris 4 cali sxvadasxva feris burTi: wiTeli,

mwvane, TeTri da lurji. yuTidan SemTxveviT viRebT

erT burTs, viniSnavT fers da ukan vabrunebT. Semdeg

isev viRebT erT burTs, viniSnavT fers da ukan

vabrunebT. Semdeg igives vimeorebT mesamejer. ra aris

albaToba imisa, rom:

1) samivejer amoRebuli iqneba wiTeli burTi?

2) pirvelad amoRebuli burTi iqneba TeTri, meored

amoRebuli – lurji, xolo mesamed amoRebuli –

mwvane?

3) amoRebul burTebs Soris erTi iqneba TeTri

feris, erTi – lurji feris da erTi – mwvane

feris;

4) amoRebul burTebs Soris ori iqneba wiTeli

feris da erTi – lurji.

20.33. vTqvaT yuTSi 4 burTulaa, romlebic gadanomrilia

ricxvebiT: 1; 2; 3; 4. vixilavT cdas: viRebT jer erT

burTulas, viniSnavT nomers da vabrunebT, Semdeg

meores – viniSnavT nomers da vabrunebT. ipoveT alba-

Toba imisa, rom am cdis dros amoRebul or burTu-

laze gansxvavebuli nomrebia.

20.34. yuTSi aris 5 sxvadasxva feris burTula. yuTidan

SemTxveviT viRebT erT burTulas viniSnavT fers da

burTulas ukan vabrunebT. Semdeg viRebT meores –

viniSnavT fers da vabrunebT, Semdeg mesames –

CaviniSnavT fers da vabrunebT. ra aris albaToba

imisa, rom CaniSnuli ferebi gansxvavebuli iqneba?

20.35. mocemulia cifrebi 0; 1; 2; 3; 4. am cifrebisagan

adgenen samniSna ricxvebs ise, rom masSi cifrebi ar

meordeba. ra aris albaToba imisa, rom miRebul

samniSna ricxvebs Soris SemTxveviT SerCeuli ricxvi:

Page 384: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

384

1) iqneba 5-is jeradi?

2) ar aris 3-is jeradi?

3) aris luwi?

4) iyofa 4-ze?

20.36. vTqvaT qalaqSi moZravi avtomobilebis sanomre niSne-

bi samniSnaa: iwyeba 001-iT da mTavrdeba 999-iT. ra

aris albaToba imisa, rom mocemuli seriis pirvelive

Semxvedri avtomobilis sanomre niSanSi:

1) ar iqneba erTnairi cifrebi?

2) aris mxolod ori erTnairi cifri?

3) samive cifri erTnairi iqneba?

4) aris zrdadobiT dalagebuli momdevno cifrebi?

5) nomeri Sedgenilia momdevno cifrebisagan?

6) cifrebis namravli aris 0?

20.37. vTqvaT A da B ori araTavdebadi xdomilobaa. gamoT-

valeT:

1) )( BAP U , Tu 31)( =AP ,

21)( =BP ;

2) )( BAP U , Tu 25,0)( =AP , 15,0)( =BP ;

3) P(A), Tu 51)( =BP ,

43)( =BAP U ;

4) P(B), Tu 32,0)( =AP , 92,0)( =BAP U .

20.38. vTqvaT A da B damoukidebeli xdomilobebia. gamoTva-

leT:

1) )( BAP I , Tu 52)( =AP ,

21)( =BP ;

2) P(A), Tu 81)( =BP ,

561)( =BAP I .

20.39. vTqvaT A da B raime xdomilobebia. gamoTvaleT:

1) )( BAP U , Tu 32)( =AP ,

51)( =BP ,

152)( =BAP I ;

2) )( BAP I , Tu 73)( =AP ,

72)( =BP ,

74)( =BAP U .

20.40. vTqvaT A da B damoukidebeli xdomilobebia. gamoTva-

leT:

1) )( BAP U , Tu 41)( =AP ,

31)( =BP ;

2) )( BAP U , Tu 4,0)( =AP , 5,0)( =BP ;

Page 385: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

385

3) )( BAP U , Tu 52)( =AP ,

252)( =BAP I ;

4) )( BAP U , Tu 1,0)( =BP , 04,0)( =BAP I ;

5) P(A), Tu 41)( =BP ,

43)( =BAP U ;

6) P(B), Tu 3,0)( =AP , 44,0)( =BAP U ;

7) )( BAP I , Tu 83)( =AP ,

2419)( =BAP U ;

8) )( BAP I Tu 97)( =BAP U , )(2)( BPAP = .

20.41. erT yuTSi 5 TeTri da 5 lurji burTia, meoreSi ki 3

TeTri da 2 lurji. orive yuTidan erTmaneTisagan

damoukideblad amoiRes TiTo-TiTo burTi. ra aris

albaToba imisa, rom amoRebuli burTebidan erTi

mainc iqneba TeTri?

20.42. maTematikis 5 sagamocdo bileTidan students momza-

debuli aqvs 2, xolo fizikis 6 bileTidan 3 bileTi.

ras udris albaToba imisa, rom students am ori

gamocdidan erTxel mainc Sexvdeba momzadebuli bi-

leTi?

20.43. pirvel samSobiaroSi elodebian 3 biWis da 3 gogonas

dabadebas, xolo meore samSobiaroSi – 2 biWis da 1

gogonas. ra aris albaToba imisa, rom am oridan erT

samSobiaroSi mainc pirvelad dabadebuli bavSvi

iqneba biWi?

20.44. cnobilia, rom A da B xdomilobebidan erTi mainc

aucileblad ganxorcieldeba. albaToba imisa, rom A

xdomiloba ganxorcieldeba aris 72, xolo albaToba

imisa, rom ganxorcieldeba B xdomiloba _ 54. ra

aris albaToba imisa, rom orive A da B xdomilobebi

erTdroulad ganxorcieldeba?

20.45. yuTSi aris mxolod wiTeli da lurji burTulebi.

yuTidan SemTxveviT iReben 2 burTulas. albaToba

imisa, rom am ori burTulidan erTi mainc wiTelia

aris 32, xolo albaToba imisa, rom erT burTula

mainc lurjia aris 43. ras udris albaToba imisa,

Page 386: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

386

rom amoRebuli burTulebidan erTi wiTelia da erTi

lurji?

%32/!hfpnfusjvmj!bmcbUpcb!

21.1. monakveTi dayofilia 5 tol nawilad. ipoveT albaTo-

ba imisa, rom am monakveTze SemTxvveviT SerCeuli wer-

tili:

1) Sua nawilSi moxvdeba;

2) Sua nawilSi ar moxvdeba;

3) kidura nawilebSi moxvdeba;

4) ar moxvdeba arc kidura nawilebSi da arc Sua

nawilSi.

21.2. monakveTi dayofilia 4 nawilad romelTa sigrZeebis

Sefardebaa 2:4:5:7. ipoveT albaToba imisa, rom am mona-

kveTze SemTxveviT SerCeuli wertili:

1) moxvedra yvelaze mcire sigrZis nawilze;

2) ar moxvdeba yvelaze didi sigrZis nawilze.

21.3. ricxviT RerZze mocemulia monakveTi [_4; 5]. ra aris

albaToba imisa, rom am monakveTze SemTxveviT aRebu-

li wertilis x koordinati akmayofilebs utolobas:

1) 4≥x ; 2) 3≥x .

21.4. ras udris albaToba imisa, rom tolgverda samkuTxe-

dis simaRleze SemTxveviT aRebuli wertili ekuTvnis

am samkuTxedSi Caxazuli wrewiris diametrs?

21.5. ras udris albaToba imisa, rom kvadratis diagonal-

ze SemTxveviT aRebuli wertili ekuTvnis am kvadrat-

Si Caxazuli wrewiris diametrs?

21.6. rombis maxvili kuTxe 60°-ia. ras udris albaToba imi-

sa, rom rombis did diagonalze SemTxveviT aRebuli

wertili am rombSi Caxazuli wrewiris diametrze

moxvdeba?

21.7. rombis maxvili kuTxe 60°-ia. ras udris albaToba imi-

sa, rom rombis mcire diagonalze SemTxveviT aRebu-

li wertili am rombSi Caxazuli wrewiris diametrze

moxvdeba?

21.8. rombis maxvili kuTxe 60°-ia. ras udris albaToba imi-

sa, rom rombis did diagonalze SemTxveviT aRebuli

wertili blagvi kuTxis wverodan gavlebul simaRle-

ebs Soris moTavsdeba?

Page 387: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

387

21.9. ABCD marTkuTxedSi AB =9 sm, BC = 12 sm. ras udris albaToba imisa, rom BC gverdze SemTxveviT aRebuli

K wertilisaTvis Sesruldes piroba °<∠ 45AKB ?

21.10. ABC samkuTxedSi AB =16 sm, AC = 40 sm, ∠A=60°. ras udris albaToba imisa, rom Tu AC gverdze SemTxve-

viT aviRebT M wertils Sesruldeba piroba BMAB < ?

21.11. wrewiris radiusi 5 sm-is tolia. ras udris albaTo-

ba imisa, rom mocemuli diametris paralelurad Sem-

TxveviT gavlebuli qordis sigrZe iqneba 8 sm-ze nak-

lebi?

21.12. monakveTis sigrZe 5 sm-is tolia. ras udris albaTo-

ba imisa, rom am monakveTze SemTxveviT aRebuli wer-

tiliT igi gaiyofa or iseT monakveTad, romelTa

sigrZeebis namravli 6-ze naklebia?

21.13. marTkuTxa samkuTxedis kaTetebia AC = 1sm, BC = 2 sm. ras udris albaToba imisa, rom BC kaTetze SemTxve-

viT aRebuli wertili A wverodan ufro naklebi

manZiliT aRmoCndeba daSorebuli, vidre B wverodan? 21.14. ABC marTkuTxa samkuTxedSi °=∠ 30A . ipoveT albaTo-

ba imisa, rom manZili hipotenuzaze SemTxveviT aRebu-

li wertilidan A wveromde BC kaTetis sigrZeze nak-

lebia?

21.15. ABC samkuTxedSi 5:4: =BCAB . ipoveT albaToba imisa,

rom manZili AC gverdze SemTxveviT aRebuli werti-

lidan AB gverdamde naklebia manZilze am wertili-

dan BC gverdamde? 21.16. O aris ABCD marTkuTxedis diagonalebis gadakveTis

wertili, xolo M da N marTkuTxedis AB da BC gver-debis Suawertilebia. ras udris albaToba imisa, rom

ABCD marTkuTxedSi SemTxveviT aRebuli wertili mo-

xvdeba MBNO marTkuTxedSi?

21.17. O aris ABCD paralelogramis diagonalebis gadakve-

Tis wertili. ras udris albaToba imisa, rom parale-

logramSi SemTxveviT aRebuli wertili moxvdeba AOB samkuTxedSi?

21.18. M aris ABC samkuTxedis AC gverdis Suawertili. ipo-

veT albaToba imisa, rom ABC samkuTxedSi SemTxveviT

aRebuli wertili BMC samkuTxedSi moxvdeba.

21.19. O aris ABC samkuTxedis medianebis gadakveTis wertili.

ras udris albaToba imisa, rom ABC samkuTxedSi SemT-xveviT aRebuli wertili moxvdeba BOC samkuTxedSi?

Page 388: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

388

21.20. O aris ABC samkuTxedis medianebis gadakveTis werti-

li, xolo M _ AB gverdis Suawertilia. ras udris

albaToba imisa, rom ABC samkuTxedSi SemTxveviT aRe-

buli wertili moxvdeba AOM samkuTxedSi?

21.21. ori koncentruli wris radiusebia 4 sm da 6 sm. ras

udris albaToba imisa, rom did wreSi SemTxveviT

aRebuli wertili:

1) moxvdeba patara wreSi?

2) ar moxvdeba patara wreSi?

21.22. ABCD trapeciis fuZeebia 10=AD sm da 4=BC sm. ras

udris albaToba imisa, rom ABCD trapeciaSi SemTxve-

viT aRebuli wertili moxvdeba ABC samkuTxedSi? 21.23. ABCD trapeciis fuZeebia AD =14 sm, BC =6 sm, xolo

O diagonalebis gadakveTis wertilia. ipoveT alba-

Toba imisa, rom ABCD trapeciaSi SemTxveviT aRebu-

li wertili:

1) moxvdeba BOC samkuTxedSi;

2) moxvdeba AOD samkuTxedSi;

3) moxvdeba AOB samkuTxedSi.

21.24. ABC samkuTxedSi AC gverdis paraleluri MN wrfe AB gverds yofs SefardebiT 3:7 B wveros mxridan. ra aris albaToba imisa, rom ABC samkuTxedSi SemTxve-

viT aRebuli wertili moxvdeba AMNC oTxkuTxedSi?

21.25. ABC samkuTxedis AC gverdze aRebulia M wertili

ise, rom 9:5: =MCAM . ipoveT albaToba imisa, rom

ABC samkuTxedSi SemTxveviT aRebuli wertili moxv-

deba MBC samkuTxedSi.

21.26. samkuTxedSi, romlis gverdebia AB = 6 sm da AC =14 sm gavlebulia AK biseqtrisa. ipoveT albaToba imi-

sa, rom ABC samkuTxedSi SemTxveviT aRebuli werti-

li moxvdeba ACK samkuTxedSi.

21.27. kvadratSi Caxazulia wre. ras udris albaToba imisa,

rom am kvadratSi SemTxveviT aRebuli wertili ar

moxvdeba wreSi?

21.28. wreSi Caxazulia kvadrati. ras udris albaToba imi-

sa, rom am wreSi SemTxveviT aRebuli wertili moxv-

deba kvadratSi?

21.29. wesier samkuTxedSi Caxazulia wre. ras udris albaTo-

ba imisa, rom am samkuTxedSi SemTxveviT aRebuli wer-

tili moxvdeba wreSi?

Page 389: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

389

21.30. wreSi Caxazulia wesieri samkuTxedi. ras udris al-

baToba imisa, rom am wreSi SemTxveviT aRebuli wer-

tili moxvdeba samkuTxedSi?

21.31. wreSi gavlebulia radiusis toli qorda. ras udris

albaToba imisa, rom am wreSi SemTxveviT aRebuli

wertili moxvdeba am qordiT Seqmnil mcire segmen-

tSi.

21.32. mocemulia gantoleba 012 =−− ax , sadac .91 << a ipo-

veT albaToba imisa, rom am gantolebis fesvi 3-ze me-

tia, Tu a SemTxveviT aRebuli ricxvia.

21.33. mocemulia gantoleba bax = , sadac 100 ≤< a , 120 ≤< b .

ipoveT albaToba imisa, rom am gantolebis fesvi 1-ze

metia.

21.34. vTqvaT x da y [0; 1] Sualedidan SemTxveviT aRebuli

ricxvebia. ipoveT albaToba imisa, rom 1>+ yx .

21.35. vTqvaT x da y [0; 2] Sualedidan SemTxveviT aRebuli

ricxvebia. ipoveT albaToba imisa, rom

⎩⎨⎧

<>+

.2

xyyx

Page 390: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

390

q b t v y f c j !

!%2!

1.4. 1) 5; 2) 9; 3) 1; 4) 2. 1.5. 1) 4; 2) 5 an 11; 3) 8; 4) 13. 1.6. 1) 1; 2)

4; 3) 2; 4) 4. 1.7. 1) 13; 2) 33; 3) 21; 4) 23. 1.8. 1) 2451 ; 2)

120131 ; 3)

24118 ; 4)

60178 . 1.9. 1)

414 ; 2)

1653 ; 3)

187

; 4) 2077 . 1.10. 1)

415 ; 2)

872 ; 3)

85; 4)

2710

. 1.11. 1) –4; 2) 6; 3) 1331 ; 4)

43305− . 1.12. 1) 7; 2)

215 ; 3) 3; 4) 9. 1.13. 1) 60; 2) 32; 3) 0,75; 4)

32. 1.14. 1)

237

; 2)

2013 ; 3)

3118 ; 4) 2,5. 1.15. 1) 2; 2)

21; 3)

65; 4) 9. 1.16. 1)

1012 ; 2)

321 ; 3) 4; 4)

1521− . 1.17. 1)

21; 2)

10942

; 3) 1251− ; 4)

125

. 1.18. 1)

101100

; 2) 10150

; 3) 760531

; 4) 102605729

. 1.19. 1) 24; 2) 24; 3) 0,6; 4) 10.

1.20. 1) 7500; 2) 143; 3) 1,2; 4) 31. 1.21. 1) 49; 2) 34,4; 3) 1,4; 4)

3123 .

1.22. 1) 75; 2) 320; 3) 2210; 4) 122,25. 1.23. 1) 150; 2) 20; 3) 1000; 4)

1100. 1.24. 1) 809

; 2) 503

; 3) 61; 4)

301

. 1.25. 1) 4,70 ; 2) 20; 3) 27;

4) 42. 1.26. 1) 210; 240. 2) 440; 520. 3) 40; 90. 4) 135; 126. 1.27. 1) 300; 240; 180. 2) 1089; 1815; 726. 3) 320; 352; 208. 4) 48; 80; 64; 240.

1.28. 1) 6; 2) 2; 3) 18; 4) 3. 1.29. 1) 6; 2) 16; 3) 12; 4) 60. 1.30. 1) 24-

jer; 2) 12; 3) 24; 4) 8. 1.31. 1) 75; 2) 80; 3) 10; 4) 98. 1.32. 1) 370m;

2) 96km; 3) 175m; 4) 32m. 1.33. 1) 1; 2) 0,1; 3) 4; 4) 2800. 1.34. 1) 103

;

2) 2017

; 3) 125; 4) 350. 1.35. 1) 43; 2) 80; 3)

53; 4) 125. 1.36. 1) 420;

2) 4; 3) 3; 4) 15; 5) 280; 6) 280. 1.37. 1) 8; 2) 3; 3) 1260; 4) 100. 1.38. 1) ki; 2) ki; 3) ki; 4) ki. 1.39. 1) a) 3; b) 3; g) 2; d) 7; 2) a) 14; b) 12; g) 10; d) 8. 3) a) 7; b) 10; g) 6; d) 12; 4) 92. 1.40. 1) 120 dRe-Rame; 2) 1080 sT; 3) a) 160

o; b) 144

o; 4) a) 130

o; b) 114

o. 1.41. 1)

59; 2) 57; 3) 59; 4) 8. 1.42. 1) 3⋅102 + 2⋅101 + 7; 2) 4⋅103 + 0⋅102 +

Page 391: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

391

2⋅10 + 9; 3) 5⋅104 + 2⋅103+ + 0⋅10 + 3; 4) 7⋅104 + 1⋅103 + 0⋅102 + 0⋅10 + 2. 1.43. 1) 1⋅23 + 1⋅22 + +0⋅2 + 1; 2) 1⋅24 + 1⋅23 + 1⋅22 + 1⋅2 + 1; 3) 1⋅24 + 0⋅23 + 1⋅22 + 0⋅2+1; 4) 1⋅25 +1⋅24 + 0⋅23 + 0⋅22 + 1⋅2 + 0⋅1. 1.44. 1) 1112; 2) 10012; 3) 100002; 4) 1111002; 5) 11011102; 6) 100000012;

7) 1111101102: 8) 11001011012. 1.45. 1)11; 2) 26; 3) 39; 4) 198. 1.46. 1)

19; 2) 1101012; 3) 75; 4) 111; 5) 100000002; 6) 43. 1.47. 1) 5; 2) 7;

3) 8; 4) 10. 1.48. 1) 2; 2) 2; 3) 3; 4) 4. 1.49. 1) 100112; 2) 1100002; 3)

1110002; 4) 112; 5) 100112; 6) 10102. 1.50. 1) 15; 2) 63. 1.51. 1) 16; 2)

128. 1.52. 1) 128; 2) 127. 1.53. 1) 512; 2) 511.

$3!!

2.101. 1) 12 −x ; 2) 12 2 +− xx ; 3) 2695 2 +− xx ; 4)

343 234 +−+− xxxx . 2.104. 252. 2.105. 4. 2.106. 1−=p , 3=q . 2.107. 15=p , 8=q .

$4!!

3.1. 1) aba

2−

; 2) xyx

2+

; 3) ba

nm22 +

−; 4)

yxqp22 +

+. 3.2. 1)

baba

+−

, 2)

baa+

; 3) yx

k−+1

; 4) b1. 3.3. 1)

yx +1

; 2) x

ba +; 3)

2

2

+aa

; 4) baba

+−

.

3.4. 1) ( )yxyx

43 −; 2)

yx

− ; 3) 22

+−

xx

; 4) 3

1 x−. 3.5. 1)

yxx−

; 2)

( )baba

32325

+−

; 3) ( )baba+−

2; 4) ( )nm

nm−+

3. 3.6. 1)

bababa

−+− 22

; 2)

qpqpqp

+++ 22

; 3) ( )

( )yxyxyx

+++

52 22

; 4) ( )222 nmnmnm+−

−. 3.7. 1) 22 yx − ;

2) 22 xa + ; 3)

( )( )22

22

babababa++++

; 4) ( )( )

22

22

yxyxyxyx

+−+−

. 3.8. 1) yxyx

−+

; 2)

yxcb

++

; 3) cba −+ ; 4) cbacba

+−−+

. 3.9. 1) ( )zx

y+− 21

; 2) b

ba 22 +; 3)

Page 392: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

392

22 yxxy−

; 4) ( )2ba

ab+

. 3.10. 1) 34

−−

xx

; 2) 23

++

xx

; 3) 25

aa++

; 4) 71

++

xx

.

3.11. 1) 3

2 ba +; 2)

am2; 3)

214 +x; 4)

44+x. 3.12. 1)

272

−+

ax

; 2)

qpm−

2; 3)

13−a

; 4) yxyx

−+ 23

. 3.13. 1) 40

58 yx −; 2)

109x

; 3) 36

116 ba −;

4) 20

3713 22 ab −. 3.14. 1)

abba 35 +; 2)

axxa 47 −; 3)

xyznymz −

; 4)

abxaqbp 32 +

. 3.15. 1) mnp

nyxp 35 −; 2)

abbaba 22 824 −+

; 3) ab

ba 22 53 −; 4)

abccaabbc 222 363 −+. 3.16. 1) 2

33x

xa −; 2) 3

25a

man −; 3) 44

2nmmn +

; 4)

2623

xbax −. 3.17. 1) 22

22 347ba

baab −−; 2) 22

22 565ba

baba −+; 3)

baaa

2

2 526 −+; 4)

yxx

2

2 12 −. 3.18. 1) ( )14

13−x

; 2) ( )yxx+8

5; 3)

( )( )223

95yxyxx

−−

;

4) ( )nmabanbm

++ 23

. 3.19. 1) 9

1962 −+

xaax; 2)

446

2 −−

xx

; 3) 212

amma

−+

; 4) 2

2+a

.

3.20. 1) ( )92312

2

2

−+−

aaaa

; 2) ( )22

22

5424

abbaba

−++

; 3) 0; 4) ( )221−x

. 3.21. 1)

( )( )( )3322873 2

+−+−+

aaaaa

; 2) ( )92374

2

2

−++

xxx

; 3) ( )216

5++

xx

; 4) ( )26

1117nm

nm−−

. 3.22.

1) ( )

932

2

2

−+−

aaa

; 2) 25

542

2

−+−

−x

xx; 3)

( ) ( )33245152

2

2

+−+−

−pp

pp; 4)

( )22

22

42894

nmmnmnm

−−−

. 3.23. 1) 3112

aa

−; 2)

( )( ) ( )22

22 3722baba

baba+−−−

; 3)

( )22

2baba

ba++

−; 4)

( )22

2

bababa++

−. 3.24. 1)

ayb

59

; 2) 23

4

2716

zbxya

; 3) 9

128 2a;

4) xycba

qmp233

3

47

. 3.25. 1) xy

yx2−

; 2) 1; 3) ( )

apqqp 322 −

; 4) yx − . 3.26. 1)

( )babaa

+−2

; 2) ( )( )

235

aaa +−

; 3) 43; 4)

( )2123

a+. 3.27. 1)

( )22yx −

; 2)

Page 393: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

393

( )( )2

33

53

yxyx

−+

; 3) ( ) ( )

22

2

xaxaxaxa

++−+

; 4) ( )

32yxx +

. 3.28. 1) 23 x− ; 2) axax

−+

;

3) 22 axax−

; 4) m− . 3.29. 1) ( )aa312

31+−

; 2) yx + ; 3) –1; 4) yx

x−

.

3.30. 1) abab

−+

; 2) ( )434−aa

; 3) ( )

anana

+−

; 4) ( )abb

232 −. 3.31. 1)

p−21

;

2) p2

1− ; 3)

( )ababa

222

+−

; 4) abc1

. 3.32. 1) 6; 2) 15,5; 3) 18; 4) 6400.

3.33. 1) 36; 2) 25; 3) 9; 4) 25. 3.34. 1) –0,4; 2) 5; 3) 14; 4) 49. 3.35. 1)

12; 2) 21; 3) 31; 4) 6. 3.36. 1) 1

12 ++ aa

; 2) ab

a 1+; 3) 22 yxyx

yx+−

+; 4)

a41

− . 3.37. 1) ba

a+

; 2) qp

p+

; 3) 22

22

baba −

; 4) yx

x−2

. 3.38. 1)

nmmn−

; 2) ba +

1; 3) 22

1cd −

; 4) 1. 3.39. 1) ( )354

−a ; 2) ab

ba +2; 3)

xy ; 4) ( )baabba++ 22

. 3.40. 1) ( )xaxx−++

5422; 2)

xaxx

−++ 932

; 3) ab

ba +; 4)

21

aa +

− . 3.41. 1) ( )yxyx

222

+−

; 2) ( )nmnm+−

2; 3) b ; 4) 33

3mn

mn +. 3.42. 1)

( )axx − ; 2) xyxy

+−

; 3) –1; 4) ( )nnn

n

abab

22

22−

. 3.43. 1) –0,3; 2) 156; 3)

31

− ; 4) 11. 3.44. 1) 44; 2) 6; 3) –2; 4) 2. 3.45. 1) 191; 2) 90; 3) –146;

4) 128. 3.46. 1) 125; 2) 2; 3) 88; 4) 329

. 3.47. 1) 96; 2) 3; 3) 5; 4) 21.

3.48. 1) 5,6; 2) –0,4; 3) –2,96; 4) 20. 3.49. 1) –2; 2) 1; 3) 1; 4) 21

− .

3.50. 1) 3

1+a

, roca 2>a ; 1

1+a

, roca 2<a ; 2) x1

− , roca

2<x ; x1, roca 2>x ; 3) ( )32

3+

−xx

, roca 3<x ; x1, roca

3>x ; 4) a1

− , roca 5−<a ; ( )535−+aa

a, roca 5−>a ; 0≠a ,

35

≠a . 3.51. 1) 2

1+m

, roca 0<m an 3>m ; 2

1+

−m

, roca

Page 394: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

394

30 << m ; 2) x31

1−

, roca 0<x ; ( )( )1311−−

+xx

x, roca 10 << x ;

11−x

, roca 1>x ; 3) 2, roca 1−≤x ; 12

22

2

−xx

, roca 11 <<− x ;

0, roca 1>x . 4) x

x 1+− , roca 1−<x ;

xx−+

21, roca 01 <≤− x ;

21

−+

xx

, roca 0>x . 3.52. 1) xx

x−+

23

, roca 0<x ; xx

xx+++

2

2 32,

roca 10 << x ; x3, roca 1≥x ; 2) –1, roca 1−<x ;

xxxx

+−+

3

32,

roca 11 <≤− x ; 1, roca 1≥x ; 3) 1−−x , roca 1−<x ; 1+x ,

roca 11 <≤− x ; 12 2 −+ xx , roca 1≥x . 4) 2−x , roca 1−<x ;

242

−+

xx

, roca 11 <<− x ; ( )2+− x , roca 21 << x ; 2+x , roca

2>x .

$5/!

4.50. 1) 3; 2) 3; 3) 4; 4) 2 . 4.51. 1) 5 ; 2) 7; 3) –2; 4) 25. 4.52. 1)

1; 2) 3− ; 3) 2; 4) 5. 4.53. 1) 2; 2) –2,5; 3) 3; 4) 0,6. 4.54. 1) 6; 2) 8;

3) –65; 4) 2 . 4.55. 1) 6; 2) 4; 3) 144; 4) 64. 4.56. 1) 61; 2) 188; 3) 1;

4) 2,5. 4.57. 1) –2; 2) 9; 3) 22; 4) 20. 4.58. 1) 4; 2) 4; 3) 7; 4) 52 .

4.59. 1) 31; 2) 2; 3) 31; 4) 1. 4.60. 1) 7; 2) 8; 3) 3; 4) –2. 4.61. 1)

291

;

2) 6; 3) –2; 4) –3,5. 4.62. 1) –0,148; 2) 6; 3) –2,2; 4) 56

− . 4.63. 1) -1,5;

2) –0,2; 3) –0,05; 4) –9. 4.64. 1) 0,4; 2) 0,8; 3) 0,9; 4) 0,08. 4.65. 1)

3,5; 2) 0,35; 3) 7; 4) 236 . 4.66. 1) 245 ; 2) 3,9; 3) 71; 4) –2,5.

4.67. 1) 31; 2) –1; 3) 4; 4) 16. 4.68. 1) 0,25; 2) 4; 3) 0,25; 4) 6. 4.69. 1)

6; 2) 25; 3) 8; 4) 381

. 4.70. 1) 102 −y , roca 93 <≤ y ; 8, roca

9≥y ; -4, roca 3<y . 2) 1

1 2

+−+

xxx

, roca 1−<x , 10 << x ;

Page 395: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

395

112

+−+

xxx

, roca 1≥x ; 1

1 2

+−−

xxx

, roca 01 <<− x . 3) 11

−+

−xx

,

roca 1−<x ; 11

−+

xx

, roca 01 <<− x ; 11

+−

xx

, roca 0≥x ; 4)

444

2

2

−+−

xxx

, roca 1<x ; x

x−+

22, roca 21 <≤ x ;

22

−+

xx

, roca

2>x . 4.71. 1) 1; 2) 0,3; 3) 61

− ; 4) 151

. 4.72. 1) 6; 2) 6; 3) 4; 4) 10.

4.73. 1) 1; 2) 5; 3) 1; 4) 1. 4.74. 1) 8; 2) 9; 3) 7; 4) 2.

$6!!

5.1. 1) –7; 2) –4; 3) –3; 4) 6. 5.2. 1) –5; 2) –4; 3) 18; 4) -50. 5.3. 1)

36191 ; 2) –0,9; 3) 30,4; 4) 110. 5.4. 1) 0,368; 2)

24232− ; 3)

21; 4)

12097

− . 5.5. 1) 5; 2) 2; 3) 2127− ; 4) 1. 5.6. 1) 28; 2) 0,5; 3) 4; 4)

37224− . 5.7. 1) 6; 2) 36; 3) 9; 4) 15. 5.8. 1) 10; 2) 3; 3) –1; 4) –3. 5.9.

1) 7; 2) 169; 3) 5; 4) 13. 5.10. 1) 3; 2) 1; 3) 34; 4) 15. 5.11. 1)

235 bax +

= ; 2) abx 67 −= ; 3) roca 2−≠m , maSin 2+

=m

nx ;

roca 2−=m , maSin ∈x ø; roca 2−=m da 0=n , maSin Rx∈ .

4) roca 3≠n , maSin 3

2−

=n

nx ; roca 3=n , maSin ∈x ø. 5.12. 1)

ax −= ; 2) roca 0≠m , maSin 1=x ; roca 0=m , maSin Rx∈ .

3) roca dc −≠ , maSin dc

abx+

= ; roca dc −= da 0≠ab , maSin

∈x ø; roca dc −= da 0=ab , maSin Rx∈ ; 4) roca ca −≠ ,

maSin ca

bcx+

= ; roca ca −= da 0≠bc , maSin ∈x ø; roca

ca −= da 0=bc , maSin Rx∈ . 5.15. 1) 3; 2) 5; 3) –0,6; 4) 3. 5.16. 1) 4; 2) 5; 3) 1; 4) –1. 5.20. 1) ± 6; 2) ± 2,5; 3) ± 6; 4) ± 2. 5.21. 1) 0;

-3; 2) 0; 5; 3) 0; 27; 4) 0;

35. 5.22. 1) 0; 4,2; 2) 0; 4; 3) ø; 4) ± 1.

5.23. 1) 1; 2; 2) –2; -3; 3) 1; 3; 4) 7; -1. 5.24. 1) –2; 10; 2) 5; 6; 3) –4;

Page 396: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

396

5; 4) 3; 4. 5.25. 1) 2; 211 ; 2) 1;

53; 3)

311 ; -2; 4) –3;

32

− . 5.26. 1)

313

− ; 6; 2) 3; 211 ; 3)

43

− ; 322− ; 4) 4; 1,6. 5.27. 1)

711

− ; 2; 2) 2;

3) –0,7; 10; 4) 7; 97

− . 5.28. 1) 3; 2,36; 2) 18; 15,8; 3) 745

− ; 2; 4) 0;

60. 5.29. 1) 226 ±− ; 2) 31− ; ( )33+− ; 3) 5 ; 0; 4) 0; 3 .

5.31. 1) a15 ; a4− ; 2) ba +2 ; ba −2 ; 3) a ; ba

ab−

; 4) b ; b43

− .

5.32. 1) 6; 8; 2) 5; 6; 3) 41

− ; 83

− ; 4) 37;

32. 5.33. 1) 0;

425

− ; 2) 0;

35

− ; 3) 0; 649

− ; 4) 27; 0. 5.41. 1) a) –5; -2; b) –6; -1; ara; 2)

51 −=x ; 12 −=x ; 41 −=y ; 02 =y . 5.42. 1) 1=a ; 2) 2−=a ; 3)

0=a ; 3=a ; 4) 0=a . 5.43. 1) 1=a ; 2) 1−=a ; 3) 3=a ; 4) 14; ± 2.

5.44. 1) 2−=a ; 2) 3=a ; 3) 2=a ; 4) 1=a . 5.45. 1) –8; 2) –5; 3)

716

; 4) 15. 5.46. 1) 9; 2) 4; 3) –8; 4) 1. 5.47. 1) ± 6; 2) ± 12; 3) ± 12;

4) ± 4. 5.48. 1) –7; -1; 2) 0; 3; 3) 0; 121

− ; 4) 1; 51. 5.49. 1) –4; 1; 2)

–2; -5; 3) –2; -3; 4) 1; -2 3± . 5.50. 1) –9; 2) –7; 3) 0; 4) –4. 5.51. 1)

7; 10; 2) –6; 6; 3) 7253

; 4) 823

. 5.52. 1) 4

27− ; 2) ± 7; 3) -16; 4) –2.

5.53. 1) 024102 =+− xx ; 2) 050152 =+− xx ; 3) 044 22 =−+ pqx ; 4)

012 =++ pxqx . 5.54. 1) qpxx 2222

21 −=+ ; ( )qppxx 323

231 −−=+ ; 2)

( ) 03 322 =+−+ qxqppx ; 3) 02 =x da 0100152 =−+ xx ; 4) 02 =x

da 0869 2 =−+ xx . 5.55. 1) 31; 2) 16; 3) 7; 14; 4) 6. 5.56. 1)

0== qp an 1=p , 2−=q ; 2) 0=p , 0=q an 4=p , 32−=q ; 3)

2−=m ; 4) 3b = − . 5.57. 1) –6; 2) 2; 3)

( ) ( )( ) 0212121212

2121 =−−−− bccbabbacaac ; 4)

( )( )

02 221

22121

21

1221

2 =−−

+⎟⎟⎠

⎞⎜⎜⎝

⎛−−

+++qq

ppqqxppqqppx . 5.58. 1) ± 3; ± 1; 2)

± 2; ± 3; 3) ± 5; ± 2; 4) ± 1; ± 2. 5.59. 1) ± 1; ± 4; 2) ± 6; ± 1; 3)

Page 397: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

397

± 1; ± 7; 4) ± 4; ± 3. 5.60. 1) ± 1; ±21; 2) ± 3; ±

31

; 3) ± 3;

±2

1; 4) ± 2 ; ±

33. 5.61. 1) 3; -5; -1; 2)

31

− ; 23;

61; 1; 3)

31

− ; 21; 4) 1; 2;

21. 5.65. 1) 1; -5; 2) 0; 3; 3)

81

− ; -2; 4) 31; 3 3− .

5.66. 1) 2; -2; 4; -4; 2) ± 2; ±2244

; 3) 0; 4) 1; 3 6− . 5.67. 1) 0; -2;

2662 ±−

; 2) 1; 3; 3) 0; 1; 4) 0; -2. 5.68. 1) 1; -3; 2) 2; 4; 2

236 ±;

3) 0; -3; 2

733±−; 4) –5; 4;

2371±−

. 5.69. 1) 3; 523± ; 2) 2; -4;

3) 2; 3; 4) 284 ±− ; 234 ±− . 5.70. 1) 2; 3; 2) 1; -5; 61±− ; 3)

2; 21; 4) 2;

21;

410511±−

. 5.71. 1) –4; -1; -2; -3; 2) –3; 2;

2171±−

; 3) 1; 2; 4) –2; 2; 2± .

$7!!

6.3. 1) 5; 2) 3; 3) ± 2; 4) 5. 6.4. 1) 10; 2) 2629

; 3) 53; 4) 61. 6.5. 1) 100;

2) 4; 3) 16; 4) 1. 6.6. 1) 3; 2) 4; 3) ∈x ø; 4) –1. 6.7. 1) 5; 2) 7; 3) 7; 4) 11. 6.8. 1) 2; 2) 0; 3) –4; 4) 1; 2. 6.9. 1) 2; 2) 3; 3) 1; 2; 4) ø. 6.10.

1) 32; 2) 25; 3) 5;

45

− ; 4) –3. 6.11. 1) 10; 2) 2; 34; 3) –1; 3; 4) –1.

6.12. 1) 4; 2) 4; 3) 12; 4) 3. 6.13. 1) 7; 2) –1; 3) 2; 4) 8; 7. 6.14. 1) 2; 2) 5; 3) 8; 4) 7. 6.15. 1) 1; 2) ± 0,5; 3) 4; 4) 1. 6.16. 1) 3; 5; 2) 17; 25; 3) 2; 4) ± 1. 6.17. 1) 1,5; 2) 6; 3) 5; 4) 1. 6.18. 1) ± 4; 2) 0; 3) –61;

30; 4) -3; 4. 6.19. 1) 81; 2) 17; 3) 19; 84; 4) –7; 7. 6.20. 1) 827

− ; 1; 2)

64; 3) ± 22 ; 4) ± 22 . 6.21. 1) 8; 2) 1024; 3) ± 23 ; 4) ± 4. 6.22.

1) –1; 4; 2) –2; 9; 3) –2; 6; 4) –5; 0. 6.23. 1) 0; 2) 1; 3) 1; 4) 5115

− ;

2.

Page 398: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

398

$8!!

7.1. 1) (3;4); 2) (3;4); 3) (5;-2); 4) (5;-3). 7.2. 1) (125; -47); 2) (1;-2); 3)

(7;5); 4) (5;-2). 7.3. 1) (4;3); 2) (2;1); 3) ⎟⎠⎞

⎜⎝⎛ −

611;

21

; 4) (3;-2). 7.4. 1) (0;5);

2) (0,5;-2); 3) (9;2); 4) (-5;-6). 7.5. 1) (4;2); 2) (-3;1); 3) (-19;-3); 4) (21;1).

7.6. 1) ⎟⎠⎞

⎜⎝⎛−

21;1 ; 2) (-1;2); 3) (-1;1); 4) (1;-1). 7.7. 1) (8;9); 2) (36;12); 3)

(4;-3); 4) (2;-5). 7.8. 1) (-1;1); 2) (11;6); 3) (3;1); 4) (9;10). 7.9. 1) (2;3); 2)

(0,1;4); 3) ⎟⎠⎞

⎜⎝⎛

41;

51

; 4) ⎟⎠⎞

⎜⎝⎛

31;

21

. 7.10. 1) (5;3); 2) (10;-3); 3) (7;3); 4) (5;1).

7.11. 1) (5;3); 2) (3;2,5); 3) (7;4); 4) (2;-1). 7.12. 1) (1;0); ⎟⎠⎞

⎜⎝⎛ −−

23;

21

; 2)

(5;3); ⎟⎠⎞

⎜⎝⎛ −− 10;

23

; 3) (2;-2); 4) (6;2); (2;6). 7.13. 1) (0,25;7,75); (-2;1); 2)

(17;10); (4;-3); 3) (0;0); ⎟⎠⎞

⎜⎝⎛−

524;

512

; 4) (6;9); (-9;-6). 7.14. 1) (8;4); (4;8);

2) (5;1); (-1;-5); 3) (2;3); (3;2); 4) (3;0); (1;-2). 7.15. 1) (3;4); ⎟⎠⎞

⎜⎝⎛ −−

314;10 ;

2) (-2;5); ⎟⎠⎞

⎜⎝⎛−

853;

217 ; 3) (4;2); (16;-10); 4) (3;2); (2;1). 7.16. 1) (3;4);

(1;2); 2) ⎟⎠⎞

⎜⎝⎛ −− 1;

37

; ⎟⎠⎞

⎜⎝⎛

23;

27

; 3) (4;0); (-0,5;-4,5); 4) ⎟⎠⎞

⎜⎝⎛

711;

761 . 7.17. 1)

(4;1); (1;4); 2) (7;1); (1;7); 3) (5;-3); (-3;5); 4) (-9;4); (4;-9). 7.18. 1) (9;2); (-2;-9); 2) (5;3); (-3;-5); 3) (12;-4); (4;-12); 4) (2;-1); (1;-2). 7.19. 1)

( )2;3 ±± ; ( )3;2 ±± ; 2) (-1;2); (2;-1); 3) (4;1); ⎟⎠⎞

⎜⎝⎛

32;

310

; 4) (1;2); (2;1).

7.20. 1) ⎟⎠⎞

⎜⎝⎛±

21;

21m ; ( )1;2 m± ; 2) ( )8;2 ±± ; ( )5;5,8 m± ; 3) ( )2;1 ±± ;

( )1;2 ±± ; 4) ( )5;3 ±± ; ⎟⎠⎞

⎜⎝⎛ ±±

314;

321 . 7.21. 1) ( )1;3 ±± ; ( )22;2 ±m ; 2)

⎟⎠⎞

⎜⎝⎛ ±±

21;2 ; ⎟

⎟⎠

⎞⎜⎜⎝

⎛±

5102;

510

m ; 3) ( )3;2 ±± ; ( )2;3 ±± ; 4) ( )1;3 ±± . 7.22.

1) (1;2); (2;1); 2) (3;1); (1;3); 3) (5;2); (-2;-5); 4) (5;4); (4;5). 7.23. 1) (3;2); (3;-3); (-4;2); (-4;-3); 2) (0;0); (4;2); (-2;-4); 3) (3;4); (-3;-4);

Page 399: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

399

⎟⎟⎠

⎞⎜⎜⎝

⎛−

111;

118

; ⎟⎟⎠

⎞⎜⎜⎝

⎛−

111;

118

; 4) (3;1); ⎟⎠⎞

⎜⎝⎛ −

34;

32

. 7.24. 1) (7;3);

⎟⎠⎞

⎜⎝⎛ −

35;

314

; 2) (2;3); (0;1); ⎟⎠⎞

⎜⎝⎛ 1;

23

; 3) ( )5;52 + ; ( )5;52 −− ; (0;2);

(3;2); 4) (6;3); (-1;-4); (4;5); (-3;-2). 7.25. 1) (5;3); (-5;-3); (3;5); (-3;-5); 2) (5;4); (-5;-4); 3) (8;2); (2;8); 4) (9;4). 7.26. 1) (9;4); (4;9); 2) (5;20); (20;5); 3) (2;3); (3;2); ( )72;72 −−+− ; ( )72;72 +−−− ; 4) (2;-4);

(-4;2); ⎟⎟⎠

⎞⎜⎜⎝

⎛ −+2

213;2

213; ⎟

⎟⎠

⎞⎜⎜⎝

⎛ +−2

213;2

213. 7.27. 1) (4;2); (2;4); 2)

(7;5); (-5;-7); 3) (5;-2); (2;-5); 4) (-6;-1); (-1;-6). 7.28. 1) (2;1); (1;2); 2) (12;4); (4;12); ( )555;555 −−+− ; ( )555;555 +−−− ; 3) (1;3); (-1;-3);

(3;1); (-3;-1); 4) (2;3); (3;2). 7.29. 1) ⎟⎠⎞

⎜⎝⎛

23;

21

; 2) (0;1); 3) (4;2); ⎟⎠⎞

⎜⎝⎛ −

32;

34

;

4) (2;1). 7.30. 1) erTi amonaxsni; 2) uamravi amonaxsni; 3) erTi

amonaxsni; 4) ara aqvs amonaxsni. 7.31. 1) 23; 2)

38

− ; 3) 3

10; 4)

61

− ; 0. 7.32. 1) 10=m ; 6=n ; 2) 6−=m ; 19−=n ; 3) 32

=m ;

38

=n ; 4) 1−=m ; 2=n ; 3

37−=m ; 3−=n . 7.33. 1) a) –1; b) –7; 2)

a) 2; b) 0; 3) a) 2; b)-1; 4) a)-1; b)-3. 7.34. 1) (5;6;10); 2) (1;1;1); 3) (1;3;5); 4) (-2;0;3). 7.35. 1) (2;-1;3); (-3;4;-2); 2) (5;3;4); (4;2;5); 3) (1;2;3); (-1;-2;-3); 4) (2;3;4); (-2;-3;-4).

$9!!

8.1. 1) 4<x ; 2) 2,1>x ; 3) 2,2−>x ; 4) 5,1≥x . 8.2. 1) 87

−≤x ; 2)

9>x ; 3) 1,3−<x ; 4) 8,0<x . 8.3. 1) 32

−<x ; 2) 5,3<x ; 3) 17≥x ;

4) 25,0−≥x . 8.4. 1) 115−>x ; 2) 15<x ; 3) 2,0≥x ; 4) 4,1≤x . 8.5.

1) 4

39−<x ; 2)

49

<x ; 3) 3>x ; 4) 35

−<x ; 0=x . 8.6. 1) 17>x ; 2)

1≤x ; 3) 60 <≤ x ; 4) ø. 8.7. 1) ø; 2) 32 <≤ x ; 3) 1,1≥x ; 4) ø. 8.8.

Page 400: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

400

1) 3>x ; 2) 3−≤x ; 3) 4>x ; 4) 111

>x . 8.9. 1) 2<x ; 2) 31 << x ; 3)

12>x ; 4) 21 << x . 8.10. 1) 9>x ; 2) 329 <<− x ; 3) 3911 << x ; 4)

733>x . 8.11. 1) 0<x ; 5>x ; 2) 2<x ; 4>x ; 3) 4

21

<< x ; 4)

123

<<− x . 8.12. 1) 41 << x ; 2) 13 −<≤− x ; 3) ø; 4) 32 ≤<− x .

8.13. 1) 8>x ; 2) 2<x ; 32 << x ; 3) 2>x ; 4) 31 <≤− x ; 3>x .

8.14. 1) 3

104 <<− x ; 2) 523

≤< x ; 3) 23

41

≤< x ; 4) 1−<x ; 0>x .

8.15. 1) 810 << x ; 2) 1−<x ;

43

>x ; 3) 11 ≤<− x ; 4) 7<x . 8.16. 1)

3>x ; 2) 27 −<<− x ; 3) 31

<x ; 1>x ; 4) 56

<x ; 35

>x . 8.17. 1)

1<x ; 3>x ; 2) ∞<<−∞ x ; 3) 521 <<− x ; 4) ø. 8.18. 1) 5≤x ;

9≥x ; 2) ∞<<−∞ x ; 3) 5≤x ; 6≥x ; 4) 1<x ; 3>x . 8.19. 1)

31

−<x ; 2>x ; 2) 152

≤≤ x ; 3) 332

<<− x ; 4) ∞<<−∞ x . 8.20. 1)

73 ≤≤ x ; 2) 86 <<− x ; 3) 21

31

<<− x ; 4) 1−≤x ; 2,0−≥x . 8.21. 1)

034

<<− x ; 2) 3−<x ; 3>x ; 3) 100 ≤≤ x ; 4) 5−≤x ; 5≥x .

8.22. 1) 75

<x ; 375

<< x ; 2) 23

<x ; 423

<< x ; 3) 31

≤x ; 4≥x ;

23

=x . 4) 84 ≤≤− x . 8.23. 1) 0≤x ; 35,2 ≤≤ x ; 2) 23

51

≤≤ x ; 3≥x ;

3) 49

32

<< x ; 527

<< x ; 4) 165

<< x ; 34

>x . 8.24. 1) 21 << x ; 3>x ;

2) 32 << x ; 5>x ; 3) 3−<x ; 11 ≤<− x ; 4) 4>x . 8.25. 1) 3−≤x ;

1≥x ; 2) 14 −<<− x ; 61 <<− x ; 3) 5−≤x ; 31 ≤<− x ; 4)

22 <<− x ; 86 << x . 8.26. 1) 53 << x ; 2) 12 <≤− x ; 6>x ; 3)

5,11 << x ; 2>x ; 4) 232 <<− x ; 5>x . 8.27. 1) 25,4 −<<− x ; 3>x ;

2) 2−<x ; 2>x ; 3) 80 ≤≤ x ; 4) 61 << x . 8.28. 1) 41 <<− x ; 2)

3<x ; 3) 34 −<<− x ; 10 <≤ x ; 2=x ; 4) 14 −<<− x ; 21 <≤ x .

8.29. 1) 5>x ; 2) 0≤x ; 3) 4−≥x ; 4) 21

−=x . 8.30. 1) 5−<x ; 5>x ;

Page 401: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

401

2) 4−≤x ; 1−≥x ; 3) 610 −≤<− x ; 106 <≤ x ; 4) 21 ≤< x ; 65 <≤ x .

8.31. 1) 3≥x ; 2) 534

<≤ x ; 3) ø; 4) 32

27

−<≤− x . 8.32. 1) 5≥x ; 2)

253 −≤<− x ; 3) 23 −≤<− x ; 75 <≤ x ; 4)

59

<x ; 15>x . 8.33. 1)

4922 <≤ x ; 5>x ; 2) 1

32

<≤ x ; 3) 23

>x ; 4) 32

>x . 8.34. 1)

13 <≤− x ; 2) 214 <≤− x ; 3) 346 <≤− x ; 4) 927 <≤− x . 8.35. 1) 6≥x ; 2) 30 ≤≤ x ; 3) 2−≤x ; 2>x ; 4) 4−≤x ; 0>x . 8.36. 1) 2>x ; 2) 2−<x ; 31 << x ; 3) 12 −≤≤− x ; 3≥x ; 4) 12 ≤≤− x ;

3=x . 8.37. 1) 43

<x ; 74 << x ; 2) 13 ≤<− x ; 2

17−=x ; 3) 63 ≤≤− x ;

8>x ; 4) 63 ≤≤− x . 8.38. 1) 9>x ; 2) 151 <<− x ; 3) 524 +−<x ;

4) 31

32

−≤<− x . 8.39. 1) 15 −<≤− x ; 1>x ; 2) 4132 −<≤− x ;

1322 ≤< x ; 3) 06 <≤− x ; 43 ≤< x ; 4) 0<x ; 21 ≤≤ x . 8.41. 1)

4−>a ; 2) 322−>a ; 3)

322<a ; 4) 2<a . 8.42. 1) 2>a ; 2)

73

<a ;

3) 7,0>a ; 4) 1<a . 8.43. 1) 2−<a ; 2) 38

<a ; 3) 3

16−>a ; 4)

411

−>a . 8.44. 1) 36−>a ; 2) 12546

>a ; 3) 1715

>a ; 4) 163

>a . 8.45. 1)

115 ≤≤ a ; 2) 2−≤a ; 21

≥a ; 3) 15 ≤≤− a ; 4) ∞<<−∞ a . 8.46. 1) –1;

2) -3; 3) –2; 4) 3. 8.47. 1) 16

17916

179 +<<

− a ; 31

≠a ; 2)

2517

2175 −

≤≤−− a ; 3)

21

=a ; 15

19216 −≤a ;

1519216 +

≥a ; 4)

1−=a ; 3=a . 8.48. 1) 3; 2) 2; 3) 1; 4) 3. 8.49. 1) 25 <<− a ; 2)

51 <<− a ; 3) 33 <<− a ; 4) 14 −<<− a . 8.50. 1) 4193 << m ; 2)

2>m ; 3) 32

>m ; 4) 21422 << m . 8.51. 1)

217

>a ; 2) 1−<a ;

6,21 << a ; 3) 3>a ; 4) 22>a . 8.52. 1) 1>a ; 2) 11>a ; 3)

54

−<a ; 2>a ; 4) 280 << a . 8.53. 1) 5

36−<a ; 2)

121

−<a ; 3)

Page 402: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

402

167

<a ; 4) 25 <<− a . 8.54. 1) 26 <<− a ; 2) 17 <<− a ; 3)

42 <<− a ; 4) 63 <<− a . 8.55. 1) 3

34−<a ; 2) 21 << a . 8.56. 1)

123

−<<− m ; 2) 4−<m ; 210 << m ; 3) 3−<m ;

212 <<− m ; 4)

11 <<− m ; 42 << m . 8.57. 1) 22423

<< m ; 3>m ; 2) 3−<m ;

352 −<<− m ; 3) 9−<m ;

349 −<<− m ;

25

>m ; 4) 2−>m ; 0m ≠ .

8.58. 1) 911

>a ; 2) 2−<a ; 3) 1>a ; 4) 21716

<≤ a . 8.59. 1) 3−≤a ;

1≥a ; 2) 112112 +−<<−− a ; 3) 3

1122 <≤ a ; 4) 412 ≤<− a .

8.60. 1) 4322

457−≤≤

−− a ; 2) 1>a ; 3) 21

31

<<− a ; 4)

510 << a . 8.61. 1) 1

21

≤< a ; 2) 5,02 −≤≤− a ; 3) 3−<a ; 1−>a ; 4)

21

<a . 8.62. 1) ø; 2) 3028 << a ; 3) 1210 << a ; 4) 3>a . 8.63. 1)

4−<a ; 2) 6<a ; 3) 70<a ; 4) 3−>a . 8.64. 1) ara; 2) ara; 3) ara; 4) ara.

$:!!

9.1. 1) ± 0,5; 2) ± 0,5; 3) –1; 3; 4) –4; 0. 9.2. 1) 2; 2) 41

− ; 3) 31

− ; 1;

4) 52

− ; 1. 9.3. 1) 21; 2)

65; 3) 0; 2; 4) 1;

57. 9.4. 1) –2; 2; 2) 0;

58;

3) 23

− ; 7; 4) 54;

513 . 9.5. 1) 3−≤x ; 2)

31

− ; 3) ø; 4) –2. 9.6. 1)

34

− ; -6; 2) 7; 13; 3) 21;

43

− ; 4) ø. 9.7. 1) ± 2; 2) ± 3; ± 1; 3) –3; -1;

4) 2; 3. 9.8. 1) 2; 2) 3; 3) –2; 4) 4. 9.9. 1) ± 10; 2) ±34; 3) ± 1; ±

25;

Page 403: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

403

4) ± 1. 9.10. 1) –1; 7; 2) –1; 3; 3) 21; 2;

4415 ±−

; 4) –1; 2. 9.11. 1)

–1; 5; 2) –10; 4; 3) 2; 4; 4) –5; 83+ . 9.12. 1) 2; 6; 2) 2; 5; 7; 3) –3;

2; 3; 4) 2; ± 3; ± 7 . 9.13. 1) –1; 2) 21

− ; 32; 3)

32

− ; 21; 4) 1; 4.

9.14. 1) 221± ; 2) –5; 3; 3) 1; 9; 4) –11; 3. 9.15. 1) 34; ( )171

41

±− ;

2) 3−≤x ; 3≥x ; 3) ( )1521

− ; 4) 2890 ≤≤ x . 9.16. 1) 3; 81−− ; 2)

1; 2

3311+; 3) –5; 23 − ; 4) 72 −− ; 5. 9.17. 1) (1;1); ⎟

⎠⎞

⎜⎝⎛

511;

53

; 2)

⎟⎠⎞

⎜⎝⎛

51;

58

; (2;1); 3) (1;2); ⎟⎠⎞

⎜⎝⎛

21;4 ; 4) (1;-1); (2;3). 9.18. 1) (1;1); ⎟

⎠⎞

⎜⎝⎛ −−

57;

51

;

2) (1;1); ⎟⎠⎞

⎜⎝⎛

31;

37

; 3) (2;1); ⎟⎠⎞

⎜⎝⎛

25;

23

; 4) (1;3); ⎟⎠⎞

⎜⎝⎛

37;

31

; ⎟⎠⎞

⎜⎝⎛

37;

35

. 9.19. 1)

(1;1); (-1;-1); (1;-1); (-1;1); 2) (2;1); (-2;-1); (2;-1); (-2;1); 3) (0;1); (0;3);

(2;1); (2;3); 4) (1;2); (1;0); (-3;2); (-3;0). 9.20. 1) 51 ≤≤− x ; 2) 9−<x ;

11>x ; 3) 17 −≤≤− x ; 4) 321−≤x ; 1−≥x . 9.21. 1)

412≤x ; 2)

51

>x ; 3) 31

<x ; 211>x ; 4) 7

53

<<− x . 9.22. 1) 5−<x ; 31

−>x ; 2)

173

<<− x ; 3) 1331

<< x ; 4) 1−<x ; 1>x . 9.23. 1) 33 −<<− x ;

33 << x ; 2) 24 −≤≤− x ; 42 ≤≤ x ; 3) 21 <<− x ; 63 << x ; 4)

21 << x ; 43 << x . 9.24. 1) 7−<x ; 11 <<− x ; 7>x ; 2) 2−<x ;

2>x ; 3) 322 −<x ; 322 +>x ; 4) 1−<x ; 3>x . 9.25. 1)

23

41

<<− x ; 2) 34

<x ; 3) 1010 <<− x ; 4) 0>x . 9.26. 1)

31

53

−<<− x ; 71

31

−<<− x ; 2) 2

512

291 +−≤≤

− x ;

2291

215 +

≤≤− x ; 2±≠x ; 3) 101101 +<<− x ; 4) 4−<x ;

14 −<<− x ; 01 ≤<− x . 9.27. 1) 48 −<<− x ; 04 <<− x ; 2)

28 −<<− x ; 42 <<− x ; 3) 32 <<− x ; 83 << x ; 4) 36 −<<− x ;

03 <<− x . 9.28. 1) 31 <<− x ; 2) 12 <≤− x ; 1225 +<< x ; 3)

Page 404: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

404

5132 −<≤−− x ; 31 ≤< x ; 4) 13 −<≤− x ; 813 +≤< x . 9.29. 1) 412 −<<− x ; 168 << x ; 2) 01 ≤<− x ; 32 <≤ x ; 3) 2029 −<<− x ;

2718 << x ; 4) 618 −<<− x ; 2210 << x .

$21!!!

10.1. 40;36;43. 10.2. 240 ha; 180 ha; 300 ha. 10.3. 15;30;20. 10.4. Warxali 240 kg. kombosto 360 kg. kartofili 1200 kg. 10.5. 59;60;61. 10.6. 8. 10.7. 6;7;8;9. 10.8. 12. 10.9. 48;24. 10.10. 24 sm. 10.11. 10 m; 5 m. 10.12. 5 m; 15 m. 10.13. 100 l; 50 l. 10.14. 2200 t; 1100 t. 10.15. 20 kg; 60 kg. 10.16. 13 t; 26 t. 10.17. 4 sT. 10.18. 4 sT.

10.19. 90 t; 30 t. 10.20. 40 ha; 10 ha. 10.21. 9. 10.22. 6. 10.23. 4. 10.24. 10. 10.25. 68 ha; 52 ha. 10.26. 100 muxis; 200 fiWvis. 10.27. 30. 10.28. 38; 32. 10.29. 6 ha; 2 ha; 8 ha. 10.30. 136. 10.31. 312,5 kg; 12,5 kg; 25 kg. 10.32. 26 ha. 10.33. 504. 10.34. 72;45. 10.35. 72;48. 10.36.

28;40. 10.37. 73. 10.38.

53. 10.39.

73. 10.40.

94. 10.41. 420;35. 10.42.

672; 12 dReSi. 10.43. 378 t. 10.44. 40 dRe. 10.45. 960. 10.46. 48. 10.47. 165. 10.48. 88. 10.49. 20 kg. 10.50. 100. 10.51. 5. 10.52. 200 lari. 10.53. 60. 10.54. 300. 10.55. 926,1. 10.56. 75000. 10.57. 40000. 10.58. 5000. 10.59. 5. 10.60. 40. 10.61. 20. 10.62. 60. 10.63. 120 lari.

10.64. 400. 10.65. 40. 10.66. 600. 10.67. 60. 10.68. 240. 10.69. 20 ha. 10.70. 500. 10.71. 1000. 10.72. 5 wT. 10.73. 400 km. 10.74. 46. 10.75. 24; 16. 10.76. 390 t; 240 t. 10.77. 12 km/sT; 9 km/sT. 10.78. 59 km/sT.

10.79. 12 km/sT; 20 km/sT. 10.80. 210 km. 10.81. 25,2 km/sT. 10.82. 640 km; 60 km/sT. 10.83. 120 km. 10.84. 18 km/sT. 10.85. 60 km. 10.86. 12 km/sT; 30 km/sT. 10.87. 50 km/sT; 70 km/sT. 10.88. 40 km/sT; 120

km/sT. 10.89. 6. 10.90. 36 km/sT. 10.91. 240 km. 10.92. 400 km/sT;

1200km/sT. 10.93. 15 km. 10.94. 30 km. 10.95. 750 km. 10.96. 80 km. 10.97. 150 km. 10.98. 50 km/sT. 10.99. 600 m. 10.100. 72. 10.101. 119 m; 17 m/wm. 10.102. 56 km/sT. 10.103. 50 km/sT. 10.104. 80 km. 10.105. 1320 km; 230 km/sT. 10.106. 21,6 km/sT. 10.107. 0,5 km/sT. 10.108. 7,5 km. 10.109. 10 km. 10.110. 5. 10.111. 350 km; 8 sT. 10.112. 12 vagoni; 190 t. 10.113. 32. 10.114. 52. 10.115. 36 m/wT; 9 m/wT. 10.116. 40; 25; 100 m. 10.117. 144. 10.118. 12. 10.119. 6. 10.120. 24. 10.121. 6. 10.122. 3. 10.123. 10 wT. 10.124. 20; 30. 10.125. 20. 10.126. 6 sT. 10.127. 4. 10.128. 26; 39; 52. 10.129. 20. 10.130. 10. 10.131. 400 lari. 10.132. 10.

Page 405: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

405

10.133. 73. 10.134. 5. 10.135. 65 kg. 10.136. 29 weli. 10.137. 200. 10.138. 2,5 kg. 10.139. 300. 10.140. 4. 10.141. 70. 10.142. 10; 16. 10.143. 8 l da 12 l. 10.144. 140 m. 10.145. 28 m. 10.146. 6400 sm 2

. 10.147. 80 km/sT; 70 km/sT. 10.148. 400 km/sT; 320 km/sT. 10.149. 6. 10.150. 50 km/sT; 45 km/sT. 10.151. 80 km/sT. 10.152. 60 km/sT. 10.153. 10 sT. 10.154. 32 km/sT da 9 km/sT. 10.155. 30 km/sT. 10.156. 360 km/sT; 900 km/sT. 10.157. 15 km/sT. 10.158. 3,75 sT. 10.159. 100 km/sT; 80 km/sT an 80 km/sT; 60 km/sT. 10.160. 20 km/sT. 10.161. 20 km/sT. 10.162. 3. 10.163. 12 km/sT. 10.164. 40 km/sT; 50 km/sT.

10.165. 16 km/sT; 12 km/sT. 10.166. 60 km/sT; 120 km/sT. 10.167. 44 km. 10.168. 48 km; 16 km/sT; 20 km/sT. 10.169. 18 km/sT; 24 km/sT.

10.170. 100 3 km; 200 3 km. 10.171. 20 3 km. 10.172. 6. 10.173. 8. 10.174. 8. 10.175. 2,5. 10.176. 9. 10.177. 6 t; 5 t. 10.178. 10 ha; 12 ha an 8 ha; 10 ha. 10.179. 800 m 2

; 500 m2 an 900m

2; 600m

2. 10.180. 22

an 17. 10.181. 12; 6. 10.182. 5 sT; 7 sT. 10.183. 10 dRe; 15 dRe.

10.184. 14; 11. 10.185. 0,5. 10.186. 61. 10.187.

241

. 10.188. 10 sT; 15

sT. 10.189. 20% an 80%. 10.190. 40. 10.191. 20. 10.192. 5. 10.193. 50. 10.194. gaiafda 20%-iT; gaZvirda 5%-iT. 10.195. 80. 10.196. 30. 10.197. 19. 10.198. 30. 10.199. 11. 10.200. 22. 10.201. 30. 10.202. 10. 10.203. 7. 10.204. rvakuTxeds. 10.205. 5 sm. 10.206. 3 sm. 10.207. 3 m. 10.208. 100 m. 10.209. 40 sm; 20 sm. 10.210. 160 g; 20%. 10.211. 10 l.

10.212. 2. 10.213. 15. 10.214. 9 kg; 6 kg. 10.215. 30. 10.216. 12; 2. 10.217. 2; 1. 10.218. 200 kg; 150 kg. 10.219. 100; 200. 10.220. 9,6 kg; 6 kg. 10.221. 6; 5. 10.222. 8 manqana; 6sT. 10.223. 36 striqoni; 50 aso. 10.224. 10. 10.225. 2. 10.226. 62. 10.227. 29. 10.228. 57. 10.229. 69. 10.230. 24. 10.231. 76. 10.232. 12. 10.233. 24. 10.234. 64. 10.235. 37. 10.236. 71. 10.237. mokrive_21; moWidave_15. 10.238. pirvelSi_17;

meoreSi_31. 10.239. 12 sT; 4sT. 10.240. 28 dRe; 21 dRe. 10.241. 20; 30. 10.242. 2 sT; 4 sT. 10.243. 10; 15. 10.244. 12. 10.245. 2,25 sT.

10.246. 30; 20. 10.247. 41. 10.248. 1. 10.249. 18 km/sT; 2 km/sT. 10.250.

10 km/sT; 2km/sT. 10.251. 6 km/sT; 4 km/sT. 10.252. 60 km; 12 km/sT;

5 sT. 10.253. 5 km; 3 km. 10.254. 60 km; 70 km. 10.255. 80 km/sT; 60

km/sT. 10.256. 16 km; 10 km. 10.257. 12 km/sT; 18 km/sT; 24 km.

10.258. 15 m/wm; 10 m/wm. 10.259. 4 wm; 6 wm. 10.260. 8:15. 10.261. 12. 10.262. 3. 10.263. 6. 10.264. 1) 4 m 2

; 2) 2,5 m2. 10.265. 1) 5; 2) 50; 3)

60; 4) 67. 10.266. 40 kg. 10.267. 8 lari. 10.268. 38,8%-iT. 10.269. 20%. 10.270. 5 lari. 10.271. 20. 10.272. 3000 lari; 2000 lari; 8

Page 406: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

406

Tve; 1 weli. 10.273. 6400 lari; 1600 lari; 5 Tve; 15 Tve.

10.274. 10 weli. 10.275. 2. 10.276. 475 c; 480 c; 375 c. 10.277. 180; 120; 160. 10.278. 57 sT 36 wT. 10.279. 32 muSa; 9 sT. 10.280. 16 sT;

316

sT. 10.281. 326 sT;

315 sT. 10.282. 15. 10.283. 9 sT. 10.284. 6

dR. 10.285. 1) 12 sT 12 wT; 2) 12 sT 16 wT; 3) 12 sT 8 wT; 4) 12

sT 112α

wT. 10.286. 1) 2 sT 34 wT; 2) 2 sT 36 wT; 3) 2 sT 16

wT an 2 sT 4 wT; 4) 2 sT 11210 α

+ wT ( )o165<α an 2 sT

11210 α

− wT ( )o45<α . 10.287. 8-jer. 10.288. velosipedisti.

10.289. velosipedisti. 10.290. 1318 -jer. 10.291. ukan

dabrunebaze. 10.292. meoresi. 10.293. 4,5 km/sT; 5,5 km/sT. 10.294. 12. 10.295. 20 km/sT. 10.296. 48 km/sT. 10.297. 6. 10.298. 50 km/sT.

10.299. 3 m. 10.300. 3 km. 10.301. 60 km/sT. 10.302. 8 sT; 4 sT.

10.303. 6 km/sT; 18 km/sT. 10.304. 16 km/sT. 10.305. 24 km/sT. 10.306. 3 sT. 10.307. 10 m/wm; 6 m/wm. 10.308. 60 km/sT; 100 km/sT. 10.309. 20 km/sT. 10.310. 25 km/sT. 10.311. 10 km/sT. 10.312. 5 km/sT. 10.313. 20 km/sT. 10.314. 60 km/sT. 10.315. 2,5 km/sT; 1,5 km/sT. 10.316. 20

km/sT; 12 km/sT. 10.317. 96 l; 60 l. 10.318. 21;

51. 10.319. ar

SeiZleba. 10.320. 1 kg; 2 kg. 10.321. 0,5 l. 3,5 l. 10.322. 25%.

10.323. 2 gr; 22 gr. 10.324. 2-jer.

§11

11.2. 1) 405; 2) 10005; 3) 622 +− kk ; 4) 54 +k. 11.3. 1) 24; 2) 29; 3)

100; 4) 120. 11.4. 1) aris, 16=n ; 2) aris, 18=n ; 3) ar aris; 4)

ar aris. 11.5. 1) 30152 −== aa ; 2) ar aris. 11.6. 1) 9≥n ; 2)

151 ≤≤ n ; 3) 33≥n ; 4) 5926 ≤≤ n . 11.7. 1) 1≠n ; 2) 5≥n ; 3)

51 ≤≤ n ; 4) 193 ≤≤ n . 11.8. 1) 11; 2) 32. 11.9. 1) 12 −= nxn ; 2)

nxn 2= ; 3) 13 −= nxn ; 4) 2nxn = ; 5) 3nxn = ; 6)

nxn

1= ; 7)

Page 407: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

407

1+=

nnxn ; 8) ( ) 113 +−= n

nx ; 9) ( ) 11

211 −

− ⋅−= nn

nx ; 10) ( )212 −= nxn .

11.10. 1) 1; 2; 3; 4; 5; 2) 7; 4; 1; -2; -5; 3) –5; -10; -20; -40; -80; 4) 75;

7,5; 0,75; 0,075; 0,0075. 5) 61;

61

− ; 61;

61

− ; 61; 6) 3;

31; 3;

31; 3.

11.11. 1) nxn 4−= ; 2) 134−= nnx ; 3) 2=nx ; 4) 12 += nxn . 11.12. 1)

ki; 2) ki; 3) ara; 4) ki; 5) ki; 6) ki; 7) ara; 8) ki; 9) ki; 10) ara;

11) ki; 12) ki. 11.14. 1) 9≥n ; 2) 11≥n ; 3) 33≥n ; 4) 1001≥n .

11.15. 1) 123 =x mimdevrobis udidesi wevria. umciresi wevri

mimdevrobas ara aqvs; 2) 154 −=x mimdevrobis umciresi

wevria, udidesi wevri mimdevrobas ara aqvs; 3) 23 −=x

mimdevrobis umciresi wevria, 24 =x ki udidesi; 4) 71 −=x

mimdevrobis umciresi wevria, udidesi wevri mimdevrobas

ar gaaCnia. 11.16. 1) ki; 2) ara. 11.17. 1) ara; 2) ara; 3) ki; 4) ara; 5) ki; 6) ki; 7) ki; 8) ara; 9) ki; 10) ki. 11.18. 1) 23; 2) 5; 3) 297; 4) –0,3. 11.19. 1) 10; 2) 0,6. 11.20. 1) 240; 2) –100; 3) 92; 4) –40. 11.21. 1) 155; 2) 100; 3) 70; 4) –65. 11.22. 1) 211 =a ; 5,1=d ; 2)

1201 =a ; 1−=d ; 3) 381 =a ; 2−=d ; 4) 5,21 −=a ; 5,0=d . 11.23. 1) 7815 =a ; 64515 =S ; 2) 411 =a ; 5,511 =S ; 3) 113 =a ; 5,3213 =S ; 4)

611861 =a ;

6149861 =S . 11.24. 1) 11=n ; 5,2711 =S ; 2) 20=n ;

95520 =S ; 3) 22=n ; 9922 =S ; 4) 26=n ; 5,60426 =S . 11.25. 1)

4=d ; 143026 =S ; 2) 2−=d ; 906 −=S ; 3) 81

=d ; 816026 =S ; 4)

βα +=d ; βα 36459 +=S . 11.26. 1) 191 =a ; 1075545 =S ; 2)

381 −=a ; 36015 −=S ; 3) 41 =a ; 5,3213 =S ; 4) α5411 +=a ;

α113440628 +=S . 11.27. 1) 5,1=d ; 36=n ; 2) 1,0=d ; 51=n ; 3)

32

=d ; 100=n ; 4) 43

=d ; 30=n . 11.28. 1) 25=n , 3=na , 12=n ,

213−=na ; 2) 34=n ,

661

−=na . 11.29. 1) 7=d ; 289 =a ; 2) 2,0=d ;

5,630 =a . 11.30. 1) 451 −=a ; 4531 =a ; 2) 31

1 −=a ; 321137 =a . 11.31. 1)

101 =a ; 10=d ; 2) 261 =a ; 7−=d . 11.32. 1) 351 =a ; 31=n ; 2)

11 −=a , 63=n , 31 =a , 61=n . 11.33. 1) 2717 =a ; 2) 2515 =a ; 3)

Page 408: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

408

8118 =S ; 4) 18213 =S . 11.34. 1) 11; 15; 19; 23; 27; 31; 2) 322 ;

314 ; 6;

327 ;

319 ; 11;

3212 ;

3114 . 11.35. 1) 4710 =a ; 2) 2=d ; 3) 24015 =S ;

4) 5,267 −=a ; 5) 1−=d ; 11 −+= mna ; 6) ( )( )

21 nmnm +−+

. 11.36. 1)

121 =a ; 3=d ; 2) 5,191 =a ; 8,2−=d ; 3) 21 −=a ; 7=d ; 4) 31 =a ,

2=d an 171 −=a , 2=d . 11.37. 1) 11 =a ; 3=d ; 2) 81 =a ; 3−=d ;

3) 81 =a ; 3−=d ; 4) 01 =a ; 3=d an 121 −=a ; 514=d . 11.38. 1)

101 =a , 19=n , 5,2=d ; 2) 51 =a , 6=n , 5=d . 11.39. 1) 909 =S ;

2) 8412 −=S . 11.40. 1) 2nSn = ; 2) 2

73 2 nnSn+

= ; 3) 4

15 2nnSn−

= ;

4) 26nnSn −= . 11.41. 1) 5050; 2)

2

2 nn +; 3) 2550; 4) 1645; 5) 4905;

6) 960. 11.42. 1) 2387; 2) 2070. 11.43. 1) 34017 =S ; 2) 6231 =S . 11.44.

1) 52822 =S ; 2) 5,249 =a ; 3) 3012 =a ; 4) 2510 =a . 11.45. 1) 601

− ;

2) 91. 11.46. 1)

311− ; 2)

411− . 11.47. 1)

52; 2)

311 . 11.48. 1)

41834 ;

2) 994. 11.49. 1) –737; 2) 41834− . 11.50. 1) 204; 2) 104. 11.51. 1) 300;

2) 384. 11.52. 1) 160040 =S ; 2) 12030 =S . 11.53. 1) ki; 2) ara; 3) ara; 4) ara. 11.54. 0=c . 11.55. 1) 41; 2) 25; 3) 49; 4) 36; 5) 19,5; 6) 1. 11.60. 4. 11.61. 1900. 11.62. 15; 465. 11.63. 8. 11.64. 5; 8; 11; 14; 17. 11.65. 3. 11.66. 6. 11.67. 5 an 10. 11.68. 8. 11.69. ki. 11.70. ara. 11.71.

31;

32; 1. 11.72. 1; 2; 3; 4. 11.73. 14. 11.74. 1785. 11.75. 1)

43; 2)

23

− ;

3) 2; 4) 2 . 11.76. 1) 86 =b ; 2) 81

7 =b ; 3) 81

6 =b ; 4) 274

4 =b .

11.77. 1) 163 =b ; 2) 183 =b ; 3) 62 −=b ; 4) 203 =b . 11.78. 1) 3=q ;

2) 4±=q ; 3) 2−=q ; 4) 2=q . 11.79. 1) 231

; 2) 171; 3) 243

2660; 4)

5121023

. 11.80. 1) 23

7 =b , 5,1907 =S ; 2) 46 −=b ; 821

6 −=S . 11.81. 1)

Page 409: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

409

8=n ; 510=nS ; 2) 7=n ; 411365=nS . 11.82. 1) 3=q ; 21867 =S ;

2) 21

=q ; 8735 =S . 11.83. 1) 321 =b ; 51876 =S ; 2) 31 =b ; 1896 =S .

11.84. 1) 2−=q ; 10=n ; 2) 31

=q ; 5=n . 11.85. 1) 31 =b ; 3848 =b ;

2) 71 =b ; 5675 =b . 11.86. 1) 7=n ; 2=nb ; 2) 4=n ; 8=nb . 11.87. 1) 161 =b ; 4=n ; 2) 35841 =b ; 10=n . 11.88. 1) 2=q ; 486 =b ;

967 =b an 2−=q ; 486 −=b ; 967 =b ; 2) 1−=q ; 106 −=b ; 107 =b ;

3) 3=q ; 546 −=b ; 1627 −=b an 3−=q ; 546 =b ; 1627 −=b ; 4)

21

=q ; 126 =b ; 67 =b . 11.89. 1) 11710 =b ; 315913 =b . 11.90. 1)

257 qbb = ;

10515 qbb = ;

35540 qbb = ; 2)

215 +. 11.91. 1)

12893

; 2)

27719 ; 3) 40; 4) 30. 11.92. 1) 27; 81; 2) 80; 40; 20; 10; 3) 7 7 ; 7 49 ;

7 343 ; 7 2401 ; 7 57 ;

7 67 ; 4) 30; 15; 2

15;

415

; 8

15 an –30; 15;

215

− ; 4

15;

815

− . 11.93. 1) 11 =b ; 3−=q ; 2) 21

1 =b ; 21

−=q ; 3)

11 =b ; 2=q an 161 −=b ; 21

=q ; 4) 11 =b ; 2=q . 11.94. 1) 11 =b ;

2=q ; 10=n ; 2) 11 =b ; 3=q ; 4=n . 11.95. 1) 1263 =S ; 20465 =S ;

( )142 −= nnS ; 2) 2343 =S ; 21785 =S ; ( )139 −= n

nS . 11.96. 1)

121111 −=S ; 2) 10

10

10 2312

⋅−

=S ; 3) 10

10

10 3213

⋅−

=S ; 4) 3

1213

13+

=S ; 5)

xxS−−

=1

1 101

101 ; 6) 2

15

7 1 xxxS

++

= . 11.97. 1) –1; 2) 1; 3) –1; 4) ø; 5) 31;

32; 6) 7. 11.103. 2

1

2 nnn qb

⋅ . 11.106. 2213 − . 11.107. 70. 11.108. 24; 12;

6; 3. 11.109. 2; 6; 18. 11.110. 4,352. 11.111. –195. 11.112. 5. 11.113. 1

an 2

51+− an

251−−. 11.114. 4=d ; 3±=q an 0=d ; 1±=q .

11.115. 3; 7; 11. 11.116. 2; 5; 8. 11.117. 5; 15; 45. 11.118. 12; 16; 20; 25. 11.119. 5; 12; 19; 26. 11.120. 7; 14; 28; 56. 11.121. 5. 11.122. 20=d ;

Page 410: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

410

3=q an 0=d ; 1−=q . 11.123. 3; 6; 12; 18 an 4318 ;

4111 ;

436 ;

412 . 11.124. 1; 3; 9 an

91;

97;

949

. 11.125. 7; -14; 28; -56. 11.126. 3; -

6; 12; -24. 11.127. 1) 2; 2) 3121 ; 3)

318 ; 4)

322 . 11.128. 1) 4,0=q ; 2)

1,28; 3) 7,5; 4) 10; 2; 0,4K an 15; -3; 0,6K 11.129. 1) 8,4; 2) 243 an

486; 3) 9; 4) 18 an 54. 11.130. 81. 11.131.

51. 11.132.

53. 11.133.

61 =b ; 21

−=q . 11.134. 1) a6 ; 2) 3

32a.

$12

12.1. 1) –1; 2) 0; 3) 0; 4) 11; 5) 32 + ; 6) –2. 12.2. 1) 2; 2) 2

37; 3)

21

− ; 4) 5419

; 5) -1; 6) –8. 12.3. 1) kenti; kenti; luwi; arc kenti

da arc luwi; luwi. 2) kenti; kenti; kenti; arc kenti da

arc luwi. 3) luwi; luwi; luwi; kenti. 4) luwi; luwi; arc

kenti da arc luwi; arc kenti da arc luwi; kenti. 12.4. 1)

–1; 3− ; 22;

31

− ; 2) 1; -1; 8

33−; 0; 3) 0; 0; 0; 33− . 12.5. 1)

2; 2) 3169+− ; 3) 312

41

+ ; 4) 2. 12.6. 1) 23;

22;

31

; 1; 2)

23;

21; 1; 1; 3)

22−; -1; 3 ;

31

− ; 4) 1; 23; 0; _ 3 . 12.7. 1)

23; 2)

43

− ; 3) -2 2 ; 4) 81

− . 12.8. 1) π2 ; 2) π2 ; 3) π2 ; 4) π ; 5) π ;

6) π . 12.9. 1) π ; 2) π4 ; 3) π2 ; 4) π ; 5) π6 ; 6) π ; 7) π2 ; 8) π2 .

12.10. 1) 2π; 2) π3 ; 3)

2π; 4)

3π; 5) π2 ; 6)

4π; 7) π ; 8) π2 . 12.11.

1) π ; 2) π ; 3) 21; 4) 3; 5) π ; 6)

2π; 7) π ; 8)

aπ2; 9)

aπ2; 10)

aπ.

12.12. 1) ki; 2) ara; 3) ki; 4) ara; 5) ara; 6) ara. 12.13. 1) 53;

34;

Page 411: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

411

43; 2)

4140

; 409

− ; 944− ; 3)

135;

125

− ; 5

12− ; 4)

53

− ; 43;

311 .

12.14. 1) 2

1;

21

− ; -1; 2) 53

− ; 54

− ; 34; 3)

21

− ; 23;

31

− ; 4)

21

− ; 2

1− ; 1. 12.15. 1)

103

− ; 101

− ; 31; 2)

552. 12.16. 1)

o11sin2 ; 2) 0; 3) 1; 4) 0; 5) 0; 6) 1; 7) β⋅α tgtg ; 8) αtg . 12.17. 1) 1;

2) α2cos

1; 3) α− 2cos2 ; 4) α2cos ; 5) 1cos2 −α− ; 6) β− cos1 ; 7)

α−α sincos ; 8) αsin

2. 12.18. 1)

αcos1

; 2) α+

αsin1

ctg; 3) –1; 4)

αα cossin2 ; 5) αsin ; 6) β2sin ; 7) β2cos ; 8) 1. 12.21. 1) 1; 2) 0,5;

3) 0; 4) 0; 5) 0; 6) 0; 7) 0,5; 8) 23. 12.22. 1)

21; 2) 3; 3)

21; 4)

21.

12.23. 1) 1; 2) 1; 3) – 3 ; 4) 33; 5) _ 3 ; 6) 3 ; 7) 3 ; 8)

31

.

12.24. 1) ( )1342

− ; 2) ( )

213

2−

; 3) ( )1342

+ ; 4) ( )

213

2−

. 12.25.

1) o26sin2 ; 2)

o25ctg ; 3) β⋅α ctgtg ; 4) βα− tgtg ; 5) α6tg ; 6) α4tg .

12.29. 1) 10

2; 2)

725

; 3) 6563

; 6533

− ; 4) ( )6556sin −=β+α ;

( )6516sin =β−α ; ( )

6533cos −=β+α ; ( )

6563cos =β−α ; 5)

1707

− ; 6)

133262 +−. 12.30. 1)

52433 −; 2)

( )19

525542 −; 3)

2336225 +

; 4)

552

. 12.31. 1) ( )6

252 +; 2) 0,5; 3)

10343−; 4)

1413

− . 12.33. 1)

23;

23−; -1;

31

− . 2) 22

− ; 3

1;

23;

23

− . 12.34. 1)

223 −; 2)

65; 3) 0; 4) 0. 12.35. 1) o4cos ;

o35sin ; o17ctg ;

o43tg ;

2) o5sin ;

o13sin− ; o21tg− ;

o8ctg ; 3) o20sin− ;

o36sin ; o38tg ;

Page 412: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

412

o10tg− ; 4) o40cos ;

o40cos− ; -1; o10tg . 12.36. 1)

5cos π ;

5cos π− ;

− tg ; 10π

− ctg ; 2) 10

sin π− ;

10sin π

− ; 10π

− tg ; 5π

− ctg . 12.37. 1) 43;

2) 35− ; 3) 1; 4) 34− . 12.38. 1) αtg2 ; 2) αcos2 ; 3) α2sin

1; 4)

α2cos2 ; 5) oo 10cos3202 +tg ; 6) 0. 12.39. 1)

oo

o

56cos5656sin1

−+

tg; 2)

o502tg− ; 3) α− cos2 ; 4) α+ tg1 ; 5) αcos ; 6) 1. 12.41. 1)

( )119

726427 +− ; 2) ( )32 +− . 12.42. 1)

41; 2)

23; 3)

23; 4)

22;

5) 23; 6)

321

; 7) 2; 8) 23

− ; 9) 16

2; 10)

21. 12.43. 1)

44sin α

;

2) α2cos ; 3) α2cos ; 4) α2cos ; 5) 1; 6) α2cos ; 7) α4cos ; 8)

α+ 4sin1 . 12.44. 1) 1; 2) α−α− sincos ; 3) αcos

1; 4) α−tg . 12.45. 1)

α2cos ; 2) α2sin

2; 3)

24sin α

; 4) α4cos . 12.47. 1) 2524

; 257

; 733 ; 2)

169120

− ; 169119

− ; 119120

; 3) 125

; 4) 1331 ; 5)

125117

; 6) ( )

20015247 +

. 12.48.

1) α−α=α 3sin4sin33sin ; α−α=α cos3cos43cos 3;

α−α−α

=α 2

3

3133

tgtgtgtg ; 2) 0,936; -0,352. 12.49. 1)

232 −;

232 +;

32 − ; 2) 2

22 −;

222 +

; 12 − ; 3) 2

32 +;

232 −;

3232

−+

; 4) 2

22 +;

222 −

; 2222

+. 12.50. 1) α2cos2 ; 2)

o20cos2 2; 3)

2sin2 2 α− ; 4)

o16sin2 2− ; 5) o25tg ; 6) ⎟

⎠⎞

⎜⎝⎛ β−α

22ctg .

12.51. 1) 1; 2) α2sin ; 3) 0; 4) α+ sin1

2. 12.54. 1)

265

; 261

− ; -5;

2) 42;

414

− ; 77

− ; 3) 5

2;

51

− ; -2; 4) 1,0 ; -3 1,0 ; 31

− .

Page 413: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

413

12.55. 1) 0,8; 2) –2; 3) 621

− ; 4) 26

− . 12.56. 1) ( )5186

+− ; 2)

( )33231,0 − . 12.57. 1) 2

9,01−; 2)

41028 +

. 12.58. 1) 1312

; 135;

522 ; 2) 4; 3)

2254

; 4) 34. 12.74. 1)

21; 2) 2; 3) 3 ; 4) 1; 5) 3 ; 6)

0. 12.75. 1) 2; 2) 1; 3) 4; 4) 8; 5) 1; 6) 1. 12.76. 1) 3 ; 2) 41

− ; 3)

83

− ; 4) 21. 12.77. 1)

41; 2)

81; 3)

81

− ; 4) 21; 5)

163

; 6) 3; 7) 3;

8) 641

. 12.78. 1) 2; 2) 1; 3) 4; 4) 8; 5) 2; 6) 1. 12.79. 1) 3; 2) 21; 3)

41; 4)

41; 5) 2; 6)

23. 12.81. 1)

41; 2)

45; 3)

34; 4) 8. 12.82. 1) 5; 2)

7; 3) 23; 4) 6. 12.83. 1)

161

; 2) 61

− ; 3) 412 ; 4)

61. 12.84. 1)

43; 2)

9; 3) –4; 4) 3. 12.85. 1) –3; 2) 5; 3) 41; 4) 4. 12.86. 1)

31; 2)

412 ; 3)

3; 4) –35. 12.87. 1) 251

; 2) 1; 3) 21; 4) 4; 5)

251

; 6) 12. 12.88. 1) 12;

2) 31; 3)

45; 4)

32; 5) 4; 6)

72. 12.89. 1)

1024349

; 2) 512287

; 3) 54; 4)

23; 5) 40; 6) 10. 12.90. 1) 27; 2)

34; 3) 9; 4) 21. 12.91. 1)

2524

− ; 2)

128115

; 3) 432415

− ; 4) 3223

. 12.92. 1) 195 o ; 2) -75 o ; 3) -90 o; 4) 300

o; 5)

-270o; 6) 135

o; 7) 225

o; 8) _45

o. 12.93. 1) 0,6; 2) 462 − ; 3) –0,8;

4) 23; 5) 0,5; 6) 524 − ; 7) 0,2; 8) 462 − ; 9) 62 −π ; 10) 2;

11) 1; 12) π−2 .

Page 414: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

414

$13

13.1. 1) kπ ; 2) ( ) kk π+π

−6

1 ; 3) ( ) kk π+π

−4

1 ; 4) ( ) kk ππ+−

31 ; 5)

( ) kk π+π

− +

41 1

; 6) kπ+π

− 22

; 7) ( ) kk

3121 1 π

− +; 8) kπ+π 6

23

; 9)

( )30520

1 π−

π+

π− kk

; 10) ( )3

31 1 π+π−π− + kk

; 11) ( )2

31 1 π+π+π− + kk

; 12)

2165 kππ

− . 13.2. 1) kπ+π2

; 2) kπ+π

± 23

; 3) kπ+π

± 26

; 4) kπ+π

± 24

;

5) kπ+π

± 23

2; 6) kπ+π 2 ; 7) kπ+π±

52

203

; 8) kπ+π± 834

; 9)

52

3045kπ

−π

±π

; 10) kππ34

1813

+ ; 11) kπ+π 49

; 12) kπ−π+π

± 63

2.

13.3. 1) kπ ; 2) kπ+π3

; 3) kπ+π4

; 4) kπ+π6

; 5) kπ+π−

3; 6)

kπ+π−

4; 7) k

2247 π

+π− ; 8) k5π

− ; 9) koo 6025 + ; 10) kπ+π

− 34

.

13.4. 1) kπ ; 2) kπ+π2

; kπ+π

± 23

; 3) kπ ; ( ) kk π+π

−4

1 ; 4) kπ+π2

;

kπ+π

± 26

; 5) kπ ; karctg π+2 ; 6) kπ ; kπ+π±

4; 7) kπ+π

2;

kπ+π4

3; 8) kπ+π

2; kπ+π

6; 9) kπ+π

2; 10) kπ ; ( ) kk π+

π−

61 . 13.5.

1) 2

2 π−πk ; 2) kπ2 ; 3)

22 π

−πk ; ( ) kk π+π

−6

1 ; 4) kπ+π4

;

karctg π+5 ; 5) kπ+π

− 22

; ( ) kk π+π

−4

1 ; 6) kπ+π4

; kππ+−

3. 13.6. 1)

kπ ; 2) 3

2 π±πk ; 3) ( )12

2+

π k ; 4) kπ+π4

; karctg π+23

; 5) kππ+

4;

karctg π+35

; 6) kππ+±

4; kππ

+±3

. 13.7. 1) kπ ; kπ+π

± 23

; 2)

kπ+π2

; ( ) kk π+π

−6

1 ; 3) ( ) kk

2121 π

− ; 4) kππ+±

3; 5) kππ

+±6

; 6)

kπ32

; 7) kπ ; kπ+π±

6; 8) kπ . 13.8. 1) ( )π+12k ; ( ) kk π+

π− + 2

31 1

; 2)

Page 415: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

415

kπ+π

± 23

2; 3) ( ) kk π+

π−

61 ; 4) kπ

π+

4; ( ) kk π+

π−

π−

441 ; 5) kπ ;

( ) kk π+π

− +

61 1

; 6) kπ ; kππ+−

4. 13.9. 1) kπ+π 2 ; kπ+

π± 4

32

; 2)

kπ2 ; kπ+π 4 ; 3) kπ+π

± 22

; 4) kπ+π

± 22

; 5) kπ+π2

; kπ+π

± 23

2;

6) kπ2 ; kπ+π 22

; 7) kπ+π 2 ; kπ+π 23

; 8) kπ+π2

; kπ+π3

. 13.10. 1)

kπ+π4

; 2) kπ+π−

3; 3) kπ+π

±6

; 4) kπ+π±

3; 5) kππ

+6

; kππ+

3;

6) kπ+π4

; karctg π+− 3 ; 7) kπ+π4

; karctg π+−52

; 8) 3arctg ;

kππ+−

4; 9) kπ+π

4; karctg π+− 3 ; 10) kππ

+4

; 25arctgk −π ; 11)

karctg π+26

; 12) kππ+

6; 13) kππ

21

6+ ; 14) kπ+π

3. 13.11. 1) kπ ;

k510π

; 2) 24kπ

; 510kπ

; 3) 2kπ;

36kπ

; 4) 3

2 kπ; kπ2 ; 5)

3kπ; 6)

3kπ. 13.12. 1)

3kπ; kπ+π

±3

; 2) 24kπ

; kπ+π

± 23

2; 3)

24kπ

; kπ+π

± 23

; 4) 2kπ; kπ+

π± 2

3; 5)

510kπ

; ( )212

1 kk π+

π− ; 6)

4kπ; ( )

2121 1 kk π

− +. 13.13. 1)

8kπ; 2)

3kπ; 3)

3kπ; 4)

8kπ; 5) kπ ;

36kπ

; 6) kπ ; 510kπ

. 13.14. 1) kπ+π 24

3; 2) ( )

461 π

−π+π

− kk; 3)

kπ+π 2

12; kπ+

π 2127

; 4) kπ+π 22

; kπ+π 26

7; 5) kπ+

π 26

5; kπ+

π 22

;

6) kπ+π−

3. 13.15. 1)

52 kπ

; kπ+π2

; kπ+π 2 ; 2) 4kπ; 3)

4kπ;

283 kπ

; 4) 5kπ. 13.16. 1)

48kπ

; 2) 510kπ

; 3) 24kπ

;

( )212

1 kk π+

π− ; 4)

24kπ

; kπ+π±

6; 5) kπ2 ; 6) kπ+

π± 2

3; kπ+π

4.

13.17. 1) kπ+π2

; 2) kπ+π±

4; 3)

26kπ

± ; 4) 28kπ

. 13.18. 1)

Page 416: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

416

216kπ

; 38kπ

; 2) kπ+π4

; 3) koo 455418 +′ ; koo 18015 + ; 4)

kπ+π 24

; 5

2203 kπ

. 13.19. 1) 816kπ

; kπ+π±

3; 2) kππ

+2

;

24kπ

; 714kπ

; 3) 24kπ

; 5

25

kπ+

π;

72

7kπ

; 4) 24kπ

. 13.20.

1) kπ ; kπ+π−

4; 2) ( )

312 π

−−π kk ; kπ4 ; 3) 28kπ

; kπ+π12

; 4)

kπ+π

± 23

2; karctg π+

31

. 13.21. 1) 28kπ

; kπ+π4

; 8π;

83π

− ; 2)

416kπ

−π

; 312kπ

−π

− ; 16π

; 12π

− ; 3) kπ+π4

; karctg π+−34

; 4π;

34arctg− ; 4) k

515π

; 15π

; 152π

− ; 5) kπ+π−

4; kπ ;

43π

; 4π

− ; 6)

kπ+π−

4; ( )

441 π

−π+π

− kk;

2π;

− . 13.22. 1) karctg π+− 3 ; kπ+π4

;

45π

; 2) 4kπ;

− ; 3) kπ2 ; 0; 4) koo 18060 + ; karctg o1803

2+ ;

o3603

2+arctg . 13.23. 1) 55 ≤≤− a ; 2) 2929 ≤≤− a ; 3)

20 ≤≤ a ; 4) 62 ≤≤ a ; 5) 23 −≤≤− a ; 6) 10 ≤≤ a . 13.24. 1)

kxk π+π≤≤π 22 ; 2) kxk πππ 22 <<+− ; 3) kxk π+π

<<π+π 2

652

6;

4) kxk π+π

<<π+π

− 26

26

7; 5) kxk π+

π<<π+

π− 2

672

6; 6)

kxk π+π

<<π+π 2

352

34

; 7) kxk π+π

<<π+π 2

432

4; 8)

⎥⎦⎤

⎢⎣⎡ ++ kk ππππ 2

47,2

45

. 13.25. 1) ⎢⎣⎡

⎢⎣⎡ ++− kk ππππ 2

2,2

2; 2)

⎥⎦⎤

⎢⎣⎡ ++ kk ππππ 2

23,2

2; 3) ⎢⎣

⎡⎥⎦⎤ π+

ππ+

π− kk 2

6,2

6; 4) ⎢⎣

⎡⎥⎦⎤ π+

ππ+

π kk 26

11,26

;

5) ⎥⎦⎤

⎢⎣⎡ π+

ππ+

π kk 23

4,23

2; 6) ⎥⎦

⎤⎢⎣⎡ π+

ππ+

π− kk 2

65,2

65

; 7)

⎥⎦⎤

⎢⎣⎡ π+

ππ+

π− kk 2

4,2

4; 8) ⎢⎣

⎡⎥⎦⎤ π+

π−π+π− kk 2

43,2 ; ⎢⎣

⎡⎥⎦⎤ π+ππ+π kk 2,24

3.

Page 417: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

417

13.26. 1) ⎢⎣⎡

⎥⎦⎤ π+

ππ kk

2, ; 2) ⎥⎦

⎤⎥⎦⎤ ππ+

π− kk,

2; 3) ⎢⎣

⎡⎥⎦⎤ π+

ππ+

π− kk

4,

2; 4)

⎢⎣⎡

⎢⎣⎡ ++− kk ππππ

2,

4; 5) ⎢⎣

⎡⎢⎣⎡ π+ππ+π kk,6

5; 6) ⎢⎣

⎡⎥⎦⎤ ++ kk ππππ

2,

6. 13.27. 1)

kxk π+π

−<<π

−π88

3; 2) kxk π+

π<<

π−π

125

125

; 3)

kxk ππππ+<<+−

62; 4) kxk π+π<<π+π

34

913

34

94

; 5)

kxk π+π

≤≤π

−π88

3; 6) kxk π<<

π−π

6. 13.28. 1)

kxk π+π

<<π

+π 24

54

2 ; 2) Rx∈ , kx π+π

≠ 24

; 3)

kxk ππππ34

934

95

+−<<+− ; 4) kxk π+π

<<π

+π125

12.

$14

14.1. 1) 2; 2) –3; 3) –2; 4) –2; 5) 21

− ; 6) –2. 14.2. 1) –3; 2) 2; 3) –6;

4) 1; 5) 2; 6) 12. 14.5. 1) 30; 2) 73; 3) 40; 4) 0,9; 5) 9; 6) 8; 7) 4; 8)

7. 14.6. 1) 6; 2) 7; 3) 5; 4) 13; 5) 413 ; 6)

323− ; 7)

432− ; 8)

311 .

14.7. 1) 26; 2) 13; 3) 81120 ; 4) 14; 5) 7; 6) 23; 7) 10; 8) 890; 9) 16;

10) 24. 14.8. 1) 4; 2) 2; 3) 2; 4) 3; 5) –5; 6) 1. 14.9. 1) 2; 2) –1; 3) 0;

4) –1; 5) 21

− ; 6) 0. 14.10. 1) 21; 2) –2; 3) 2; 4)

23. 14.11. 1)

b1; 2)

( )ba

+−

113

; 3) aab 3+ ; 4) ba

a++

21

; 5) aba

+−

223

; 6) 6

17; 7)

a12 −− ; 8)

( )aa

+−

334

. 14.12. 1) ( ) 9log112log2412log4

204

4

−−

; 2) ( )

6log216log215log3

9

93 −. 14.13.

1) 3780; 2) –5304. 14.14. 1) 4; 2) –4; 3) 35; 4) 0; 5)

21

− ; 6) 41; 7)

Page 418: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

418

91

− ; 8) 121

− . 14.15. 1) 21

− ; 2) –1; 3) 2; 4) 4; 5) –3; 6) 25; 7)

34; 8)

2. 14.16. 1) 2; 2) 21; 3) 2; 3; 4) 0; 5) 0; 6) 5; 7) –1; 8) 1. 14.17. 1) 11;

2) –2; 3) 23

− ; 4) 10. 14.18. 1) 3; 2) 2; 3) 3; 4) 3; 5) 4; 6) 211 . 14.19.

1) 31; 2) 2; 3) 0,5; 1; 4) 0,5; 3; 5)

310

; 6) 1. 14.20. 1) 10; 2) –2; 4; 3)

6; 4) 1; 5) 35; 6) 2. 14.21. 1) 3; 2) 5; 3) 1; 4) 2. 14.22. 1) 1; 2) 1; 3) 3; 4) 9. 14.23. 1) 3; 2) 1; 3) 2; 4) 1,5. 14.24. 1) 1; 2) 2; 3) 3; 4) 19; 5) 3; 6) 3. 14.25. 1) 1; 2) 2; 3) –1; 4) –0,5. 14.26. 1) 3; 2) 0; 5log7 ; 3) 1;

2log3 ; 4) 3; 5) 3; 6) 1; 7) 2; 8) –2. 14.27. 1) 0; 41; 2) 1; 3) 1; 4) 2;

0; 21± ; 5) 1,5; 6) 2. 14.28. 1) 1; 2) 21; 3) 6; 4) –3; 5) 0; 0,5; 6) 1;

0,5. 14.29. 1) 1; 2) 8; 3) 32; 4) 0,1; 5) 8; 6) 4; 7) 31

− ; 8) 9; 9) 31; 10)

41. 14.30. 1) 10; 2) 7; 3) 1; 4) 2; 5) 64; 6) –8; 7) 549 −− ; 8) 1. 14.31.

1) 9; 2) 4; 3) 21; 4) 2; 5) 5; 6) 7; 7) 2; 8) 4; 9) 9; 10) 16; 11) 87

5 ; 12)

64. 14.32. 1) 3; 4; 2) –2; 8; 3) –14; 0; 4) 0,5; 5) 10; 6) 5; 7) 13; 8) -26; 9) 2; 10) 13. 14.33. 1) 3; 9; 2) 0,5; 4; 3) 100; 1000; 4) 9; 110 − .

14.34. 1) 1; 2) 3; 3) 1; 4) 1; 5) 0; 6) 2. 14.35. 1) 3; 2) 2; 3) 2; 4) 2.

14.36. 1) 31; 3; 2) 5; 3)

91; 9; 4) 8. 14.37. 1) 81;

811

; 2) 0,001; 10; 3)

410− ; 10; 4) 10; 100; 5) 101

; 10; 100; 100

1; 6) 0,01; 0,1; 7) 50; 8) 10.

14.38. 1) 10; 510 ; 2) 108−; 10; 3) 54; 4) 90. 14.39. 1) 5; 2) 6; 3) 2; 4)

15; 5) 0,1; 6) 2. 14.40. 1) 7; 2) 3; 81; 3) 3; 9; 4) 4; 41. 14.41. 1) –2; -

32; 2) 21

− ; 3) –4; -2; 4) –1000. 14.42. 1) 0,5; 2) 1; 3) 3; 4) 0; 5) 99;

6) 3± . 14.43. 1) –10; 2) 910−; 10; 3)

101 ;10 ±± ; 4)

21; 2; 5)

3log62 ; 6) 1. 14.44. 1) 2; 2) 2; 4; 3) –1; -64; 4) –100; 5) 16; 6) 25. 14.45. 1) 9; 2) 3; 3) ± 5; 4) 2,5. 14.46. 1) 7; 2) 289; 3) 16; 4) 100; 5)

Page 419: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

419

11; 1,1; 6) 7. 14.47. 1) ± 2; 2) ± 2; 3) ± 2; 4) 10log11 32++± .

14.48. 1) (1;2); (2;1); 2) (3;-2); ( )8log;9log 32− ; 3) (-2;0); 4) (3;4). 14.49.

1) (-2;0); 2) (-2;3); 3) ⎟⎠⎞

⎜⎝⎛−

7841;2 ; 4) (2;3). 14.50. 1) (3;1); 2) (1;2); 3)

(3;2); 4) (8;9); ( )5log4;2log27 22

35 . 14.51. 1) (20;5); 2) (18;2); 3) (9;7);

(7;9); 4) (18;2); (2;18). 14.52. 1) (4;16); 2) (6;2); 3) (8;4); 4) (1;0). 14.53.

1) (5;2); 2) (1;2); 3) (1;1); 4) (16;-28); (1;2). 14.54. 1) –10; 2) –3; 3) 21;

4) 2log3 . 14.55. 1) 91lg ; 2) 14log4 ; 3) 74log3 ; 4) 97lg . 14.56. 1)

2=a ; 3>a ; 2) 11 −=a ; 0>a ; 3) 5=a ; 6>a ; 4) 21

−=a ; 0>a .

14.57. 1) 210 << a ; 2) 0

41

<<− a ; 3) 10 << a ; 4) 081

<<− a . 14.58.

22 ≤<− a . 14.59. 1) 2−>k ; 2) 0<<−∞ k . 14.60. 1) 10 << a ; 2)

23 −<<− a .

$15

15.1. 1) naklebia 1-ze; 2) naklebia 1-ze; 3) naklebia 1-ze; 4)

metia 1-ze. 15.2. 1) WeSmaritia; 2) WeSmaritia; 3) mcdaria; 4) mcdaria. 15.3. 1) 1>a ; 2) 10 << a ; 3) 10 << a ; 4) 1>a . 15.4. 1)

2log5log 33 51,02 <− ; 2) 7lg

5,03lg 3

72log7 >+ ; 3)

( ) 310log3log 3321,0 22 +<+ −; 4)

1022 103log2lg

31

5log 5103 +>+ . 15.5. 1)

21

<x ; 2) 0≥x ; 3) 1−>x ; 4) 0≥x ; 5) 2<x ; 6) 2≥x . 15.6. 1)

2<x ; 2) 4>x ; 3) 3<x ; 4) 1>x ; 5) 5,2<x ; 6) 21

≤x . 15.7. 1)

21 ≤≤ x ; 2) 40 ≤≤ x ; 3) 1<x , 5>x ; 4) 8−≤x ; 4≥x ; 5)

5,00 ≤≤ x . 15.8. 1) 810 << x ; 2) 6<x ; 3) 3>x ; 4) 1>x ; 5)

41 << x ; 6) 152

<<− x ; 7) 01 <<− x ; 10 << x ; 8) 9−<x ; 5>x .

15.9. 1) 3>x ; 2) 2<x ; 3) 23

≥x ; 4) 1>x ; 5) 3>x ; 6) 1; 2; 3; 4; 5;

Page 420: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

420

6; 7. 15.10. 1) 3>x ; 2) 4<x ; 3) 1<x ; 4) 3>x ; 5) 40 <≤ x ; 6)

40 <≤ x . 15.11. 1) 1≤x ; 2) 0>x ; 3) 10 << x ; 4) 1<x ; 2>x ; 5)

11 <<− x ; 6) 1−<x ; 7) 0<x ; 21

≥x ; 8) 10 << x . 15.12. 1) 3≥x ; 2)

0>x ; 3) 23

−≤x ; 4) 23

≤x . 15.13. 1) 210 << x ; 2) 10 ≤≤ x ; 3) 0≤x ;

1≥x ; 4) 1>x ; 5) 210 ≤< x ; 6) 1−≤x ; 0>x ; 7) 1−<x ; 1>x ; 8)

057log4 <≤− x . 15.14. 1) 2−<x ; 0>x ; 2) 11 ≤<− x ; 3) 11 <<− x ;

4) 01 ≤<− x . 15.15. 1) 10 << x ; 21 << x ; 2) 21 << x ; 32 << x ; 3)

31 ≤≤ x ; 4) 35 −≤≤− x . 15.16. 1) 2>x ; 2) 1>x ; 3) 21 ≤< x ; 4)

37 −≤<− x ; 73 <≤ x . 15.17. 1) 2−<x ; 85

≥x ; 2)

32

23

−<<− x ; 3) 025,0 ≤≤− x ; 2≥x ; 4) 2−<x ; 10 <≤ x . 15.18. 1)

31 << x ; 2) 8≥x ; 3) ⎢⎣⎡

⎢⎣⎡ −− 1,

211

; 4) 2

2917 +<≤− x . 15.19. 1) 9>x ;

2) 10 70 << x ; 3) 57,00 << x ; 4) 25>x ; 5)

310 << x ; 6)

34

>x . 15.20.

1) 123

−<<− x ; 2) 1<x ; 3) 9,032

<< x ; 4) 1>x ; 5) 38,2 << x ; 6)

4,0382,0 << x . 15.21. 1) 21

21

<<− x ; 2) ∈x Ø; 3) 5>x ; 4) 52 << x ;

5) 6>x ; 6) 23 −<<− x ; 3>x . 15.22. 1) 3−<x ; 2>x ; 2) 2−<x ;

6>x ; 3) 23 −<<− x ; 21 << x ; 4) 34 −<<− x ; 10 << x ; 5) 32 << x ;

6) 42 << x . 15.23. 1) 41 << x ; 2) 11−<x ; 11>x ; 3) 3−<x ;

4>x ; 4) 24 <<− x ; 5) 1−≤x ; 2≥x ; 6) 25

>x . 15.24. 1) 8>x ; 2)

108 << x ; 3) 3 51 << x ; 4) 69>x . 15.25. 1) 4322 ≤<− x ;

224

13+<≤ x ; 2) 2

2331

−<≤− x ;

23313 +

≤< x ; 3)

512 −<≤− x ; 451 ≤<+ x ; 4) 2

3332

293 −−<<

−− x ;

2293

2333 +−

<<+− x . 15.26. 1) 001,00 << x ; 10>x ; 2)

Page 421: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

421

1000001,0 ≤≤ x ; 3) 45,0 ≤≤ x ; 4) 410 << x ; 64>x . 15.27. 1)

22 <<− x ; 2) 221

<< x ; 3) 52 << x ; 4) 52 << x ; 5) 3=x . 15.28. 1)

3>x ; 2) 64 << x ; 3) 20 << x ; 3>x ; 4) 5−<x . 15.29. 1)

23

27

<<− x ; 2

1323

<< x ; 2) 251 << x ; 4

25

<< x ; 3) 2>x ; 4)

21 << x . 15.30. 1) 6>x ; 2) 5>x ; 3) 2>x ; 4) 27 −<<− x ; 5)

31 <≤ x ; 6) 42 ≤≤ x . 15.31. 1) 1,00 << x ; 1000100 << x ; 510>x ; 2)

001,00 << x ; 1001 << x ; 3) 210 << x ; 2≥x ; 4) 10 << x ; 2≥x .

15.32. 1) 1<x ; 2) 20 << x ; 3) 2<x ; 4) 1<x ; 5) 15>x ; 6) 2>x .

15.33. 1) 22 −<<− x ; 22 << x ; 2) 13 −<<− x ; 31 << x ; 3)

12 −<<− x ; 21 << x ; 4) 53 −<<− x ; 35 << x . 15.34. 1) 0<x ;

357

<< x ; 2) 1>x ; 3) 2

71+>x ; 4) 52 << x ; 86 << x .

§16

16.1. 1) II; 2) III; 3) IV; 4) I. 16.2. 1) I an III; 2) II an IV; 3) I an III; 4) II an IV; 5) I, II an IV; 6) I, II an III. 16.3. 1) (2,-5), (-3,-1), (-5,3), (7,1); 2) (-2,5), (3,1), (5,-3), (-7,-1); 3) (-2,-5), (3,-1), (5,3), (-7,1); 4) (5,2),

(1,-3), (-3,-5), (-1,7); 5) (-5,-2), (-1,3), (3,5), (1,-7); 6) (0,5), (5,1), (6,-3),

(-5,1); 7) (2,-9), (-3,-5), (-5,-1), (7,-3). 16.4. 1) 2; 2) 3; 3) 4; 4) 3; 5) 4; 6) 7; 7) 8; 8) 8; 9) 5; 10) 13. 16.5. 1) 20; 2) 2; 3) 16; 4) 144. 16.6. 1)

625 −x ; 2) 916 −x ; 3) 22 24 ++ xx ; 4) x211− . 16.7. 1) Rx∈ , 4≠x ;

2) Rx∈ , 3−≠x ; 3) 7−≤x ; 7≥x ; 4) 44 ≤≤− x . 16.8. 1) 1≥x ; 2)

1631

≤≤− x ; 3) 71 ≤< x ; 4) 53 ≤< x . 16.9. 1) 151

≤≤− x ; 2) 7−≤x ;

9≥x ; 3) 76 ≤≤− x ; 4) 5−≤x , 3−≥x . 16.10. 1) 3−<x , 32

≥x ; 2)

2<x , 4≥x ; 3) 10 ≤< x ; 4) 1<x , 2≥x . 16.11. 1) 100 <≤ x ,

10>x ; 2) 8−<x , 58 ≤<− x ; 3) 2−≤x , 2>x ; 4) 33 <<− x . 16.12. 1) 5>x ; 2) 7<x ; 3) 33 <<− x ; 4) 32 <<− x ; 5) 1−<x , 3>x ; 6)

Page 422: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

422

10 << x . 16.13. 1) 235

<<− x ; 2) 1−<x , 52 << x ; 3) 1≥x ; 4)

10 ≤< x , 10≥x ; 5) 21 ≤< x ; 6) 1>x . 16.14. 1) 02 <≤− x , 10 << x ;

2) 223

<< x ; 2>x ; 3) 2−<x , 02 <<− x , 21 << x , 2>x ; 4)

54 << x , 6>x . 16.15. 1) 3210 ≤< x , 2≥x ; 2) 3

271

<< x ; 3)

2710 ≤< x , 3≥x ; 4) 1−≤x , 3≥x ; 5) 20 ≤≤ x ; 6) 13 ≤≤− x .

16.16. 1) [ [+∞,1 ; 2) [ [+∞− ,3 ; 3) ] ]9,∞− ; 4) ] ]14,∞− . 16.17. 1) [ [+∞,2 ;

2) [ ]3,0 ; 3) [ [1,0 ; 4) [ [+∞,2 . 16.18. 1) [ ]2,0 ; 2) ⎥⎦⎤

⎢⎣⎡ −−

73,1 ; 3) [ ]1,1− ; 4)

⎥⎦⎤

⎢⎣⎡ 1,

21

. 16.19. 1) ] ]1,0 ; 2) [ [+∞,3 , 3) ⎥⎦⎤

⎥⎦⎤

31,0 ; 4) [ [+∞,25 . 16.20. 1)

[ [+∞,1 ; 2) [ [+∞,3 ; 3) ] ]2,−∞− ; 4) ] ]3,−∞− . 16.21. 1) [ ]2,1 ; 2) ⎥⎦⎤

⎢⎣⎡ 1,

21

;

3) [ [+∞,0 ; 4) ] ]1,∞− . 16.22. 1) [ [+∞,1 ; 2) ] [+∞,0 ; 3) ] [+∞,0 ; 4) ] ]20,0 .

16.23. 1) [ ]10,5− ; 2) [ ]3,12− ; 3) [ ]7,11 −− ; 4) [ ]2,22 −− . 16.24. 1) [ ]3,1 ;

2) [ ]1,0 ; 3) ⎥⎦⎤

⎢⎣⎡

41,0 ; 4) [ ]16,0 . 16.25. 1) 4; 2) 28; 3) 2; 4) 27; 5) –2; 6)

–1. 16.26. 1) 2; 2) 1; 3) 2; 4) 2; 5) 0; 6) 2. 16.27. 1) 41

− ; 2) 81

− ; 3)

1; 4) 2; 5) 4; 6) 2. 16.28. 1) –3; 2) –4; 3) 1; 4) –2; 5) 0; 6) 1. 16.29. 1)

1; 2) 1; 3) 11; 4) 9. 16.30. 1) 2

33; 2) 6; 3) 1; 4)

167

. 16.31. 1) –4; 2)

–39; 3) 6; 4) 0. 16.32. 1) 2

27; 2)

25; 3) 3− ; 4) 1. 16.33. 1)

zrdadia Rx∈ ; 2) zrdadia 1−<<−∞ x ; ∞<<− x1 ; 3) zrdadia

2<<−∞ x ; ∞<< x2 ; 4) zrdadia ∞<< x2 ; klebadia

2<<−∞ x ; 5) zrdadia 45

<<∞− x ; klebadia ∞<< x45

; 6)

zrdadia 25

<<∞− x ; klebadia ∞<< x25

. 16.34. 1) [-6,9]; 2)

[1,11]; 3) [1,3]; 4) [-9,-5]; 5) [ [∞,3 ; 6) [-9,-1]; 7) [0,1]; 8) [1,9]. 16.35. 1) K ; 2) F ; 3) N ; 4) M . 16.36. 1) –1; 2) 0; 3) 1; 4) 8. 16.37. 1) 3; 2) –2; 3) 1; 4) 9. 16.38. 1) 2=a ; 2) 0=a ; 4=a ; 3) 2=a ; 4) 0=a .

Page 423: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

423

16.39. 1) (3,0); 2) (0,0); (5,0); 3) (5,0); 4) (-2,0). 16.40. 1) (0,6); 2) (0,-3); 3) (0,2); 4) (0,3). 16.41. 1) 15; 2) 24; 3) 18; 4) 3. 16.42. 1) (1,2); 2) (2,0); (-1,0); 3) (1,3); (3,5); 4) (0,0); (1,1). 16.43. 1) (2,-4); 2) (3,5); 3) (-1,7); 4) (2,3). 16.44. 1) 3=y ; 2) xy 2−= ; 3) 832 =− yx ; 4)

52 =+ yx . 16.45. 1) (-2,0); (-4,0); 2) (0,-18); 3) 52 ; 4) 6−=b ; 5=c ;

5) 4=b ; 3−=c ; 6) 4−=b ; 2=c ; 7) (2,-1); 8) 2=a ; 8=c ; 9)

2−=a ; 6=c ; 10) 4−=b ; 4−=c ; 11) 12−=b ; 18=c ; 12) 2−=b ;

3=c ; 13) 2; 21; 14) 8; 32; 15) 2; 8; 16)

32

=a ; 34

−=b ; 2−=c ; 17)

1=a ; 2−=b ; 3=c ; 18) 10=a ; 3−=b ; 19) 12=a ; 4=b ; 12=c ;

20) 10=a ; 2−=b ; 11=c ; 21) 4=a an 8−=a ; ( )12,3 ; ( )24,3− ; 22)

6=a ; ( )8,2 .

§17

17.1. 1) ki; 2) ara; 3) ki; 4) ara; 5) ki; 6) ki; 7) ara; 8) ara.

17.2. 1) 8 ;9 ;10 ;11- ;12 −−−−=A ; 2) 4 ;3 ;2 ;1=A ; 3) 1; 1−=A ;

4) 4 ;3 ;2 ;1=A ; 5) 2 ;1 ;0=A ; 6) 12 ;6 ;4 ;3 ;2 ;1=A ; 7) )18 ;1(=A ,

)18 ;2( , (3; 18), (6; 9), (2; 9), (6; 18), )18 ;9( ; 8) )12 ;6(=A , (6; 18);

)18 ;12( . 17.3. 1) ∅,a, b, a; b; 2) ∅,a, b, c , a; b, a; c, b; c, a; b; c. 17.4. 1) a; b, a; c, a, d, b; c, b; d, c; d. 2) a; b; c; a; b; d , a; c; d, b; c; d. 17.5. 3; 5; 6; 2; 3; 5; 6, 3: 4: 5: 6, 2; 3; 4; 5; 6. 17.6. 1) WeSmaritia; 2) araa WeSmariti. 17.7.

1) ara; 2)ki; 3) ara; 4) ki. 17.8. 1) ara; 2) ara; 3) ki; 4) ara. 17.9.

1) ara; 2) ki; 3) ara; 4) ara. 17.10. 1) 1; 2; 3; 4; 5; 6; 2) 1; 3;

4; 5; 7; 3) [2; 7]; 4) ( ]10 ;∞− . 17.11. 1) 3; 6, 2) 4; 8, 3) [3; 4], 4)

kvadra-tebis simravle. 17.12. 1) 3; 7, 2) 1; 6, 3) [3; 4[, 4)

]6 ;5]]3 ;2[ U . 17.13. 1) 1; 2; 3; 4; 5, 2) 3, 3) 1; 4, 4) 2; 5, 5) ∅.

6) 1; 4. 17.14. 1) ki, 2) ara, 3) ki, 4) ara. 17.15. 1) _3; _2; _1; 0;

2; 7; 2) 0; 2; 4; 6; 7; 9, 3) 0; 2; 7, 4) _3; _2; _1. 17.16. 1) _1;

0; 1; 2; 3; 4, 2) 3; 4; 5; 6; 7; 8, 3) 2; 8; 9; 10; 11; 4) _1; 0; 1; 3;

4; 5) 2. 17.17. _2; _1; 0; 1; 5; 6; 7. 17.18. _2; 0; 4. 17.19. 1) ara,

2) ki, 3) ara, 4) ara. 17.20. 1) ara, 2)ara, 3) ki, 4) ara. 17.21. 25.

17.22. 85. 17.23. 14. 17.24. 67. 17.25. 50. 17.26. 2011

.

Page 424: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

424

§18

18.1. 1) 24; 2) 120; 3) 600; 4) 30; 5) 56; 6) 720; 7) 330; 8) 24. 18.2.

1) )2)(1( −− nnn ; 2) )1( +nn ; 3) )!23(

1−n

; 4) )!2(

1++

nn

. 18.3. 1) 6; 2)

120; 3) 30; 4) 48; 5) 48; 6) 91. 18.4. 1) 120; 2) 20; 3) 42; 4) 9. 18.5.

1) 10; 2) 10; 3) 5; 4) 10; 5) 25; 6) 2,5. 18.6. 6. 18.7. 24. 18.8. 6. 18.9.

40320; 18.10. 720. 18.11. 56. 18.12. 3024. 18.13. 120. 18.14. 20. 18.15. 840.

18.16. 4. 18.17. 35. 18.18. 15. 18.19. 1365. 18.20. 84. 18.21. 10. 18.22.

600. 18.23. 20. 18.24. 610A . 18.25. 240. 18.26. 125. 18.27. 55 . 18.28. 192.

18.29. 240. 18.30. 1) 300; 2) 1080; 3) 540. 18.31. 32. 18.32. 25A =20.

18.33. 3537 =C . 18.34. 1800. 18.35. 120.

§19

19.1. 1) 7; 2) 5; 3) 1,2; 4) 2. 19.2. 1) 0; 2) 2,75. 19.3. 1) 3; 2) 4; 3) 1; 4) 3; 5)

4031 ; 6)

32 ; 7) 13 ; 8) 35 . 19.4. 1) 2; 2)

32 . 19.5. 1) 12; 2) 13; 3) 6; 4)

56 .

19.6. 1)

2)

19.7. 1) _2; 2) 2 da 5; 3) moda ara aqvs; 4) 2; 3; 4. 19.8. 1) 2

23 ;

2) 5370 ; 3)

342 ; 4)

71411 . 19.9. 1) saSualoa 5, medianaa 4,

monacemebi 0 3 4 5 6

sixSire 2 3 2 3 2

fardobiTi

sixSire 61

41

61

21

61

monacemebi _2 0 1 3 4

sixSire 2 2 2 4 4

fardobiTi

sixSire 71

71

71

72

72

Page 425: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

425

diapazonia 10, moda ara aqvs, saSualo kvadratuli

gadaxraa 14 ; 2) saSualoa _1, medianaa 4, diapazonia 12,

modaa 1, saSualo kvadratuli gadaxraa 4. 19.10. n=4, saSualoa 1, medianaa – 0, modaa 1, diapazonia 4, saSualo

kvadratuli gadaxraa 5

53. 19.11. m =3, n =2, modaa 0,

medianaa 0, gabnevis diapazonia 7. 19.12. 151

. 19.13. 41. 19.14. 1)

40; 2) 80; 3) 16; 4) 150.

19.15.

saSualoa 8, diapazonia 4, modaa 8 da 9, medianaa 8,

saSualo kvadratuli gadaxraa 5102

.

19.16.

saSualoa 4, diapazonia 5, modaa 5, medianaa 4,5, saSualo

kvadratuli gadaxraa 3

62.

19.17.

saSualoa 9, diapazonia 4, medianaa 9, modaa 10, saSualo

kvadratuli gadaxraa 7

73.

19.18. 1) 180; 2) 45; 3) 61. 19.19. 400 da

74. 19.20. 140. 19.21. 1200.

mniSvneloba 10 9 8 7 6

sixSire 1 3 3 1 2

fardobiTi

sixSire 101

103

103

101

51

monacemebi 1 3 4 5 6

sixSire 2 2 2 4 1

fardobiTi

sixSire 61

61

61

31

121

monacemebi 6 8 9 10

sixSire 1 3 4 6

fardobiTi

sixSire 141

143

72

73

Page 426: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

426

§20

20.1. 1) SeuZlebelia; 2) SemTxveviTia; 3) aucilebelia; 4) Sem-

TxveviTia. 20.2. 1) SemTxveviTia; 2) SemTxveviTia; 3) SeuZle-

belia; 4)aucilebelia; 5) SemTxveviTia; 6) aucilebelia. 20.3. 1) SemTxveviTia; 2) SeuZlebelia; 3) aucilebelia; 4) auci-

lebelia. 20.4. 1) SeuZlebelia; 2) SemTxveviTia; 3) SeuZlebe-

lia; 4) SemTxveviTia. 20.5. 1) 3; 2) 6; 3) 36; 4) 4; 5) 8; 6) 236C ; 7)

12; 8) 25; 9) 20; 10) 36⋅52. 20.6. 1) 61; 2)

21; 3)

21; 4)

21; 5)

31; 6)

31; 7)

61; 8)

21; 9)

65; 10)

21; 11)

32; 12)

65. 20.7. 1)

41; 2)

43; 3)

21; 4)

21; 5)

41; 6)

41. 20.8. 1)

52; 2)

53. 20.9.

118. 20.10. 1)

103

; 2)

51; 3)

54; 4)

21. 20.11. 1)

121

; 2) 2411

; 3) 2411

; 4) 2413

; 5) 561

; 6)

11233

; 7) 165

; 8)1611

. 20.12. 1) 383; 2)

953; 3)

389; 4)

9533

; 5) 196

; 6)

389; 7)

571

; 8)9512

. 20.13. 1) 61; 2)

41; 3)

21; 4)

3611

; 5) 43; 6)

41;

7) 181

; 8) 365

; 9) 61; 10)

121

; 11) 91; 12)

121

; 13) 0; 14) 1; 15) 92;

16) 1811

; 17) 187

; 18) 98; 19)

3625

; 20) 65; 21)

94. 20.14. 1)

18; 2)

83; 3)

87; 4)

21; 5)

21; 6)

85. 20.15. 1)

361

; 2) 91; 3)

21; 4)

41;

5) 92; 6)

98; 7)

43; 8)

97; 9)

353

364⋅ ; 10)

352; 11)

1409

; 12) 315

4;

13) 3531

91⋅ ; 14)

3531

98⋅ . 20.16.

53. 20.17.

53. 20.18. 1)

103

; 2) 21; 3)

49519

; 4) 2100

200994

C= ; 5)

495179

; 6) 16559

. 20.19. 120

1. 20.20.

6001

101

35

=⋅ A

. 20.21. 120

1. 20.22.

1201

. 20.23. 241

. 20.24. 7201

. 20.25.

1) 92

510

38 =

CC

; 2) 95

510

48

12 =⋅

CCC

; 3) 97; 4)

92. 20.26. 10

1020

20A

. 20.27. 31.

Page 427: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

427

20.28. 31. 20.29. 1)

49519

2100

220 =

CC

; 2) 495316

2100

280 =

CC

; 3)9932

2100

180

120 =⋅

CCC

; 4)

9967

2100

280

220 =+

CCC

. 20.30. 1) 350

330

14029

CC

= ; 2) 98057

350

320 =

CC

; 3) 1968720

350

230 =

⋅C

C;

4) 19657

350

280

130 =⋅

CCC

. 20.31. 1) 61; 2)

32. 20.32. 1)

641

; 2) 641

; 3)

323

4!33 = ; 4)

643

. 20.33. 43

42

24 =

A. 20.34.

2512

53

35 =

A. 20.35. 1)

41; 2)

127

;

3) 85; 4)

165

. 20.36. 1)11180

; 2) 3710

; 3) 111

1; 4)

9998

; 5)33316

; 6) 379

.

20.37. 1) 65; 2) 0,4; 3)

2011

; 4) 0,6. 20.38. 1) 51; 2)

71. 20.39. 1)

1511

;

2) 71. 20.40. 1)

21; 2) 0,7; 3)

2513

; 4) 0,46; 5) 32; 6) 0,2; 7)

41; 8)

92. 20.41.

54. 20.42.

107

. 20.43. 65. 20.44.

353. 20.45.

125

.

§21

21.1. 1) 51; 2)

54; 3)

52; 4)

52. 21.2. 1)

91; 2)

1811

. 21.3. 1) 91; 2)

31.

21.4. 32. 21.5.

22. 21.6.

21. 21.7.

23. 21.8.

31. 21.9.

41. 21.10.

53.

21.11. 52. 21.12.

54. 21.13.

83. 21.14.

21. 21.15.

94. 21.16.

41. 21.17.

41.

21.18. 21. 21.19.

31. 21.20.

61. 21.21. 1)

94; 2)

95. 21.22.

72. 21.23.

1)100

9; 2)

10049

; 10021

. 21.24. 10091

. 21.25. 149

. 21.26. 107

. 21.27. 4

1 π− .

21.28. π2. 21.29.

93π. 21.30.

π433. 21.31.

ππ

12332 −. 21.32.

83. 21.33.

127

.

21.34. 21. 21.35.

41.

Page 428: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

428

t!b!d!o!p!c!b!s!p!!!!n!b!t!b!m!b!

Tfnplmfcvmj!hbnsbwmfcjt!gpsnvmfcj!

1. ( ) ( )bababa +−=− 22;

2. ( ) ( )2233 babababa ++−=− ;

3. ( ) ( )2233 babababa +−+=+ ;

4. ( ) 222 2 bababa +±=± ;

5. ( ) 32233 33 babbaaba ±+±=± ;

6. ( ) bcacabcbacba 2222222 +++++=++ ;

!qspqpsdjfcj!

.;

;;;;;,

dcdc

baba

cdc

aba

ddc

bba

ab

cd

db

ca

ac

bdcbda

dc

ba

−+

=−+±

±=

±===⋅=⋅=

maSinTu 1.

2. Tu dc

ba

ba

ba

n

n ==== L2

2

1

1, maSin

dc

bbbaaa

n

n =±±±±±±

L

L

21

21.

!qspdfouj!

1. a ricxvis %k tolia 100ak

-is.

2. ricxvi, romlis %k aris b , tolia k

b 100⋅ -is.

3. a ricxvi aris b ricxvis ba nawili, anu 100⋅

ba

procenti.

4. a ricxvis rTuli n %-iT gadideba, ramodenime etapad,

niSnavs: yovel momdevno etapis dasawyisSi wina etapze

miRebul ricxvs daematos misive n %. Ggamomdinare aqedan kA

ricxvi, romelic warmoadgens a ricxvis misi rTuli n %-iT

Tanmimdevrulad k -etapad gadidebuls, gamoiTvleba

formuliT

Page 429: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

429

k

knaA ⎟

⎠⎞

⎜⎝⎛ +=

1001 .

ybsjtyj!

1. ;;... Nnaaaan

n ∈⋅=−

sadac

jer

321 2. 0;10 ≠= aa .

3. .0,1≠∈=− aNn

aa n

n ,

4. .0, >∈∈= aNnZmaa n mnm

da

5. 22

22 baabaaba −−±

−+=± , baba >>> 2 ,0 ,0 .

!nprnfefcfcj!ybsjtyfcf!

1. ( ) ;nnn baab = 2. 0, ≠=⎟⎠⎞

⎜⎝⎛ b

ba

ba

n

nn

Tu ;

3. nmnm aaa +=⋅ ; 4.

nmn

ma

aa −= ; 5. ( ) mnnm aa = .

ebnpljefcvmfcb!tbTvbmp!bsjUnfujlvmtb!eb!tbTvbmp!hfpnfusjvmt!Tpsjt!

nn

n aaan

aaaL

L21

21 ≥+++

,

sadac .0,,0,0 21 ≥≥≥ naaa K tolobas adgili aqvs maSin da

mxolod maSin, roca naaa === L21 .

lwbesbuvmj!hboupmfcjt!bnpobytoUb!gpsnvmb!

Tu maSin da ,040 22 ≥−==++ acbDcbxax

a) a

acbbx2

42

2,1−±−

= ; b) a

ackkx −±−=

2

2,1 , Tu kb 2= .

!

Page 430: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

430

wjfujt!Ufpsfnb!

Tu 0221 =++ cbxaxxx aris da gantolebis amonaxsnebi, maSin

. , 2121 acxx

abxx =⋅−=+ !

!

!lwbesbuvmj!tbnxfwsjt!ebTmb!xsgjw!nbnsbwmfcbe

Tu cbxaxxx ++221 aris da kvadratuli samwevris amonaxsnebi,

maSin

( )( )212 xxxxacbxax −−=++ .

bsjUnfujlvmj!qsphsftjb!

;)1(1 dnaan −+=

;2

)1(2,2

)1(2,2

11 nndaSndnaSnaaS nnn

nn

−−=

−+=

+=

;1121 +−− +==+=+ knknn aaaaaa K

211 +− +

= nnn

aaa .

hfpnfusjvmj!qsphsftjb!

;11

−= nn qbb

( );1,1

,1

)1( 11 ≠−−

=−−

= qq

bqbSqqbS n

n

n

n

;1121 +−− ⋅==⋅=⋅ knknn bbbbbb K

.112

+− ⋅= nnn bbb

!!!

Page 431: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

431

usjhpopnfusjb!

lvUyjt!hsbevtvmj!pnjt!hbebzwbob!sbejbofcTj!eb!qjsjrjU!

,180

πα°°

=a °=° 180

παa (α - radianuli zomaa, a - gradusi)!

!usjhpopnfusjvm!!gvordjbUb!ojTofcj!

!

!!!!!!!!sinusi kosinusi tangensi

usjhpopnfusjvmj!gvordjfcjt!nojTwofmpcbUb!dysjmj!phjfsUj!bshvnfoujtbUwjt!

α 000 =

o306=

π

o454=

π

o603=

π

o902=

π

0180=π

02702

3=

π

αsin 0 21

22

23 1 0 -1

αcos 1

23

22 2

1 0 -1 0

αtg 0 33 1 3 - 0 -

αctg - 3 1 33 0 - 0

Page 432: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

432

ebnpljefcvmfcb!fsUj!eb!jhjwf!bshvnfoujt!usjhpopnfusjvm!gvordjfct!Tpsjt!

1. ;1cossin 22 =+ αα 2. ;cossin

ααα =tg

3. ;sincos

ααα =ctg 4. ;1=αα ctgtg

5. ;cos

11 22

αα =+ tg 6. .

sin11 2

2

αα =+ ctg !

!

psj!bshvnfoujt!kbnjtb!eb!tywbpcjt!usjhpopnfusjvmj!gvordjfcj!

1. ( ) ;sincoscossinsin βαβαβα +=+

2. ( ) ;sincoscossinsin βαβαβα −=−

3. ( ) ;sinsincoscoscos βαβαβα −=+

4. ( ) ;sinsincoscoscos βαβαβα +=−

5. ( ) ;1 βα

βαβαtgtgtgtgtg −

+=+

6. ( ) .1 βα

βαβαtgtgtgtgtg +

−=−

psnbhj!eb!tbnnbhj!bshvnfoujt!usjhpopnfusjvmj!gvordjfcj!

1. ;cossin22sin ααα = 2. ;sincos2cos 22 ααα −=

3. ;1

22 2ααα

tgtgtg

−= 4. ;sin4sin33sin 3ααα −=

5. ;cos3cos43cos 3 ααα −= 6. ;31

33 2

3

αααα

tgtgtgtg

−−

=

!

Page 433: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

433

obyfwbsj!bshvnfoujt!usjhpopnfusjvmj!gvordjfcj

1. ;2cos1

2sin2 αα −

= 2. ;2cos1

2cos2 αα +

=

3. ;cos1cos1

22

ααα

+−

=tg 4. ;cos1

sin2 α

αα+

=tg

5. .sin

cos12 α

αα −=tg

!!!!!!!!!!usjhpopnfusjvm! gvordjbUb! hbnptbywb! obyfwbsj!bshvnfoujt!ubohfotjU!

1. ;

21

22

sin2 α

α

αtg

tg

+= 2. ;

21

21

cos2

2

α

α

αtg

tg

+

−= 3. .

21

22

2 α

α

αtg

tgtg

−=

usjhpopnfusjvm! gvordjbUb! obnsbwmjt! hbsebrnob!kbnbe!

1. ( ) ( )[ ]βαβαβα −++= sinsin21cossin ;

2. ( ) ( )[ ]βαβαβα ++−= coscos21coscos ;

3. ( ) ( )[ ]βαβαβα +−−= coscos21sinsin .

!!!!!!!usjhpopnfusjvm! gvordjbUb! kbnjt! hbsebrnob!obnsbwmbe

1. ;2

cos2

sin2sinsin βαβαβα −+=+

2. ;2

cos2

sin2sinsin βαβαβα +−=−

3. ;2

cos2

cos2coscos βαβαβα −+=+

4. ;2

sin2

sin2coscos βαβαβα −+−=−

Page 434: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

434

5. ( ) ;

coscossin

βαβαβα +

=+ tgtg 6. ( ) ;coscos

sinβαβαβα −

=− tgtg

7. ( ) ;sinsin

sinβαβαβα +

=+ ctgctg 8. ( ) .sinsin

sinβααββα −

=− ctgctg

usjhpopnfusjvm!gvordjbUb!phjfsUj!kbnjt!hbsebrnob!

1. ;sin22cos1 2αα =− 2. ;cos22cos1 2αα =+

3. ;2cos1cos2sin21 22 ααα =−=−

4. ( ) ( )°−=°+=+ 45cos245sin2cossin αααα ;

5. ( ) ( )°+−=°−=− 45cos245sin2cossin αααα ;

6. αααα 2244 cossin21cossin −=+ ;

7. αααα 2266 cossin31cossin −=+ .

!Tfrdfvmj!usjhpopnfusjvmj!gvordjfcj

1. ;22

sin,arcsin ππ≤≤−== yyxxy da Tu

2. ;cos,arccos π≤≤== yyxxy 0 da Tu

3. ;22

, ππ<<−== ytgyxarctgxy da Tu

4. ;, π<<== yctgyxarcctgxy 0 da Tu

5. ( ) xx arcsinarcsin −=− ; 6. ( ) xx arccosarccos −=− π ;

7. ( ) arctgxxarctg −=− ; 8. ( ) arcctgxxarcctg −=− π ;

9. 2

arccosarcsin π=+ xx ; 10.

=+ arcctgxarctgx .

vnbsujwft!usjhpopnfusjvm!hboupmfcbUb!bnpobytofcj!!

1. ( ) ;,arcsin1,1sin Zaxaax k ∈+−=≤= κπκ ;

kerZod: a) ;,0sin Zxx ∈== κπκ ,

b) ;22

,1sin Zxx ∈+== κπκπ ,

g) ;22

,1sin Zxx ∈+−=−= κπκπ ,

Page 435: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

435

2. ;,2arccos,1cos Zaxaax ∈+±=≤= κπκ ;

kerZod: a) ;2

,0cos Zxx ∈+== κπκπ ,

b) ;2,1cos Zxx ∈== κπκ ,

g) .2,1cos Zxx ∈+=−= κπκπ ,

3. Zarctgaxatgx ∈+== κπκ ,, ;

4. Zarcctgaxactgx ∈+== κπκ ,, .!

!!!!!!!!!!!!!!mphbsjUnfcj

1. ( )0,0,1,log >>≠=⇔= baabaxb xa ;

2. ba ba =log; 3. 01log =a ; 4. 1log =aa ;

5. ( ) 2121 logloglog xxxx aaa +=⋅ ;

6. 212

1 logloglog xxxx

aaa −= ; 7. xkx ak

a loglog = ;

8. xk

x aak log1log = ; 9. bkmb a

mak loglog = ;

10. ab

bc

ca log

loglog = ; 11.

ab

ba log

1log = ;

12. yx

yx

b

b

a

a

loglog

loglog

= ; 13. ab cc ba loglog = .

kombinatorika

1. !nPn = ; 10 =P ; 2. ( ) ( )11 +−−==−

mnnnPPA

mn

nmn K ;

3. nAn =1 ; 10 =nA ; 4. ( ) m

nmn AmnA −=+1 ;

5. ( )( )( ) ( )

!121

! !!

mmnnnn

mnmn

PAC

m

mnm

n+−−−

=−

==K ;

6. mnn

mn CC −= ; nCn =

1 ; 10 =nC .

niutonis binomialuri formula

( ) nnn

mmnmn

nn

nn

n bCbaCbaCaCba +++++=+ −− LL110 .

Page 436: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

436

mbUjovsj!bocboj!!

aA , _ a nN , _ en

bB , _ be oO , _ o

cC , _ ce pP , _ pe

dD , _ de qQ , _ qu

eE , _ e rR , _ er

fF , _ ef sS , _ es

gG , _ Je tT , _ te

hH , _ haS uU , _ u

iI , _ i vV , _ v

jJ , _ Ji wW , _ dubl-ve

kK , _ ka xX , _ iqs

lL , _ el yY , _ igrek

mM , _ em zZ , _ zet

cfs[ovmj!bocboj!!

α ,Α _ alfa ,Ν ν _ niu β ,Β _ beta ξ ,Ξ _ qsi

γ ,Γ _ gama ο ,Ο _ omikroni δ ,∆ _ delta π ,Π _ pi ε ,Ε _ efsilon ρ ,Ρ _ ro ς ,Ζ _ Zeta σ ,Σ _ sigma η ,Η _ eta τ ,Τ _ tau ϑ ,Θ _ Teta φ ,Φ _ fi ι ,Ι _ iota χ ,Χ _ xi κ ,Κ _ kapa ϒ, υ _ ifsilon λ ,Λ _ lambda ψ ,Ψ _ fsi

µ ,Μ _ miu ω ,Ω _ omega

Page 437: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

437

s a r C e v i

meoTxe gamocemis winasityvaoba ................................................. 3

mexuTe gamocemis winasityvaoba ……………………………… 4

Sesavali …………………………………………………………… 5

$1. naturaluri ricxvebi da Tvlis sistemebi ……………… 10

$2. gayofadobis niSnebi ……………………………………………… 15

$3. martivi da Sedgenili ricxvebi. udidesi saerTo

gamyofi. umciresi saerTo jeradi ……………………………. 16

$4. mTeli ricxvebi ……………………………………………………. 19

$5. Cveulebrivi wiladebi, racionaluri ricxvebi ………….. 21

$6. aTwiladebi ………………………………………………………….. 25

$7. iracionaluri ricxvis cneba. namdvili ricxvebi ………… 29

$8. ricxviTi wrfe. ricxviTi Sualedebi. marTkuTxa

koordinatTa sistema ………………………………………………. 32

$9. namdvili ricxvis moduli (absoluturi sidide) da misi

Tvisebebi ……………………………………………………………….. 35

$10. proporciebi. procentebi …………………………………………. 36

$11. xarisxi mTeli maCvenebliT ………………………………………. 39

$12. ricxviTi gamosaxulebani. cvladis Semcveli gamosaxule-

bani ………………………………………………………………………. 41

$13. erTwevri da mravalwevri …………………………………………. 43

$14. Semoklebuli gamravlebis formulebi. mravalwevris daS-

la mamravlebad ………………………………………………………. 46

$15. n -uri xarisxis fesvi. n -uri xarisxis ariTmetikuli

fesvi ……………………………………………………………………… 50

$16. ariTmetikuli fesvis Tvisebebi …………………………………. 52

$17. racionalur maCvenebliani xarisxi ……………………………. 55

$18. wiladur gamosaxulebaTa gardaqmna …………………………… 56

$19. funqcia. gansazRvris are. mniSvnelobaTa simravle. Seq-

ceuli funqcia ………………………………………………………… 59

$20. ricxviTi funqcia da misi grafiki. Seqceuli

funqciis grafiki …………………………………………………….. 60

$21. funqciis mocemis xerxebi …………………………………………. 61

$22. zrdadi da klebadi, SemosazRvruli da SemousazRvre-

li funqciebi ………………………………………………………….. 62

$23. luwi, kenti da perioduli funqciebi ………………………… 64

$24. funqciis grafikis zogierTi gardaqmna ……………………… 65

$25. wrfivi funqcia ……………………………………………………….. 68

$26. xky = funqciis Tvisebebi da grafiki …………………………. 70

$27. wilad-wrfivi funqcia ……………………………………………… 72

$28. kvadratuli funqciis Tvisebebi da grafiki ………………… 73

$29. xarisxovani funqcia naturaluri maCvenebliT …………….. 75

Page 438: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

438

$30. n xy = funqcia ………………………………………………………… 76

$31. gantoleba ………………………………………………………………. 77

$32. erTcvladiani wrfivi da kvadratuli gantolebebi ……… 80

$33. vietis Teorema ………………………………………………………… 82

$34. kvadratuli samwevris daSla mamravlebad …………………. 84

$35. bikvadratuli gantoleba …………………………………………. 84

$36. iracionaluri gantoleba ………………………………………… 86

$37. gantolebaTa sistemebi …………………………………………….. 87

$38. wrfiv gantolebaTa sistema ……………………………………… 89

$39. utolobebi ……………………………………………………………… 92

$40. wrfivi erTcvladiani utoloba ………………………………… 96

$41. kvadratuli utoloba ……………………………………………… 97

$42. utolobaTa sistemebi ………………………………………………. 99

$43. utolobaTa amoxsna intervalTa meTodiT …………………… 101

$44. modulis Semcveli utolobebi ………………………………….. 104

$45. ricxviTi mimdevroba ………………………………………………… 106

$46. ariTmetikuli progresia ………………………………………….. 109

$47. geometriuli progresia ……………………………………………. 111

$48. geometriuli progresiis pirveli n wevris jamis formula ………………………………………………. 112 $49. geometriuli progresiis jami, roca 1<q ………………….. 113

$50. kuTxuri sidideebis radianuli zoma …………………………. 114

$51. trigonometriuli funqciebi ……………………………………… 114

$52. trigonometriuli funqciebis mniSvnelobaTa gamoTvla

argumentis zogierTi mniSvnelobebisaTvis ………………….. 118

$53. xy sin= funqciis Tvisebebi da grafiki ………………………. 120

$54. xy arcsin= funqciis Tvisebebi da grafiki ……………………. 123 $55. xy cos= funqciis Tvisebebi da grafiki ……………………… 124

$56. xy arccos= funqciis Tvisebebi da grafiki …………………… 126

$57. tgxy = funqciis Tvisebebi da grafiki ………………………… 126

$58. arctgxy = funqciis Tvisebebi da grafiki ……………………... 128 $59. ctgxy = funqciis Tvisebebi da grafiki ……………………….. 129 $60. arcctgxy = funqciis Tvisebebi da grafiki ……………………. 132 $61. damokidebuleba erTi da imave argumentis trigonometri-

ul funqciebs Soris ………………………………………………… 133

$62. ori argumentis jamisa da sxvaobis trigonometriu-

li funqciebi …………………………………………………………… 134

$63. dayvanis formulebi …………………………………………………. 135

$64. ormagi da naxevari argumentis trigonometriuli fun-

qciebi ……………………………………………………………………. 137

$65. trigonometriul funqciaTa gamosaxva naxevari argume-

ntis tangensiT ………………………………………………………… 138

$66. trigonometriul funqciaTa namravlis gardaqmna jamad … 139

Page 439: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

439

$67. trigonometriul funqciaTa jamis gardaqmna namravlad … 140

$68. trigonometriuli gantolebebi ………………………………….. 141 $69. xarisxi iracionaluri maCvenebliT …………………………… 144

$70. maCvenebliani funqciis Tvisebebi da grafiki ………………. 145

$71. logariTmis cneba ……………………………………………………. 146

$72. namravlis, fardobisa da xarisxis logariTmi …………….. 147

$73. logariTmis erTi fuZidan meoreze gadasvla ………………. 149 $74. logariTmuli funqciis Tvisebebi da grafiki ……………… 150

$75. maCvenebliani da logariTmuli gantolebebi ……………….. 151 $76. maCvenebliani da logariTmuli utolobebi …………………. 152 $77. kombinatorikis elementebi ………………………………………… 154

$78. niutonis binomialuri formula …………………………………. 158 $79. statistikis elementebi ………………………………………… 159 $80. xdomilobis albaToba. fardobiTi sixSire ………………… 164

$81. elementarul xdomilobaTa sruli sistema

(xdomilobaTa sivrce). xdomilobaTa Sedareba ….…….... 166 $82. operaciebi xdomilobebze …………………………………………. 170 $83. geometriuli albaToba …………………………………………...... 174

a m o c a n a T a k r e b u l i $1. ariTmetikuli gamoTvlebi …………………………………………. 176 $2. moqmedebebi erTwevrebze da mravalwevrebze. mravalwe-

vris mamravlebad daSla …………………………………………… 186

$3. moqmedebebi racionalur gamosaxulebebze …………………… 194

$4. moqmedebebi radikalebze. algebrul gamosaxulebaTa gar-

daqmna ……………………………………………………………………. 204

$5. wrfivi, kvadratuli da maTze dayvanadi gantolebebi …… 217

$6. iracionaluri gantolebebi ………………………………………. 227

$7. sistemebi ………………………………………………………………… 230

$8. utolobebi ……………………………………………………………… 237

$9. modulis Semcveli gantolebebi da utolobebi …………… 249

$10. algebruli amocanebi ……………………………………………….. 252 $11. mimdevrobebi da progresiebi …………………………………….. 295

$12. trigonometriul gamosaxulebaTa gamartiveba da gamo-

Tvla ………………………………………………………………………. 313 $13. trigonometriuli gantolebebi da utolobebi ……………. 335 $14. logariTmis Semcveli gamosaxulebebis gamoTvla. maCvene-

bliani da logariTmuli gantolebebi. gantolebaTa sis-

temebi ……………………………………………………………………. 341

$15. maCvenebliani da logariTmuli utolobebi ………………… 351

$16. funqcia. funqciis grafiki ………………………………………… 357

$17. simravleebi. operaciebi simravleebze …………………. 367 $18. kombinatorikis elementebi ………………………………….. 370

Page 440: t/!Upgvsjb-!w/!ypXpmbwb-! o/!nbXbsbTwjmj-!h/!bcftb[f ...bpa.ge/book/book26.pdf · 6 nbhbmjUj/!maTematikuri induqciis principis gamoyenebiT davamtkicoT, rom 4n −1 iyofa 3-ze, nebismieri

440

$19. monacemTa analizi da statistika ……………………………… 373 $20. xdomilobis albaToba …………………………………………....... 376 $21. geometriuli albaToba …………………………………………..... 386 pasuxebi ………………………………………………………………….. 390

sacnobaro masala ……………………………………………………. 428

laTinuri da berZnuli anbani …………………………………… 436

ibeWdeba avtorTa mier warmodgenili saxiT

gadaeca warmoebas 05.11.2008. xelmowerilia dasabeWdad 12.11.2008.

qaRaldis zoma 60×84 1/16. pirobiTi nabeWdi Tabaxi 27,75. saaRricxvo-sagamomcemlo Tabaxi 24. tiraJi 500 egz. SekveTa #

sagamomcemlo saxli “teqnikuri universiteti”, Tbilisi,

kostavas 77