Trigonometric ratios and identities 1

62
Mathematics

Transcript of Trigonometric ratios and identities 1

Page 1: Trigonometric ratios and identities 1

Mathematics

Page 2: Trigonometric ratios and identities 1

Trigonometric ratios and Identities

Session 1

Page 3: Trigonometric ratios and identities 1

Topics

Transformation of AnglesCompound Angles

Definition and Domain and Range of Trigonometric Function

Measurement of Angles

Page 4: Trigonometric ratios and identities 1

Measurement of Angles

O A

BOA InitialRay

OB Ter minal Ray

Angle is considered as the figure obtained by rotating initial ray about its end point.

J001

Page 5: Trigonometric ratios and identities 1

Measure and Sign of an Angle

Measure of an Angle :-Amount of rotation from initial side to terminal side.Sign of an Angle :-

O A

B

Rotation anticlockwise – Angle positive

B’

Rotation clockwise – Angle negative

J001

Page 6: Trigonometric ratios and identities 1

Right Angle

O

Y

X

Revolving ray describes one – quarter of a circle then we say that measure of angle is right angle

J001

Angle < Right angle Acute AngleAngle > Right angle Obtuse Angle

Page 7: Trigonometric ratios and identities 1

Quadrants

O

Y

Y’

X’ X

II Quadrant( , )

I Quadrant( , )

IV Quadrant( , )

III Quadrant( , )

X’OX – x - axis

Y’OY – y - axis

J001

Page 8: Trigonometric ratios and identities 1

System of Measurement of Angle

Measurement of Angle

Sexagesimal System or British System

Centesimal System or French System

Circular System or Radian Measure

J001

Page 9: Trigonometric ratios and identities 1

System of Measurement of Angles

Sexagesimal System (British System)

1 right angle = 90 degrees (=90o)1 degree = 60 minutes (=60’)1 minute = 60 seconds (=60”)

Centesimal System (French System)1 right angle = 100 grades (=100g)1 grade = 100 minutes (=100’)1 minute = 100 Seconds (=100”)

J001

Is 1 minute of sexagesimal1 minute of centesimal ?

=

NO

Page 10: Trigonometric ratios and identities 1

System of Measurement of Angle

Circular System

J001

O

r

r

r

A

B

1c

If OA = OB = arc ABcThen AOB 1radian( 1 )

Page 11: Trigonometric ratios and identities 1

System of Measurement of Angle

Circular System

O A

C

B1c

AOC arc ACAOB arcACB

1radian r2right angles r

2right angles radian

J001

180 radian

Page 12: Trigonometric ratios and identities 1

Relation Between Degree Grade And Radian Measure of An Angle

0 gD G 2C

90 100

OR

0 gD G C

180 200

J002

Page 13: Trigonometric ratios and identities 1

Illustrative ProblemFind the grade and radian measures of the angle 5o37’30”Solution

o' o30 30 130" 60 60 60 120

o37and37' 60

o oo 37 1 455 37'30" 5 60 120 8

J002

We know thatD G 2C

90 100

Page 14: Trigonometric ratios and identities 1

Illustrative Problem Find the grade and radian measures of the angle 5o37’30”

g10G D9

g g

g10 45 225 12.5 Ans9 8 18

c

and R D180

c45 radian Ans180 8 32

Solution

J002

Page 15: Trigonometric ratios and identities 1

Relation Between Angle Subtended by an Arc At The Center of Circle

O A

C

1c

B

Arc AC = r and Arc ACB = AOC arcACAOB arc ACB

J002

1radian r

r

Page 16: Trigonometric ratios and identities 1

Illustrative Problem A horse is tied to a post by a rope. If the horse moves along a circular path always keeping the rope tight and describes 88 meters when it has traced out 72o at the center. Find the length of rope. [ Take = 22/7 approx.].Solution

P A

B

72o

Arc AB = 88 m and AP = ?c

o 272 72 rad180 5

J002

arc ABr AP

2 88 22AP 70m [ approx.]5 AP 7

Page 17: Trigonometric ratios and identities 1

Definition of Trigonometric Ratios

J003

2 2r x y

xO

Y

X

P (x,y)

M

yr

ysin rxcos rytan x

xcot yrsec x

rcosec y

Page 18: Trigonometric ratios and identities 1

Some Basic Identities

sin cosec 1 ; n ,n I

2 2sin cos 1 2 2sec tan 1

2 2cosec cot 1

sintan ; 2n 1 ,n Icos 2

tan cot 1 ; 2n 1 ; n ,n I2

coscot ; n ,n Isin

cos sec 1 ; 2n 1 ,n I2

Page 19: Trigonometric ratios and identities 1

Illustrative Problem

Solution3sec tan .cosec

3 cosecsec 1 tan sec

3sec 1 tan cot 2sec 1 tan

2 21 tan 1 tan 3

2 21 tan

3

2 22 e Proved

J0032 2I f tan 1 e ,provethat

3

3 2 2sec tan .cosec 2 e

0 2

Page 20: Trigonometric ratios and identities 1

Signs of Trigonometric Function In All Quadrants In First Quadrant

xO

Y

X

P (x,y)

M

yr

Here x >0, y>0, 2 2r x y >0

ysin 0r

xcos 0r

ytan 0x

xcot 0y

rsec 0x

rcosec 0y

J004

Page 21: Trigonometric ratios and identities 1

Signs of Trigonometric Function In All Quadrants In Second Quadrant

Here x <0, y>0, 2 2r x y >0

ysin 0r

rcosec 0y

XX’

Y

Y’

P (x,y)

x

y r

xcos 0r

ytan 0x

xcot 0y

rsec 0x

J004

Page 22: Trigonometric ratios and identities 1

Signs of Trigonometric Function In All Quadrants In Third Quadrant

Here x <0, y<0, 2 2r x y >0

rcosec 0y

rsec 0x

X’ X

P (x,y)

O

Y’

YM

ysin 0r

xcos 0r

ytan 0x

xcot 0y

J004

Page 23: Trigonometric ratios and identities 1

Signs of Trigonometric Function In All Quadrants In Fourth Quadrant

Here x >0, y<0, 2 2r x y >0ysin 0r

XO

P (x,y)Y’

M

xcos 0r

ytan 0x

xcot 0y

rsec 0x

rcosec 0y

J004

Page 24: Trigonometric ratios and identities 1

Signs of Trigonometric Function In All Quadrants

I QuadrantAll Positive

II Quadrantsin & cosec are Positive

III Quadranttan & cot are Positive

IV Quadrantcos & sec are Positive

X

Y’

X’

Y

O

J004

ASTC :- All Sin Tan Cos

Page 25: Trigonometric ratios and identities 1

Illustrative Problem

lies in secondIf cot = 12 ,5

quadrant, find the values of other five trigonometric functionSolution

12 5cot tan5 12 2 2 2 169sec 1 tan sec 144

13 13sec sec liesinsecondquadrant12 12

12Whichgivescos 13

13cosec 5

J004

Method : 1

5 12 5Thensin tan cos 12 13 13

Page 26: Trigonometric ratios and identities 1

Illustrative Problem

lies in secondIf cot = 12 ,5

quadrant, find the values of other five trigonometric function

Solution

J004

Method : 2

Y

XX’Y’

P (-12,5)

-12

5 r

Here x = -12, y = 5 and r = 13

y 5sin r 13

x 12cos r 13

y 5tan x 12

r 13sec x 12

r 13cosec y 5

Page 27: Trigonometric ratios and identities 1

Functions

Domain Range

sin R [-1,1]cos R [-1,1]

sec R : (2n 1) 2

R-(-1,1)

cosec R : n R-(-1,1)

tan R : (2n 1) 2

R

cot R : n R

Domain and Range of Trigonometric Function

J005

Page 28: Trigonometric ratios and identities 1

Illustrative problemProve that

22 (x y)sin 4xy

is possible for real values of x and y only when x=ySolution

2 2(x y) 1 x y 4xy4xy

2sin 1

2 2x y 4xy 0 x y 0

But for real values of x and y 2x y is not less than zero 2x y 0 x y Pr oved

J005

Page 29: Trigonometric ratios and identities 1

Trigonometric Function For Allied Angles

Trig. ratio - 90o- 90o+ 180o- 180o+ 360o- 360o+

cos cos sin - sin - cos - cos cos cos

tan - tan cot - cot -tan tan - tan tan

sin - sin cos cos sin - sin - sin sin

If angle is multiple of 900 then sin cos;tan cot; sec cosecIf angle is multiple of 1800 then sin sin;cos cos; tan tan etc.

Page 30: Trigonometric ratios and identities 1

Trigonometric Function For Allied Angles

Trig. ratio - 90o- 90o+ 180o- 180o+ 360o- 360o+

sec sec cosec - cosec - sec - sec sec sec

cosec - cosec sec sec cosec -cosec - cosec cosec

cot - cot tan -tan -cot cot - cot cot

Page 31: Trigonometric ratios and identities 1

Periodicity of Trigonometric Function

Periodicity : After certain value of x the functional values repeats itself

Period of basic trigonometric functions

sin (360o+) = sin period of sin is 360o or 2cos (360o+) = cos period of cos is 360o or 2tan (180o+) = tan period of tan is 180o or

J005If f(x+T) = f(x) x,then T is called period of f(x) if T is the smallest possible positive number

Page 32: Trigonometric ratios and identities 1

Trigonometric Ratio of Compound AngleAngles of the form of A+B, A-B, A+B+C, A-B+C etc. are called compound angles(I) The Addition Formula

sin (A+B) = sinAcosB + cosAsinB cos (A+B) = cosAcosB - sinAsinB

tanA tanBtan A B 1 tanA tanB

J006

sin(A B)Pr oof: tan A B cos(A B)

sinA cosB cos A sinBcos A cosB sinA sinB

Page 33: Trigonometric ratios and identities 1

Trigonometric Ratio of Compound Angle

J006sinA cosB cos A sinBcos A cosB sinA sinB

r rDividing N and D by cos A cosB

We get tanA tanB

1 tanA tanB

Proved

cotBcot A 1cot A B cotB cot A

Page 34: Trigonometric ratios and identities 1

Illustrative problemFind the value of(i) sin 75o

(ii) tan 105o

Solution(i) Sin 75o = sin (45o + 30o) = sin 45o cos 30o + cos 45o sin 30o

1 3 1 1 3 12 22 2 2 2

(ii) Ans: 2 3

Page 35: Trigonometric ratios and identities 1

Trigonometric Ratio of Compound Angle

(I) The Difference Formula

sin (A - B) = sinAcosB - cosAsinB cos (A - B) = cosAcosB + sinAsinB

tanA tanBtan A B 1 tanA tanB

Note :- by replacing B to -B in addition formula we get difference formula

cotBcot A 1cot A B cot A cotB

Page 36: Trigonometric ratios and identities 1

Illustrative problem

If tan (+) = a and tan ( - ) = b

Prove that a btan2 1 ab

Solution

tan2 tan

tan tan1 tan tan

a b1 ab

Page 37: Trigonometric ratios and identities 1

Some Important Deductions

sin (A+B) sin (A-B) = sin2A - sin2B = cos2B - cos2A

cos (A+B) cos (A-B) = cos2A - sin2B = cos2B - sin2A

tanA tanB tanC tanA tanB tanCtan A B C 1 tanA tanB tanB tanC tanC tanA

Page 38: Trigonometric ratios and identities 1

To Express acos + bsin in the form kcos or sinacos +bsin

2 22 2 2 2a ba b cos sin

a b a b

2 2 2 2a bLet cos , thensin

a b a b

2 2acos bsin a b cos cos sin sin

2 2a b cos

Similarly we get acos + bsin = sin

2 2k cos , where k a b ,

Page 39: Trigonometric ratios and identities 1

Illustrative problem

7cos +24sin

Find the maximum and minimum values of 7cos + 24sinSolution

2 22 2 2 2

7 247 24 cos sin7 24 7 24

7 2425 cos sin25 25

7 24Let cos sin25 25

7cos 24sin 25 cos cos sin sin

Page 40: Trigonometric ratios and identities 1

Illustrative problem Find the maximum and minimum value of 7cos + 24sin

Solution 25cos 25cos where

1 cos 1 25 25cos 25

Max. value =25, Min. value = -25 Ans.

Page 41: Trigonometric ratios and identities 1

Transformation Formulae

Transformation of product into sum and difference 2 sinAcosB = sin(A+B) + sin(A - B) 2 cosAsinB = sin(A+B) - sin(A - B) 2 cosAcosB = cos(A+B) + cos(A - B)

Proof :- R.H.S = cos(A+B) + cos(A - B)= cosAcosB - sinAsinB+cosAcosB+sinAsinB= 2cosAcosB =L.H.S

2 sinAsinB = cos(A - B) - cos(A+B) [Note]

Page 42: Trigonometric ratios and identities 1

Transformation Formulae Transformation of sums or difference into products

C D C DsinC sinD 2sin cos2 2

C D C DsinC sinD 2cos sin2 2

C D C DcosC cosD 2cos cos2 2

C D C DcosC cosD 2sin sin2 2

C D D CcosC cosD 2sin sin2 2

or Note

By putting A+B = C and A-B = D in the previous formula we get this result

Page 43: Trigonometric ratios and identities 1

Illustrative problemProve thatcos8x cos6x cos 4x cot 6xsin8x sin6x sin4x

Solution(cos8x cos 4x) cos6xL.H.S (sin8x sin4x) sin6x

8x 4x 8x 4x2cos cos cos6x2 28x 4x 8x 4x2sin cos sin6x2 2

2cos6x cos2x cos6x2sin6x sin2x sin6x

2cos6x(cos2x 1)2sin6x(cos2x 1)

cot 6x Proved

Page 44: Trigonometric ratios and identities 1

Class Exercise - 1If the angular diameter of the moon be 30´, how far from the eye can a coin of diameter 2.2 cm be kept to hide the moon? (Take p = approximately)

227

A

B

E (Eye)

r

Moon

Page 45: Trigonometric ratios and identities 1

Class Exercise - 1If the angular diameter of the moon be 30´, how far from the eye can a coin of diameter 2.2 cm be kept to hide the moon? (Take p = approximately)

227

A

B

E (Eye)

r

Moon

Solution :-Let the coin is kept at a distance r from the eye to hide the moon completely. Let AB = Diameter of the coin. Then arc AB = Diameter AB = 2.2 cm

c c30 130́ 60 2 180 360

arc 2.2radius 360 r

360 2.2 360 2.2 7r 252 cm22

Page 46: Trigonometric ratios and identities 1

Class Exercise - 2

Solution :-

Prove that tan3A tan2A tanA = tan3A – tan2A – tanA.

We have 3A = 2A + Atan3A = tan(2A + A) tan3A = tan2A tanA

1– tan2A tanA

tan3A – tan3A tan2A tanA = tan2A + tanA

tan3A – tan2A – tanA = tan3A tan2A tanA (Proved)

Page 47: Trigonometric ratios and identities 1

Class Exercise - 3If sin = sin and cos = cos, then

–sin 02

(c) –cos 02

(d)

sin 02

(a) cos 02

(b)

Solution :- sin sin cos cosand

sin – sin 0 and cos – cos 0

– –2sin cos 0 and – 2sin sin 02 2 2 2

–sin 02

Page 48: Trigonometric ratios and identities 1

Class Exercise - 4Prove that

3sin20 sin40 sin60 sin80

16

LHS = sin20° sin40° sin60° sin80°Solution:-

1sin60 [2sin20 sin40 ] sin802

3 1[cos(40 – 20 ) – cos(40 20 )] sin802 2

3 [cos20 – cos60 ]sin804

3 1sin80 cos20 – sin804 2

3 2sin80 cos20 – sin808

Page 49: Trigonometric ratios and identities 1

Class Exercise - 4Prove that

3sin20 sin40 sin60 sin80

16

Solution:-

3 sin(80 20 ) sin(80 – 20 ) – sin808

3 sin100 sin60 – sin808

3 sin(180 – 80 ) sin60 – sin808

3 3sin80 – sin808 2

316

Proved.

Page 50: Trigonometric ratios and identities 1

Class Exercise - 5Prove that

n n

n

cos A cosB sin A sinBsin A – sinB cos A – cosB

A B2 cot , if n is even20, if n is odd

Solution :-n ncos A cosB sinA sinBLHS sinA – sinB cos A – cosB

n nA B A – B A B A – B2cos cos 2sin cos2 2 2 2A B A – B A B A – B2cos sin –2sin sin2 2 2 2

n nA– B A – Bcot – cot2 2

Page 51: Trigonometric ratios and identities 1

Class Exercise - 5

Solution :-

n n nA – B A – Bcot (–1) cot2 2

nn nA – B2cot , if n is evenA – Bcot 1 (–1) 22 0, if n is odd

Prove thatn n

n

cos A cosB sinA sinBsin A – sinB cos A – cosB

A B2cot , if n is even20, if n is odd

Page 52: Trigonometric ratios and identities 1

Class Exercise - 6The maximum value of 3 cosx + 4 sinx + 5 is

(d) None of these(a) 5 (b) 9(c) 7

2 23cosx 4sinx 3 4 Solution :-

2 2 2 23 4cosx sinx

3 4 3 4

3 45 cosx sinx5 5

5 cosx cos sinx sin

3 4Let cos sin5 5

Page 53: Trigonometric ratios and identities 1

Class Exercise - 6The maximum value of 3 cosx + 4 sinx + 5 isSolution :-

3 4Let cos sin5 5

5cos(x – )

–1 cos(x – ) 1

–5 5cos(x – ) 5

–5 5 5cos(x – ) 5 10

0 3cosx 4sinx 5 10

Maximum value of the given expression = 10.

Page 54: Trigonometric ratios and identities 1

Class Exercise - 7If a and b are the solutions of a cos + b sin = c, then show that

2 22 2

a – bcos( )a b

Solution :-We have … (i)acos bsin c

acos c – bsin 2 2 2a cos (c – bsin )

2 2 2 2 2a 1– sin c – 2bcsin b sin

2 2 2 2 2a b sin – 2bcsin (c – a ) 0

are roots of equatoin (i),

Page 55: Trigonometric ratios and identities 1

Class Exercise - 7If a and b are the solutions of acos + bsin

= c, then show that

2 2

2 2a – bcos( )a b

Solution :-

2 22 2

c – asin sina b

Hence

Again from (i),bsin c – acos

2 2 2b sin (c – acos )

2 2 2 2 2b (1– cos ) c a cos – 2cacos

2 2 2 2 2(a b ) cos – 2accos c – b 0

sin and sin are roots of equ. (ii).

Page 56: Trigonometric ratios and identities 1

Class Exercise - 7If a and b are the solutions of acos + bsin

= c, then show that

2 2

2 2a – bcos( )a b

Solution :- (iv) and be the roots of equation (i),

cos and cos are the roots of equation (iv).2 22 2

c – bcos cosa b

2 2 2 2 2 22 2 2 2 2 2

c – b c – a a – b–a b a b a b

cos( ) cos cos – sin sin Now

Page 57: Trigonometric ratios and identities 1

Class Exercise - 8If a seca – c tana = d and b seca + d tana = c, then

(a) a2 + b2 = c2 + d2 + cd

(c) a2 + b2 = c2 + d2

(d) ab = cd

2 22 21 1a b

c d(b)

Page 58: Trigonometric ratios and identities 1

Class Exercise - 8If a seca – c tana = d and b seca + d tana = c, then

asec – ctan d a csin– dcos cos

Solution :-

bsec dtan c Againb dsin ccos cos

b ccos – dsin ….. ii

a csin dcos ….. (I)

Squaring and adding (i) and (ii), we get

2 2 2 2 2 2 2 2a b c (sin cos ) d (cos sin )

2cd sin cos 2cd sin cos 2 2c d

Page 59: Trigonometric ratios and identities 1

Class Exercise -9

2 2A Asin – sin –8 2 8 2

The value of

(a) 2 sinA

(c) 2 cosA

1 sinA2

(b)1 cos A2(d)

Page 60: Trigonometric ratios and identities 1

Class Exercise -9

2 2A Asin – sin –8 2 8 2

Solution :-

A A A Asin – sin – –8 2 8 2 8 2 8 2

1sin sinA sinA4 2

2 2sin A – sin B sin(A B) sin(A – B)

2 2A Asin – sin –8 2 8 2

The value of

Page 61: Trigonometric ratios and identities 1

Class Exercise -10If , ,

and lie between0 and , then value of tan2 is

4cos( ) 5 5sin( – ) 13

4

(a) 1

(c) 0

(b)5633

(d)3356

Solution :- and between 0 and ,4

– – and 04 4 2

Consequently, cos and sin are positive.2sin( ) 1– cos ( )

Page 62: Trigonometric ratios and identities 1

Class Exercise -10

Solution :-16 31– 25 5

2 25 12cos( – ) 1– sin ( – ) 1– 169 13

3 5tan( ) , tan( – )4 12

tan2 tan[( ) ( – )]

3 5tan( ) tan( – ) 564 12

3 51– tan( ) tan( – ) 331– 4 12

If , , and lie between0 and , then value of tan2 is

4cos( ) 5 5sin( – ) 13

4