Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and...

37
Tree Root Architecture: Patterns and Geotechnical Roles in Levees Levee Vegetation Research Symposium Sacramento, California August 28, 2012 ShihMing Chung and Alison M. Berry University of California, Davis Collaborators Gerald Bawden, U.S.G.S.; Keir Keightley, UC Davis; Sandra Bond, U.S.G.S.; John Lichter, Tree & Associates; Vic Claassen, UC Davis

Transcript of Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and...

Page 1: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Tree Root Architecture:   Patterns and Geotechnical Roles in Levees

Levee Vegetation Research SymposiumSacramento, California

August 28, 2012

Shih‐Ming Chung and Alison M. BerryUniversity of California, Davis

CollaboratorsGerald Bawden, U.S.G.S.;  Keir Keightley, UC Davis;  Sandra Bond, U.S.G.S.;  John Lichter, Tree & Associates; Vic Claassen, UC Davis

Page 2: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

California’s vegetated levees provide critical flood protection ‐

River Partners

Yet riparian forests provide critical habitat and ecosystem services.

How should levee trees be managed?G Fricker

Pocket Levee, Sacramento River

Page 3: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

The central scientific question:  What is the impact of trees and tree roots on levee safety?

Slope stabilizationSeepage

Key knowledge gap identified:How do tree roots actually grow in levees?

This symposium:  What can science contribute?

CLVRP project created: Tree Root Architecture in Levees

Page 4: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

2.  To create 3D models of tree root architecture that will help determine the potential risks and benefits of tree roots in levees.

Project Objectives

1.  To excavate and digitally map tree root systems in levees.

Tree root system properties

Limits of methodology

Prologue – what we know

Page 5: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

WHERE: Surface 1-3.5 ft provide best conditions for growth. Typically 80% of the root system is in this zone.

1 meter

Page 6: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

combinations of 3 or 4major woody systems

Root architecture: Structural rootsHorizontal rootsSinker rootsTap root – spp./soils

WHAT•Tree roots in many soil conditions grow horizontally more than vertically.

Page 7: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Conditions are usually best in the upper part of the soil profile.

HOW: The actual architectural pattern depends on key growth conditions:•Soil moisture•Aeration •Mechanical impedance (soil compaction)

Lyford 1980

Soil surface

1 meter

Page 8: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

0

1

2

3

4

20 21 22 23 24 25 26 27 28 29 30 31 32

Horizontal (ft)

Dep

th (f

t)

Roots <10mm Roots 10-19 mm

zone with almost no roots

1.421.631.38

b.d.

• Tree root systems are LARGE.• Tree root systems in situ are SURROUNDED BY SOIL.• Tree root systems are  THREE‐DIMENSIONAL.

Trench profile mapping could show that tree roots 

avoid compacted soil layers in Mayhew Levee.

But this method is limited, because…

Page 9: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

1. Air Spade excavation (pneumatic)

2. 3D laser imaging (ground‐based T‐ LiDAR)

3. Digitized data enables precise measurement and 3D modeling of key spatial parameters.

One way to overcome these hurdles

Page 10: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

• As you will see, architectural patterns of trees growing in sandy levees in California have distinctive, quantifiable properties.  

• The modeling methods in Shih‐Ming’s presentation can be widely applied.• However, specific configurations of tree root systems will vary according to soil, 

climate and levee properties (see Caroline Zanetti’s presentation).

• This symposium brings together many approaches and new sources of information to understand behavior of tree root systems in levees,  as we will hear in presentations to follow.

• We all contribute to a much‐needed scientific knowledge base about biomechanical and geotechnical properties of trees on levees, with insights from different angles, much like the story of the blind men and the elephant.

Summary

Page 11: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Tree root growth patterns and geotechnical roles on levee

•Shih‐Ming Chung and Alison M. Berry

Methods and Applications

Part II

Page 12: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

1. New field method for acquiring root system data

2. Data processing and model building

3. Analyzing root system patterns along levees

4. Data/models applications

Fieldwork Lab processing

Quantitative model Applications

Page 13: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Systematic approach to acquire and categorize in situ root system data

• Consider root system complexityand spatial attributes

• Use critical variables of tree root architecture to determine the range (root system extent) and resolution (minimum unit)

• Include above‐ground, slope, below‐ground compartments

• Classify the data as spatial points (1D), linear connections (2D), surface patterns (3D), and resulting thematic spatial composition

Page 14: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

1 Pneumatic excavation

2 T‐LiDAR scanning

Pneumatic Excavation And LiDAR Scanning (PEALS) system

• 15 Valley Oaks

• 5 Cottonwoods

• Most trees (18/20) on the water-side levee slope.

• Two control trees (flat)

20 TREES IN TOTAL

3D and in-situ

Page 15: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

1 2

3 4

Pneumatic excavation (compressed air)  in situ root systems

Page 16: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Ground‐Based Tripod LiDAR scanning

1 2 3

4 5

Page 17: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Process field data and acquirethe resulting models

• Stage I: T-LiDAR point cloud data (3D)

• Stage II: conversion of point-cloud data

- Tomographic slicing, hierarchical nested dataset, biomass model

- Vectorization of polylines, topological dataset, vector model

Page 18: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Stage I

Prescan: aboveground architecture and soil surface

LiDAR scan after root excavation Assembly of aboveground, soil surface, and root system

3D LiDAR image assembly of Pocket Levee Oaks (The Pocket site, Sacramento, CA)

1 2 3

4

Page 19: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Stage II

• Tomographic slicing (hierarchical nested dataset) ‐‐ Root Biomass Model

• Vectorization of polylines (topological dataset) ‐‐ Root Vector Model

Page 20: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

(x1, y1, z1)

(x2, y2, z2)

(x3, y3, z3)

(xn, yn, zn)

3D Point‐cloud data, XYZ format

Set up the coordinate system

Page 21: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

z axis:  vertical axis

x axis: parallel to the levee

y axis:  perpendicular to the levee

Origin of the coordinate systemtree trunk center at the slope surface

Upslope Downslope

Page 22: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Root biomass model

• Design the model based on spatial patterns: size, linkage, distribution

• Use root cross‐sectional area or diameter as the critical variable

• Sample the variables in virtual trench profile (2D sampling)

• Tomographically reconstruct the 3D hierarchical nested dataset

Page 23: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Virtual trench profile as the tomographic slices

Root CSA

Virtual trench profile

Page 24: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Longitudinal Radial(Upslope, Downslope, Vertical)

Tomographic reconstruction can use linear or radial slices

Page 25: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

2D plotR statistical program

Spatial analysis formatArcGIS

Spatial metricsFragstat

Slice ID Root # Root CSA /Slice Root Cumulative CSA DTC

n n (m2) % (m)

Data sheet for root biomass model

Page 26: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Root vector model branching pattern and directionality

• Vectorize the point‐cloud data as “polylines”• Using azimuth angle (to the north pole), zenith 

angle (to sky), root length, root order as the critical variables

• Reconstructing Topological relationship

Page 27: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Vectorizing the point‐cloud data

Point-cloud data

Making Polylines

Page 28: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Root ID Root order Azimuth angle Vertical angle Branching angle

Root length Branching point Root Type

n n Degree (˚) Degree (˚) Degree (˚) m m H, V, O

Data sheet for root vector model

Page 29: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Data analysis• Root system info• Root system morphological plasticity in relation to levee geometry

Page 30: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Root system morphological plasticity in relation to levee geometry

0o 360oAlternating growth directions

Shallow surface growth pattern

Tap root

2nd order

3rd

4th

5th

3rd

asymmetrySlope profile

symmetryParallel to the levee

Horizontal growth pattern

Page 31: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Root system Upslope VS. Downslope asymmetry

• Downslope side: more trees have further root extent, greater biomass, and higher root number

• Why are more roots on downslope side of the levee than upslope side?

Upslope Downslope

Further Root Extent 5 11

Greater Biomass 5 11

Higher Root Number 4 12

UpslopeLevee side

Downsloperiver side

Bulk density

0 m 

150 m

Page 32: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Trees growing in flat ground

• General patterns of root systems on a flat plain may be more symmetrical (Stokes and Mettheck, 1996)

• Our results (One cottonwood and one valley oak in Vernalis) correspond with the previous study

• Symmetrical and absence of taproot

• Root biomass radially distributes with an  exponential decreasing trend

Valley OakCottonwood

Page 33: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Data/Model applications

1.Below‐ground biomass estimation2.Levee slope stability modeling3.Levee slope surface erosion mapping4.Levee vulnerability assessment

Page 34: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

2. Levee slope stability modeling

• Virtual trench profiles can be used to locate the root system within the potential failure plane of levee slope for modeling

• RAR and CSA can then be used to determine Factor Of Safety (FOS) in levee slope stability model

• RAR and CSA

Virtual trench profile of potential failure plane

Page 35: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

3. Levee slope surface erosion mapping

• Land use and land cover mapping• General geomorphology mapping• Hydrological process mapping (soil – plant/root system – water dynamics)

• Resulting thematic map: Slope surface erosion map

Page 36: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

4. Levee vulnerability assessment 

• Surface process evaluation• Subsurface connectivity and slope stability evaluation

• Potential root system occurrence evaluation• Resulting vulnerability assessment map

Page 37: Tree Root Architecture: Patterns and Geotechnical Roles … · Tree Root Architecture: Patterns and Geotechnical Roles in Levees ... 2.Levee slope stability ... • Virtual trench

Oliver KreylosJeffrey WuMolly FerrellJaylee TuilRon Lane

Student field crews:5 seasons/4 locations

Student lab interns:Stephanie LauGary BladenHannah StoneRyan SresovichJoe SchlottmanSan Joaquin River 

National Wildlife RefugeEric Hopson

DWRRoy KrollDave Williams

River PartnersStephen SheppardJulie Rentner

Collaborators

Gerald Bawden, U.S. Geological SurveySandra Bond, U.S. Geological Survey

John Lichter, Tree & Associates

Vic Claassen, Soils & Revegetation, UC Davis

Keir Keightley, Geography, UC Davis

RD 1000    Paul Devereux

Acknowledgments