08. Trigonometric Ratios and Identities-2 - Copy

download 08. Trigonometric Ratios and Identities-2 - Copy

of 59

Transcript of 08. Trigonometric Ratios and Identities-2 - Copy

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    1/59

    Parul Institute of Engineering & Technology

    Subject Code : 3300001

    __________________________________

    Name Of Subject : basic mathematics

    _______________________________

    Name of Unit :Trigonometry__________________________________

    Topic : basic mathematics

    _________________________________________

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    2/59

    Slide Title (Calibri 44 pts)

    Main Heading (Calibri 36 pts) Sub Heading (Calibri 30 pts)

    Text (Calibiri 28 pts)

    (Use Images, Graphs, Diagrams where

    ever necessary)

    Sub: basic mathematics Topic: ____ basic mathematics

    ________________

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    3/59

    Trigonometric Ratio and Identity 2

    Session 2

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    4/59

    Topics

    Multiple Angles

    Sub Multiple Angles

    Conditional Identities

    Relation between sides and interior

    angle of polygon

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    5/59

    Multiple Angles

    An angle of the form of 2A, 3A, 4A

    etc are called multiple angles of A

    sin 2A = 2sinAcosA

    cos2A = cos2A sin2A

    cos2A = 1-2sin2A 1 - cos2A = 2sin2Aand

    2

    tanA2tan A =2

    -tan2

    A

    Trigonometric ratios of 2A in terms of A

    1+ cos2A = 2cos2Acos2A = 2cos2A - 1Q

    2cot A-2cot A =2

    cotA2

    J009

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    6/59

    Multiple Angles

    sin2A and cos2A in terms of tanA

    sin 2A = 2sinAcosA

    =

    +2 2

    sin cos2

    cos sin

    A A

    A A

    Dividing Nr and Dr by cos2A we get

    =+ 2tanA2

    sin A2tan A2

    2

    2

    tan A2cos A2

    tan A2

    =+

    Similarly

    J009

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    7/59

    Illustrative Problem

    Solution

    = o o

    2 2

    sin cos22 22

    ( )

    =

    o o

    o o

    2 2cos sin2 22 22

    2 2

    2sin cos2 22 22

    2

    cos sin2 22 22

    sin cos22 22

    =

    o o

    o o

    Show that cosec sec2 22 22 2 =o o

    L.H.S cosec sec2 22 22= o o

    ( )=

    o o o o

    o

    sin cos cos sin2 22 22 22 22

    sin 22

    ( )= =

    o o

    o

    sin2 22 22. proved2

    sin 22

    J009

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    8/59

    Illustrative Problem

    Prove that

    2 2 2 2

    cos cos cos cos2 2 2 22 2 2 2 2 + + + + =

    Solution

    2

    cos cos cos2 2 2

    = = Q

    2 2 2and cos cos cos

    2 2 2

    = =

    J009

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    9/59

    Illustrative Problem

    2 2 2 2

    cos cos cos cos2 2 2 22 2 2 2 2

    + + + + =

    Prove that

    2 2L.H.S cos cos cos cos2 2 2 2

    2 2 2 2

    = + +

    Solution

    2 2 2cos cos2 22 2

    =

    2 2 2sin sin2 2

    =

    2 22 2

    sin sin2 2

    2 2 2

    =

    2 2

    cos cos2 2

    2 2 2

    =

    2 2 2 2 2 22 2 2

    2 2 2 22 2

    = + = = Ans.

    J009

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    10/59

    Multiple Angles

    Trigonometric ratios of 3A in terms of A

    sin3A = 3sinA 4 sin3A

    Proof sin3A = sin(2A+A)

    = sin2AcosA + cos2AsinA

    = 2sinAcosAcosA +(12sin2A)sinA

    = 2sinAcos2A + sinA 2sin3A

    = 2sinA(1-sin2A) + sinA 2sin3A

    = 3sinA 4 sin3ASimilarly

    cos3A = 4cos3A 3cosA2

    2

    tanA tan A2tan A2

    tan A2 2

    =

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    11/59

    Illustrative Problem

    Prove that

    sinA.sin(60oA).sin(60o+A) 2sin A22

    =

    Solution

    L.H.S = sinA.sin(60oA).sin(60o+A)

    = sinA [sin260osin2A]

    2sinA sin A2 2 2sin A2

    2 2

    = =

    22sinA sin A2

    =

    Proved

    sin(A+B).sin(A-B) = sin2Asin2B

    J009

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    12/59

    Illustrative Problem

    Prove thatsin5 = 5sin 20sin3 + 16sin5

    L.H.S = sin 5 =sin(3 +2)

    Solution

    = sin 3cos2 + cos3sin2

    = (3sin 4sin3) (1 2sin2)

    + (4cos3 3cos) (2sincos)

    = (3sin 4sin3) (1 2sin2)

    + cos(4cos2

    3) (2sincos)= (3sin 4sin3) (1 2sin2)

    + 2sin (1sin2) {4(1sin2) 3}

    J009

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    13/59

    Illustrative ProblemProve that

    sin5 = 5sin 20sin3 + 16sin5

    Solution

    L.H.S. = (3sin 4sin3) (1 2sin2)

    + 2sin (1sin2) {4(1sin2) 3}

    = (3sin 4sin3

    ) (1 2sin2

    )+ (2sin 2sin3) (14sin2)

    = 3sin 6sin3 4sin3 + 8 sin5

    + 2sin 8sin3

    2sin3

    + 8sin5

    = 5sin 20sin3 + 16sin5 Proved

    J009

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    14/59

    Sub - Multiple Angle

    An angle of the form of A/2, A/3,A/4 etc are called sub - multiple

    angles of A

    Trigonometric ratios of A in terms of A/2

    A Asin A sin cos2

    2 2

    =

    2 2A AcosA cos sin2 2

    =

    2 2A Acos A cos cos cos A2 22 2

    2 2

    = = +Q

    2 2A Acos A sin sin cos A22 2 22 2

    = = Q

    J0010

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    15/59

    Sub - Multiple Angle

    Trigonometric ratios of A in terms of A/2

    2

    Atan22tanAA

    tan22

    =

    2 Acot 22cot A

    Acot2

    2

    =

    AsinA and cosA in terms of tan2

    2

    Atan2

    2sinA

    Atan22

    =+

    2

    2

    Atan2

    2cosA

    Atan22

    =

    +

    J0010

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    16/59

    Sub - Multiple Angle

    Trigonometric ratios of A interms of A/3

    2A AsinA sin sin2 22 2

    =

    2 A Acos A cos cos2 22 2 =

    2

    2

    A Atan tan2

    2 2tanAA

    tan2 2 2

    =

    J0010

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    17/59

    Illustrative Problem

    Find the value of

    (a) sin18o (b) cos18o (c) tan18o

    Solution

    (a) Let = 18o 5 = 90o

    2

    + 3

    = 90o

    2

    = 90o 3

    sin2 sin(90o 3 ) sin2 = cos3

    2sincos = 4cos3 3cos

    2sin = 4cos2 3

    2sin = 4(1-sin2) 3

    2sin = 4 4sin2 3 4sin2 + 2sin + 1 = 0

    J0010

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    18/59

    Illustrative ProblemFind the value of

    (a) sin18o (b) cos18o (c) tan18o

    This is a quadratic equationin sin

    2 2 22

    sin2

    +

    =2 2 2 2 2

    2 2

    = =

    = ,22oQ lies in the first quadrant

    sin is positive 2 2sin2

    =

    (b) cos218o = 1-sin218o2

    2 22

    2

    =

    22 2 2 2 2

    22

    +=

    4sin2 + 2sin + 1 = 0

    Why ??

    J0010

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    19/59

    Illustrative ProblemFind the value of

    (a) sin18o (b) cos18o (c) tan18o

    o2 22 2 2cos 2222

    +=

    22 2 2cos22

    2

    + = o

    Again = 18o lies in the first quadrant

    cos18o > 0 22 2 2cos222

    + =o

    sin22(c) tan22

    cos22=

    oo

    o

    2 2

    2 22

    22 2 2 22 2 2

    2

    = =

    + +

    J0010

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    20/59

    Illustrative Problem

    Show that

    sin59o sin13o + sin49o sin23o = cos 5o

    Solution L.H.S

    ( ) ( )sin sin sin sin22 22 22 22= + o o o o

    22 22 22 22 22 22 22 22cos sin cos sin2 22 2 2 2+ + = +

    cos sin cos sin2 22 22 2 22 22= +o o o o

    J0010

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    21/59

    Illustrative Problem

    Show that

    sin59o sin13o + sin49o sin23o = cos5o

    Solution

    ( )cos sin sin2 22 22 22= +o o o

    22 22 22 22cos sin cos2 22 2

    2 2

    + =

    o

    cos sin cos2 22 22 2= o o o

    2 2 2 2.cos2 2

    2 2

    + = o

    2 2 cos22= o cos R.H.S2= =o

    J0010

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    22/59

    Illustrative Problem

    cos cosIf cos

    cos cos2

    =

    then prove that one of the

    values of tan is tan cot2 2 2

    Solution 2cos sin .....( )2 2 22 =Q

    2cos cos .....( )2 2 22

    + =Q

    from (1) and (2)

    2 cos2tancos2 2

    =

    +

    cos cos2 cos cos2

    cos cos2

    cos cos2

    =

    +

    J0010

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    23/59

    Illustrative Problemcos cos

    If coscos cos2

    =

    then prove that one of thevalues of tan is tan cot

    2 2 2

    Solution

    cos cos cos cos2

    cos cos cos cos2

    +

    = +

    ( ) ( )

    ( ) ( )

    cos cos cos2 2

    cos cos cos2 2

    +

    = + +2 2

    2 2

    sin . cos2 22 2

    cos . sin2 22 2

    = 2 2tan tan

    2 2

    =

    2 2tan tan tan tan tan2 2 2 2 2

    = = Proved.

    J0010

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    24/59

    Conditional Identities

    Identities with certain givencondition.

    Four Types of Problems

    (1) Identities involving sines or cosines of multiples andsubmultiples of the angle

    (2) Identities involving squares of sines or cosines ofangle

    Conditions :A+B+C = , /2, 2

    J0011

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    25/59

    Conditional Identities

    (3) Identities involving tangents or co-tangents of angles

    (4) Identities which can be solved by transforming the

    given identities in trigonometric form.

    J0011

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    26/59

    Illustrative Problem

    (1) Identities involving sines orcosines of multiples and sub

    multiples of the angle involved.

    If A+B+C = , prove that

    cos2A + cos2B cos2C = 1-4sinAsinBcosC

    Solution L.H.S = (cos2A + cos2B) cos2C

    A B A B2 2 2 2cos cos cos C2 2

    2 2

    + =

    = 2cos(A+B) cos(AB) (2cos2C 1)

    = 2cos( C) cos(AB) 2cos2C +1

    J0011

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    27/59

    Illustrative Problem

    If A+B+C = , prove that

    cos2A + cos2B cos2C = 1-4sinAsinBcosC

    Solution

    = 1-2cosC {cos(A B) + cos ((A+B))}

    = 1-2cosC {cos(A B) cos (A+B)}

    = 1 4sinAsinBcosC Proved.

    A B A B A B A BcosC sin sin2 2 2 2 2

    + + + + =

    = 2cosC cos(AB) 2cos2C +1

    J0011

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    28/59

    Illustrative Problem

    If A + B + C = , prove that

    A B Ccos cos cos2 2 2+ +

    A B Ccos cos cos2

    2 2 2

    =

    Solution

    A B CL.H.S cos cos cos

    2 2 2

    = + +

    A B A BC2 2 2 2

    cos cos cos2

    2 2 2

    +

    = +A B A B C

    cos cos sin22 2 2 2

    + = +

    J0011

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    29/59

    Illustrative ProblemIf A + B + C = , prove that

    A B Ccos cos cos

    2 2 2+ +

    A B Ccos cos cos2

    2 2 2

    =

    Solution

    C A B C Ccos cos sin cos2 2

    2 2 2 2

    = + A B C

    A B C2 2 2 2

    + + = + + =Q

    C A B Ccos cos sin2

    2 2 2

    = +

    C A B Ccos cos cos2

    2 2 2 2

    = +

    J0011

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    30/59

    Illustrative ProblemIf A + B + C = , prove that

    A B Ccos cos cos

    2 2 2+ +

    A B Ccos cos cos2

    2 2 2

    =

    Solution

    C A B Ccos cos cos2

    2 2 2

    + = +

    C A B C C A Bcos cos cos2 2

    2 2 2

    + + + + =

    A B C A C B and B C A + + = + = + = Q

    C B B A Acos cos cos2 2

    2 2 2

    + + = A B C

    cos cos cos22 2 2

    = Proved.

    J0011

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    31/59

    Illustrative Problem

    (2) Identities involving squares of sines orcosines of angle

    If A+B+C = , prove that

    cos2

    A+cos2

    B+cos2

    C+2cosAcosBcosC = 1

    Solution L.H.S = cos2A+cos2B+cos2C+2cosAcosBcosC

    = cos2A+(1sin2B)+cos2C+2cosAcosBcosC

    = 1+(cos2Asin2B)+cos2C+2cosAcosBcosC

    = 1+cos(A+B)cos(AB)+cos2C+2cosAcosBcosC

    = 1+cos(C)cos(AB)+cos2C+2cosAcosBcosC

    J0011

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    32/59

    Illustrative Problem

    If A+B+C = , prove that

    cos2A+cos2B+cos2C+2cosAcosBcosC = 1

    Solution

    = 1+cos(C)cos(AB)+cos2C+2cosAcosBcosC

    = 1cosCcos(AB)+cos2C+2cosAcosBcosC

    = 1cosC{cos(AB)+cos(A+B)+2cosAcosBcosC

    = 12cosAcosBcosC+ 2cosAcosBcosC

    = 1 Proved.

    J0011

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    33/59

    Illustrative Problem(3) Identities involving tangents orco-tangents of angles

    If A+B+C =, prove thatcotBcotC+cotCcotA+cotAcotB = 1

    Solution A B C + + =Q

    A B C + =

    ( ) ( )cot A B cot C + =

    cot A cotB 2cotC

    cot A cotB

    =

    +cot A cotB cot A cotC cotBcotC2 =

    cotA cotB cotBcotC cotCcot A 2 + + = Proved.

    J0011

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    34/59

    Illustrative Problem

    (4) Identities which can be solved bytransforming the given identities in

    trigonometric form.

    If xy+yz+zx = 1, prove that

    ( ) ( ) ( )2 2 2 2 2 2

    x y z 2

    x y z2 2 2 x y z2 2 2

    + + =

    Solution Let x=tanA, y=tanB, z=tanC

    xy yz zx 2+ + =Q

    tanAtanB+tanBtanC+tanCtanA = 1

    tanB(tanA+tanC) = 1 tanAtanC

    J0011

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    35/59

    Illustrative Problem

    If xy+yz+zx = 1, prove that

    ( ) ( ) ( )2 2 2 2 2 2x y z 2

    x y z2 2 2 x y z2 2 2+ + =

    Solution

    tanA tanC 2cotB

    tanA tanC tanB2

    + = =

    tan(A C) tan B

    2

    + =

    A C B2

    + =

    A B C2

    + + = A B C .....( )2 2 2 2 + + =

    2 2 2

    x y zL.H.S

    x y z2 2 2= + +

    2 2 2tan A tanB tanC

    tan A tan B tan C2 2 2= + +

    J0011

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    36/59

    Illustrative Problem

    If xy+yz+zx = 1, prove that

    ( ) ( ) ( )2 2 2 2 2 2x y z 2

    x y z2 2 2 x y z2 2 2+ + =

    Solution

    2 2 2

    tanA tanB tanC2 2 2 2

    tan A tan B tan C2 2 2 2

    = + +

    2 tan A tan B tan C2 2 22

    = + +

    2tan A tan B tan C2 2 2

    2=

    2 2 2tanA tanB tanC2 2 2 2. .tan A tan B tan C2 2 2 2

    = ( ) ( ) ( )2 2 2xyz2

    x y z2 2 2=

    A B C2 2 2 + + = Q

    [putting the values of tanA, tanB, tanC] Proved.

    J0011

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    37/59

    Relation Between side and interiorangles of a polygon

    No of Sides = n

    Let O be a point inside the polygon

    Polygon = n triangles

    sum of all the angle of the triangle n .....( )222 2= o

    A N

    M

    DC

    BO

    J0011

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    38/59

    Relation Between side and interiorangles of a polygon

    Sum of all the angle of the trianglen .222= o

    A N

    M

    DC

    BO

    Sum of all the angle of the triangle

    = Sum of all the angles at O +

    Sum of all interior angle of polygon

    Sum of all interior angle of polygon + 3600= nx1800

    Sum of all interior angle of polygon

    = nx1800 - 3600

    J0011

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    39/59

    Relation Between side and interiorangles of a polygon

    Sum of interior angle of polygon

    n 222222= o o

    ( n )2 2 2 2= o

    (n )2 222= o

    If the polygon is regular

    ( )n 2222

    n

    =

    o

    Each interior angle

    Sum of all the angles at O= nx1800 - 3600

    A N

    M

    DC

    BO

    J0011

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    40/59

    Illustrative Problem

    The angle in one regular polygon is tothat in another as 3:2; also the

    number of sides in the first is twicethat in second ; how many sides thepolygons have ?

    Solution

    Let no. of sides of one regular polygon = x

    No. of sides of other polygon = 2x

    x2 2222

    2x2Given x 2 2

    222x

    =

    o

    ox

    22

    x 22 = x x2 2 2 2 = x 2 =

    No. of sides = 4 ,8

    J0011

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    41/59

    Class Exercise - 1

    If cotA tanA = 4, the value ofcot2A is

    (a) 4

    (b) 2

    (c) 1

    (d) 5

    cot A tan A 2 =Q

    Solution :-

    2tanA 2

    tanA =

    2tan A22

    tanA

    =

    2 2

    tan A tan A22 2

    2 2tan A tan A2 2 = =

    2tan A2

    2 = cot2A = 2

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    42/59

    Class Exercise - 2

    Solution :-

    Provethat

    sin12 sin48 sin54 = .2

    2

    LHS = sin12 sin48 sin54

    ( )2

    sin sin sin2 22 22 222

    =

    ( ) ( )2 cos cos sin2222 2222 222

    = +

    [ ] ( )2

    cos cos sin22 22 22222

    =

    [ ]

    2

    cos cos cos22 22 222=

    2 2 2 2 2 2

    2 2 2 2

    + +

    = 2 2 2 2 2

    2 2 2

    +=

    2 2 2RHS

    22 2

    = = =

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    43/59

    Class Exercise - 3

    Solution :-

    If sinx + siny = a and cosx + cosy

    = b, show that sin(x + y) = . 2 2ab2

    a b+

    2ab = 2(sinx + siny)(cosx + cosy)

    = 2(sinx cosx + sinx cosy + siny cosx + siny cosx)

    = 2 sinx cosx + 2 siny cosy + 2(sinx cosy + cosx siny)

    = sin2x + sin2y + 2 sin(x + y)

    = 2 sin(x + y) . cos(x y) + 2 sin(x + y)2ab = 2 sin(x + y){1+ cos(x y)} ... (i)

    and a2 + b2 = (sinx + siny)2 + (cosx + cosy)2

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    44/59

    Class Exercise - 3

    Solution :-

    If sinx + siny = a and cosx + cosy

    = b, show that sin(x + y) = . 2 2

    ab2

    a b+

    = sin2x + sin2y + 2 sinx siny + cos2x+ cos2y + 2 cosx cosy

    = 2 + 2 cos(x y) = 2(1 + cos(x y) ... (ii)

    { }

    { }2 2sin(x y) cos(x y)2ab2

    cos(x y)2a b

    + + =

    + +RHS =

    = sin(x + y) = LHS

    [ From (i) and (ii)]

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    45/59

    Class Exercise - 4If a cos2 and bsin2 = c has and as its solution, then prove that

    b2tan tanc a

    + =+

    (i) c atan tanc a

    = +(ii)

    Solution :-

    ... (i)acos b sin c2 2 + =Q

    ( )22 2

    a tan2 b tan2c

    tan tan2 2

    + =

    + +

    ( ) ( )2 2a tan b tan c tan2 2 2 + = +

    ( ) 2a c tan b tan (c a)2 2 + + + = ... (ii)

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    46/59

    Class Exercise - 4

    If a cos2 and bsin2 = c has and as its solution, then prove that

    Solution :-

    and are the roots of equation (i),

    tan and tan are the roots of equation (ii).

    c atan tan

    c a

    =

    +(Product of roots)

    b2ta n ta n

    a c + =

    +

    (Sum of roots)

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    47/59

    Class Exercise - 5

    tan x 2

    +

    If ,, and satisfy the equation

    = 3 tan3x, then

    tan tan tan tan + + +

    (a) 1

    (c) 0 (d) 2

    2

    2(b)

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    48/59

    Class Exercise - 5

    If ,, and satisfy the equation

    = 3 tan3x, then

    tan x2

    +

    tan tan tan tan + + + Solution :-

    tan x tan x2 22

    + = Q . (i)

    ( )22

    tan x tan tan x tan x2 22

    tan x2 2tanx. tan22

    + =

    ( )2

    2

    tan x tan x2 2tanx2

    tanx2 tan x2 2

    + =

    (1 + tanx)(1 3 tan2x) = (9 tanx 3 tan3x)(1 tanx)

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    49/59

    Class Exercise - 5

    If ,, and satisfy the equation

    = 3 tan3x, then

    tan x2

    +

    tan tan tan tan + + +

    Solution :-

    3 tan4x 6 tan2x + 8 tanx 1 = 0 ... (ii)

    ,, and are the roots of equation (i),

    are the roots of equation (ii).tan tan tan tan + + +

    2

    2

    coefficient of tan xtan tan tan tan

    coefficient tan x + + + = = 0

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    50/59

    Class Exercise - 6Prove that

    cos3A cos3A + sin3A sin3A = cos3 2A.

    = Q 2cos A cos A cos A2 2 2Solution :-

    ( ) = +22

    cos A cos A cos A2 22

    ( )= 2 2sin A sin A sin A2 22

    Similarly

    +2 2cos A cos A sin A sin A2 2L.H.S

    ( ) ( )= + + 2 2

    cos A cos A cos A sin A sin A sin A2 2 2 2 2 22 2

    ( ) ( )= + + 2 22 2

    cos A cos A sin A sin A cos A sin A2 2 2 22 2

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    51/59

    Class Exercise - 6Prove that

    cos3A cos3A + sin3A sin3A = cos3 2A.

    Solution :-

    ( )= +2 2

    cos A A cos ( A)2 222 2

    = +2 2

    cos A cos A2 2

    2 2

    = +2 2

    cos A cos ( A)2 222 2

    1 = +

    22

    cos A cos A cos A2 2 2 2 2

    2 2

    = RHS= cos32A

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    52/59

    Class Exercise - 7

    = cos cos .cos

    + =2tan tan tan2 2 2

    If then prove that

    = Q cos cos . cos

    Solution :-

    2tan2

    LHS

    coscoscos

    =

    (1)

    2 2

    2 2

    sin sin2cos22 2cos2

    cos cos22 2

    = = =

    +

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    53/59

    Class Exercise - 7

    = cos cos .cos

    + =

    2

    tan tan tan2 2 2

    If then prove that

    Solution :-

    cos2

    cos coscoscos cos cos

    2cos

    = = + +

    sin . sin22 2 tan . tan

    2 2cos . cos22 2

    + +

    = = +

    = RHS

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    54/59

    Class Exercise - 8If A + B + C = , prove that

    ( ) ( ) ( )cot B cot C cot C cot A cot A cot B

    cos ecA.cosecB.cosecC

    + + +

    =

    Solution :-

    cos B cos Ccot B cot C

    sinB sin C+ = +Q

    sinC cosB sinB cos C

    sinB sinC

    +=

    ( ) ( )sin B C sin A sinAcot B cot C

    sinB sinC sinB sinC sinB sinC

    + + = = = . (i)

    sin B

    sinC sinBSimilarly, cotC + cotA = ... (ii)

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    55/59

    Class Exercise - 8

    If A + B + C = , prove that( ) ( ) ( )cot B cot C cot C cot A cot A cot B

    cosecA.cosecB.cosecC

    + + +

    =

    Solution :-

    LHS = (cotB + cotC)(cotC + cotA)(cotA + cotB)

    and cotA + cotB =sin C

    sinA sinB (iii)

    = cosecA cosecB cosecC

    sin A sinB sinC

    sinB sinC sinC sin A sin A sinB=

    2

    sinA sinB sinC=

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    56/59

    Class Exercise - 9

    a btan tan

    a b2 2

    =

    +

    a cos bcos

    a b cos

    + =

    +

    IF

    than prove that

    Solution :-

    2

    2

    tan22cos

    tan22

    =

    +

    Q

    = +

    a b

    tan tana b2 2Given .. (i)

    2

    2

    a btan2

    a b 2

    a b tan2a b 2

    += + +

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    57/59

    Class Exercise - 9

    a btan tan

    a b2 2

    =

    +

    acos bcosa b cos

    + =+

    IF

    than prove that

    Solution :-

    2 2

    2 2

    (a b) cos (a b) sin2 2

    (a b) cos (a b) sin2 2

    + =

    + +

    2 2 2 2

    2 2 2 2

    a cos sin b cos sin

    2 2 2 2

    a cos sin b cos sin2 2 2 2

    + + =

    + +

    acos b L.H.Sa b cos

    += =+

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    58/59

    Class Exercise - 10The number of sides in two regularpolygons are 5 : 4 and the

    difference between their angles is9. Find the number of sides in thepolygons.

    Solution :-

    Let the number of sides of regular polygons are5x and 4x respectively.

    Each interior angle of regular polygons is

    x x2 2 2 2 2 2and22 22

    x x2 2

    x x2 2 2 2 2 222 22 2

    x x2 2

    = Given

  • 7/31/2019 08. Trigonometric Ratios and Identities-2 - Copy

    59/59

    Class Exercise - 10The number of sides in two regular polygonsare 5 : 4 and the difference between theirangles is 9. Find the number of sides in the

    polygons.

    Solution :-

    x x22 2 2 2

    x x2 2 22

    4 =

    x x22 22 22 22 2

    x22 22

    + =

    2 2x 2

    x22 22 = =

    Sides are 10 and 8.