Tu torial letter 205/1/ 2014Tu Dis ST Sem Dep Examin Solutio toria tribu A26 este artme ation prep...

16
Tu Dis ST Sem Dep Examin Solutio utoria stribu TA26 meste partmnation prep ns to Assig al lett tion T 603 er 1 ent of CONTE paration tut gnment 6 ter 20 Theor Statis ENTS: torial letter 05/1/ ry II stics r /2014 STA 4 A2603/205/ /1/2014

Transcript of Tu torial letter 205/1/ 2014Tu Dis ST Sem Dep Examin Solutio toria tribu A26 este artme ation prep...

  • Tu Dis

    ST Sem Dep

    Examin

    Solutio

    utoria

    stribu

    TA26

    meste

    partme

    nation prep

    ns to Assig

    al lett

    tion T

    603

    er 1

    ent of

    CONTE

    paration tut

    gnment 6

    ter 20

    Theor

    Statis

    ENTS:

    torial letter

    05/1/

    ry II

    stics

    r

    /2014

    STA

    4

    A2603/205//1/2014

  • 2

    Dear Student,

    This tutorial letter intends to help you prepare for the examination. It contains the following information:

    1. About the May/June 2014 examinations.2. Solutions to a previous year’s examination paper.3. Solutions to Assignment 6.

    1. ABOUT THE MAY/JUNE 2014 EXAMINATIONS

    What you are expected to be able to do in the exam

    You are expected to know the following distributions, remember their density functions or probability mass func-tions, recognize them, know when they apply, and be able to calculate probabilities from them:

    The Bernoulli distribution The Binomial distribution (the probability mass function will be given in the paper) The Poisson distribution The uniform distribution The normal distribution

    You may be asked to work with any other distributions discussed in the study guide as well, in which case thedistribution will be given in the exam paper. In the exam you are given the formulas for the Binomial probabilitymass function, the density function of the general Gamma distribution, the density function of the k-th order statisticfrom a sample of n from a given distribution, and the series expansion of the exponential function. Further formulaswill be given as needed. You will also be given cumulative standard normal distribution tables.

    The next page contains a brief summary of what you need to be able to do in the exam.

  •  3                                                              STA2603/205                             

    Random variables Given a discrete or continuous distribution of a random variable (defined via probability mass function/density function or cumulative distribution function),  

    find:   cumulative distribution function from probability mass function, 

     probability mass function from cumulative distribution function,   

    probabilities of events  distributions of  functions of the random variable  quartiles, quantiles, medians 

    Bivariate distributions Given a discrete or continuous joint distribution of two random variables (defined via joint probability mass function/ joint density function or joint cumulative distribution function),  

    find:  joint cumulative distribution function from joint probability mass function and vice versa, 

    joint  density from joint cumulative distribution function and vice versa,   

    probabilities of events  marginal distributions (densities and/or cumulative distribution functions) 

    conditional distributions Given a joint distribution,    test for independence of the random variables Given independence and marginal distributions, 

      find joint distribution 

    Work with joint distributions,  conditional distributions  and marginal distributions (whether deriving density/probability mass functions, cumulative distributions or probabilities of events)  Given a joint distribution,   find  distributions of functions of the random variables,  

    both by the distribution function method and the transformation method. 

    Order statistics Use the formula (given in the exam paper) for the density of k‐th order statistics to find distributions for various order statistics Expected values Given distribution or joint distribution, 

    find  expected values of random variables or  expected values of functions of  the random variables 

    conditional expectations of random variables and functions of random variables 

    variances and standard deviations  covariances and correlation coefficients  moments of the distribution  

    Moment generating functions Given a distribution (density or probability mass function), find the corresponding moment generating function calculate moments by differentiating  the moment generating function Inequalities Apply Chebyshev’s inequality (formula will be given in the exam paper when needed)  Limit theorems  Apply the central limit theorem  Distributions derived from the normal distribution Recognize linear combinations of, sums of squares and quotients of independent normally distributed random variables as coming from normal, chi‐square, F or t distributions, and specify the parameters and degrees of freedom; including the distributions of the sample mean and sample variance.  

  • 4

    2. SOLUTIONS TO A PREVIOUS YEAR’S EXAMINATION PAPER

    Your examination paper for this semester will be approximately similar to previous years’ examination papers. Onesuch paper (October/November 2012) formed the basis for Assignment 6 for this semester. We will give you detailedsolutions to that question paper here. In the following, we give first all the questions, and then the solutions to allthe questions.

    More examination papers from previous years are available on the myUnisa website of this module. We will notprovide solutions to them, but you are welcome to contact with your lecturer if you are struggling with a particularquestion. We have also included the tables and the set of equations, exactly as they will be given to you in yourexamination paper. The equations are there just to aid your memory — you will still need to know exactly whichequation to use in which situation! Make sure that you know how to use the given equations and the tables, and howto use your calculator!

    We wish you all the best in the examination. Please do contact us for help, if you have any queries!

    With regards, Dr E Rapoo

    THE QUESTIONS

    QUESTION 1

    Two discrete random variables X and Y have a joint probability mass function given in the table below.

    pXY x y

    x1 2 3

    1 1814 0

    y 2 1818 0

    3 14 018

    1.1 Calculate the marginal probability mass functions pX x and pY y of X and Y 4

    1.2 Are the X and Y independent? Justify your answer! 3

    1.3 Calculate the following:

    (a) P X 2 Y 2(b) E Y X 2(c) P X 2 Y 1 10

    [17]

  • 5 STA2603/205

    QUESTION 2

    Let

    fY Xy x

    4x 2y4x 1 0 x 1 0 y 1

    0 elsewhere

    and

    fX x

    4x 1

    3 0 x 1

    0 elsewhere

    2.1 Find the marginal density function of Y (6)

    2.2 Calculate P

    12 X 1 Y 1

    (6)

    2.3 Determine PY X (6)

    [18]

    QUESTION 3

    Suppose X and Y are two independent random variables of the exponential distribution with parameter 2

    3.1 Find the distribution function of the random variable U X Y (8)3.2 Find the moment generating function of X (6)

    3.3 Calculate EX5

    by differentiating the moment generating function of X (4)

    3.4 Find the moment generating function of the random variable W 2XY (6)[24]

    QUESTION 4

    4.1 Let X1 and X2 be two independent random variables so that the variances of X1 and X2 are 21 k and 22 2 respectively. Given that the variance of Y 3X1 2X2 is 35 find the value of k (4)

    4.2 Find the mean and the variance of the sum Y of the items of a random sample of size 5 from the distributionwith probability density function

    fX x 6x1 x 0 x 1

    0 elsewhere

    (8)[12]

  • 6

    QUESTION 5

    5.1 Suppose that the number of insurance claims (N ) filed during a period of one year is Poisson distributed withEN 10000 Use the normal approximation to the Poisson distribution to approximate PN EN 500 (8)

    5.2 State if each of the following statements is true or false. If the statement is false, explain why it is false.

    (a) If two random variables come from the same distribution with the same parameters, then they cannot beindependent.

    (b) Two discrete random variables are independent if their marginal probability mass functions both sum upto 1.

    (c) If fY y fX Y x y for all possible values x and y then X and Y are independent.(d) Only continuous random variables have moment generating functions.

    (e) If the joint distribution function FXY x y is known then the marginal distribution of X can be foundby integrating FXY over all values of Y (10)

    [18]

    QUESTION 6Let X1 X2 X10 be a sample from a N 2 25 distribution, independent of the sample Y1Y2 Y20 comingfrom a N2 100 distribution. Let

    X 110

    10i1

    Xi Y 12020j1

    Yj

    S2X 19

    10i1Xi X2 S2Y

    119

    20j1Yj Y 2

    2X

    110

    10i1Xi 22

    2Y

    120

    20j1Yj 22

    6.1 Explain why Q 6

    j1

    Yj 2

    10

    2does not follow a 210 distribution. (3)

    6.2 Write down the name of the distribution of U 19S2Y

    102and give the value(s) of the parameter(s).

    (3)

    6.3 Define V A

    2X

    2Y

    For what value of the constant A does V follow an F distribution? What are the degrees

    of freedom of this F distribution? Justify your answer! (5)

    [11]

    TOTAL: [100]

  • 7 STA2603/205

    FORMULAE

    pXk n

    kpk1 pnk

    fX x

    x1ex

    fnx n!k 1!n k! [FXx]

    k1 [1 FXx]nk fXx

    etx 1 t x t x2

    2! t x

    3

    3!

  • 8

    Table 1: Cumulative Standardized Normal Probabilities

  • 9 STA2603/205

    Table 1 (continued)

  • 10

    THE SOLUTIONS

    QUESTION 1

    1.1 The marginal probability mass function for X is found by summing up over all y-values, over each column;and the marginal probability mass function for Y is found by summing up over all x-values, over rows. Weget:

    pXx

    18 18 14 48 12 x 1

    14 18 0 38 x 20 0 18 18 x 3

    pY x

    18 14 0 38 y 1

    18 18 0 28 14 y 2

    14 0 18 38 y 3

    1.2 The random variables are not independent. For instance

    pXY 3 1 0 pX3 pY 1 18 38

    1.3 (a)

    PX 2 Y 2 P X 2 and Y 2P Y 2

    pXY 1 2 pXY 2 2pY 2

    18 18

    14

    1

    (b) We need to first find the conditional probability distribution of Y given that X 2. We get

    PY yX 2 P X 2 Y yP X 2

    pXY 2 ypX 2

    14

    38 23 y 1

    18

    38 13 y 2

    0 y 3It follows that

    EY X 2 1 PY 1X 2 2 PY 2X 2 3 PY 3X 2

    1 23 2 1

    3 3 0 4

    3

    (c)

    PX 2 Y 1 PX 2 since Y 1 is always true

    PX 2 or X 3 pX2 pX3 12

  • 11 STA2603/205

    QUESTION 2

    2.1 The marginal density function of Y is found by integrating the joint density function over all x-values. Herewe are not given the joint density function directly, but it can always be found from the given function asfollows:

    fXY x y fY Xyx fXxTherefore, we have

    fY y

    fXY x ydx

    fY X yx fX x dx

    1

    0

    4x 2y4x 1

    4x 13

    dx 0 y 1

    1

    0

    4x 2y3

    dx

    46

    x2 23

    yx1

    0

    46 2

    3y 2 2y

    3 for 0 y 1

    and 0 elsewhere.

    2.2 To find P 1

    2 x 1 Y 1

    we need to first find the conditional density of X given Y . This is given by

    fX Y x y fXY x yfY y

    4x2y3

    22y3 4x2y22y 2xy1y 0 x 1

    0 elsewhere.

    Therefore,fX Y x y 1 2x 11 1

    2x 12

    x 12 0 x 1

    and

    P

    12 X 1 Y 1

    1

    12

    x 1

    2

    dx

    12

    x2 12

    x11

    2

    12 1

    2

    12 1

    4 1

    2 1

    2

    1

    18 1

    4

    5

    8

    2.3

    P Y X yx

    fXY x y dxdy 1

    0

    x0

    4x 2y3

    dy

    dx

    1

    0

    134xy y2x

    0

    dx

    10

    134x2 x2 dx 1

    0

    13 5x2dx

    13 5

    3x31

    0 1

    3 5

    3 5

    9

  • 12

    QUESTION 3

    X and Y are both from the exponential distribution with parameter 2, which means that their density functionsare

    fXx ex x 0fY y ey y 0

    and the joint density function, since X and Y are independent, is

    fXY x y ex ey

    3.1 Let U X Y . Then the distribution function of U is

    FU u PU u PX Y u xyu

    fXY x y dxdy

    u

    0

    ux0

    eydyexdx for u 0

    u

    0

    1 eux exdx u

    0

    ex eu dx

    1 eu ueu u 0 zero elsewhere

    where 2

    Alternatively, we can use the transformation method here. If we take

    U X Y V X

    then

    u g1x y x y g2x y x

    with inverse transformationsx y u

    The Jacobian is

    J x y

    g1x

    g1y

    g2x

    g2y

    1 11 0

    1Therefore,

    fUV u fXY u e eu 2eu for u 0

  • 13 STA2603/205

    and thereforefU u

    fUV u d u

    02eudu u2eu u 0

    andFU u

    u

    fU a da u

    0a2eada u 0

    which gives the same result as before, but the calculations are much longer!

    3.2

    MX t Eet X

    0etxexdx

    0etxdx

    t etx

    0

    t 0 1

    t (assuming t

    3.3 FromMt

    t t1

    We get

    M t 11 t2 t2M t 21 t3 2 t3M t 312 t4 6 t4Mit 416 t4 24 t5Mt 5124 t6 120 t6

    and thereforeEX5 M 0 1205

    3.4 For W 2XY , the moment generating function isMW t E

    etW E et2XY

    e2txy fXY x y dxdy

    0

    0

    e2txyexeydxdy

    QUESTION 4

    4.1 Since X1 and X2 are independent,

    V arY V ar3X1 2X2 V ar3X1 V ar 2X2 9V arX1 4V arX2 9 k 4 2 9k 8

    so to have V arY 35, we must have9k 8 35∴ 9k 35 8 27∴ k 3

  • 14

    4.2 For a random variable X from the distribution

    fXx

    6x 1 x 0 x 10 elsewhere

    we get

    EX 1

    0x 6x 1 x dx 1

    2

    EX2 1

    0x2 6x 1 x dx 3

    10

    and therefore

    V arX EX2 EX2 310

    12

    2 1

    20

    Now,Y X1 X2 X3 X4 X5

    where the Xi are all independent of each other and have the same distribution as X above, i 1 5Therefore

    EY 5 Ex 5 12 5

    2

    V arY 5V arX 5 120 1

    4

    QUESTION 5

    5.1 The normal approximation to the Poisson distribution states that if N has the Poisson distribution, then

    Z N E N V ar N

    is approximately a standard normal random variable when the Poisson parameter is large enough.

    Here, EN V arN 10000. Therefore, we get

    P N E N 500 P N E N

    V ar N

    500V arN

    PN E NV ar N

    500V arN P

    Z 500

    10000

    P Z 5 0

    5.2 (a) False. The variables may or may not be independent.

    (b) False. The marginal distribution must always sum up to 1, whether the random variables are independentor not.

  • 15 STA2603/205

    (c) False. Random variables X and Y would be independent if we had fY y fY Xyx for all x yvalues.

    (d) False. Moment generating function is defined also for discrete random variables.

    (e) False. What is true is that the marginal density function of X can be found by integrating fXY , the jointdensity function, over all values of y.

    QUESTION 6

    6.1 Q is the sum of six independent squared standard normal variables, so it has the 2 6 distribution, not the210 distribution.

    6.2 Since each Yj N2 100, we haveYj 2 N0 100

    andYj 2

    10 N 0 1

    Yj 2

    10

    2 21

    20j1

    y j 2

    10

    2 2 20

    But20j1

    Yj 2

    10

    2 1

    100

    20j1

    Yj 2

    2 19

    100

    119

    20j1

    Yj 2

    2 19102

    U R

    Therefore, R has the 2 20 distribution.

    6.3 We haveX j 2

    5 N 01 Yj 2

    10 N 0 1

    so20

    i1

    Xi 2

    5

    2 2 10

    20j1

    Yj 2

    10

    2 2 20

    and

    W

    10

    i1

    Xi 2

    5

    210

    20j1

    X j 2

    10

    220

    F10 20Here,

    V A 25100

    W

    and therefore, if we haveA 25

    100 1 ∴ A 100

    25 4

    then V has the F1020 distribution.

  • 16

    3. SOLUTIONS TO ASSIGNMENT 6

    The correct answers to the multiple choice questions are given below. Please see Section 2 in this tutorialletter for the correct solutions to the examination questions that these questions are based on!

    1. The correct answer is 2. 11. The correct answer is 1.

    2. The correct answer is 2. 12. The correct answer is 2.

    3. The correct answer is 4. 13. The correct answer is 2.

    4. The correct answer is 4. 14. The correct answer is 2.

    5. The correct answer is 3. 15. The correct answer is 2.

    6. The correct answer is 4. 16. The correct answer is 2.

    7. The correct answer is 1. 17. The correct answer is 2.

    8. The correct answer is 2. 18. The correct answer is 2.

    9. The correct answer is 4. 19 The correct answer is 4.

    10. The correct answer is 3. 20 The correct answer is 4.