Totten Freshwater Challenges And Opportunities 09 26 08

93
Michael P. Totten Chief Advisor, Climate, Freshwater Center for Environmental Leadership in Business Conservation International CI Freshwater Strategy Meeting September 26, 2008 Freshwater Public Policies & Market-based Actions

description

Freshwaster worldwide faces challenges now and increasingly more severe due to climate change and growing human demand. Are there win-win ways to conserve watersheds and freshwater species, while meeting human demand?

Transcript of Totten Freshwater Challenges And Opportunities 09 26 08

Page 1: Totten Freshwater Challenges And Opportunities 09 26 08

Michael P. TottenChief Advisor, Climate, Freshwater

Center for Environmental Leadership in BusinessConservation International

CI Freshwater Strategy MeetingSeptember 26, 2008

Freshwater Public Policies & Market-based Actions

Page 2: Totten Freshwater Challenges And Opportunities 09 26 08

21st Century Mega Freshwater Threats

>85% Freshwater Consumption – Blue and Green Water - AGRICULTURE

>40% Freshwater Use – Thermal & Hydroelectric POWER PLANTS

Many of the same or similar utility and energy policies, rules, regulations, incentives addressing climate change threat are also applicable to freshwater threats from power plants

CLIMATE IMPACTS – on Blue and Green Water systems

Aggravated by global trading expansion in virtual water imports and exports

Failure to stabilize atmospheric emissions under 450ppm could lead to 1/3rd decline in global agriculture latter half this century – leading to more land conversion and water consumption

Page 3: Totten Freshwater Challenges And Opportunities 09 26 08

Contribution of different consumption categories to the global water footprint, with a distinction between the internal and external footprint

A. Y. Hoekstra · A. K. Chapagain, Water footprints of nations: Water use by people as a function of their consumption pattern, Water Resources Management, (2007) 21:35–48

Agriculture’s share of total water use (6390 Gm3/yr) is even bigger than suggested by earlier statistics due to the inclusion of greenwater use (use of soil water). If global irrigation losses are included (~1590 Gm3/yr) the total water used in agriculture becomes 7980 Gm3/yr. 1/3rd is blue water withdrawn for irrigation; the remaining 2/3rd is green water (soil water).

Page 4: Totten Freshwater Challenges And Opportunities 09 26 08

Nation’s Water FootprintInternal + External (IWFP+EWFP)

IWFP = AWU + IWW + DWW − VWEdom

AWU is agricultural water use, taken equal to the evaporative water demand of the crops; IWW and DWW are the water withdrawals in the industrial and domestic sectors;VWEdom is the virtual water export to other countries of domestically produced products.

EWFP = VWI − VWEre-export

Both the IWFP and EWFP include the use of blue water (ground and surface water) and the use of green water (moisture stored in soil strata).

VWI is virtual water import into the country,VWEre-export is virtual water exported to other countries as a result of re-export of imported products.

A. Y. Hoekstra · A. K. Chapagain, Water footprints of nations: Water use by people as a function of their consumption pattern, Water Resources Management, (2007) 21:35–48

Page 5: Totten Freshwater Challenges And Opportunities 09 26 08

1.Consumption Volume (related to the gross national income);

2.Consumption Composition (e.g. high versus low meat consumption);

3.Climate (growth conditions); and

4.Agricultural Practice (water use efficiency).

4 major direct factors determining the water footprint of a country

A. Y. Hoekstra · A. K. Chapagain, Water footprints of nations: Water use by people as a function of their consumption pattern, Water Resources Management, (2007) 21:35–48

Underlying factors can include lack of proper water pricing, the presence of subsidies, the use of water inefficient technology, lack of awareness of simple water saving measures among farmers, lack of access to credit.

Page 6: Totten Freshwater Challenges And Opportunities 09 26 08

INDIA 987 Gm3/yr

CHINA 883 Gm3/yr

Water footprints of the USA, China and India Period: 1997–2001Equal to one-third of total global water footprint

USA 696 Gm3/yr

A. Y. Hoekstra · A. K. Chapagain, Water footprints of nations: Water use by people as a function of their consumption pattern, Water Resources Management, (2007) 21:35–48

Page 7: Totten Freshwater Challenges And Opportunities 09 26 08

USA 2483 m3/cap/yr

WORLD 1243 m3/cap/yr

INDIA 980 m3/cap/yr

CHINA 702 m3/cap/yr

water footprints of the USA, World avg, China and India Period: 1997–2001

A. Y. Hoekstra · A. K. Chapagain, Water footprints of nations: Water use by people as a function of their consumption pattern, Water Resources Management, (2007) 21:35–48

Page 8: Totten Freshwater Challenges And Opportunities 09 26 08

Global average virtual water content of some selected products

A. Y. Hoekstra · A. K. Chapagain, Water footprints of nations: Water use by people as a function of their consumption pattern, Water Resources Management, (2007) 21:35–48

liters

Page 9: Totten Freshwater Challenges And Opportunities 09 26 08

• Humanity consumes half of global freshwater flow

• No major river in the world is without existing or planned hydroelectric dams

• 2/3 of the freshwater flowing to the oceans is controlled by dams

Yet….

Global Water Consumption

579

1900 1950 2000 2025

1,382

3,973

5,235

Increasing freshwater use

Total annual water withdrawal historical & projected, in cubic kilometers

Clark, Robin & Jannet King, The Water Atlas, New Press, 2004.

Page 10: Totten Freshwater Challenges And Opportunities 09 26 08

• 1 billion people without safe water

• 4 billion yet to be born will need additional freshwater in decades to come

Immense Water Shortages

0.5 billion

4-5 billion

May live in countries that are

chronically short of water

lived in countries

chronically short of water

2000 2050

total population6 billion

projected population10 billion

Postel, S. L., G. C. Daily, and P. R. Ehrlich, 1996, Human appropriation of renewable fresh water, Science 271:785-788, www.sciencemag.org/; Gleick PH, et al. 2003, The world's water 2002–2003, www.pacinst.org/; Jackson, Robert B., et al., Water in a Changing World, Issues in Ecology, Technical Report, Ecological Applications, 11(4), 2001, pp. 1027–1045, Ecological Society of America, www.esapubs.org/

Page 11: Totten Freshwater Challenges And Opportunities 09 26 08

In 2000, an estimated 195,000 Mgal/d, or 219 million acre-feet per year, were withdrawn for thermoelectric power.• The least efficient water-cooled plants use as much as 50 gallons of water per (kWh.• Water quality is affected by water use at power plants because of the effects of the temperature of discharged cooling water and the conditioning agents used to treat cooling water

Page 12: Totten Freshwater Challenges And Opportunities 09 26 08

Climate Impact on Agricultural Productivity

William Cline, Global Warming and Agriculture, Impacts by Country 2007.

Page 13: Totten Freshwater Challenges And Opportunities 09 26 08

Alcamo, J., M. Flörke and M. Marker, 2007: Future long-term changes in global water resources driven by socio-economic and climatic change. Hydrol. Sci. J., 52, 247–275.cited in Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., 2008: Climate Change and Water. Technical, Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp.

Page 14: Totten Freshwater Challenges And Opportunities 09 26 08

• Transaction costs are low• Rights and responsibilities of all

parties are clearly defined• Baseline assessments-monitoring

link payments to performance• Resource rights and tenure clear• Policies support PES programs• Fee Mechanisms exist for

assessing, collecting & disbursing• Poverty reduction addressed

Payment for Water Servicesbest occur given number of conditions

Payments for Ecosystem Services (PES), Background and Theory, Draft, May 2005, Conservation International

Page 15: Totten Freshwater Challenges And Opportunities 09 26 08

HIGH TRANSACTION COSTS1. Multi-stakeholder transactions2. Lack of cost effective intermediaries3. Poorly defined property rights4. Lack of a clear and comprehensive

regulatory framework

Common Constraints in Ecosystem Service Payment Projects

FACTORS THAT UNDERMINE SUPPLY8. Low awareness of market opportunities

and capacity to exploit these9. Lack of credibility in service delivery10. Cultural resistance

FACTORS THAT UNDERMINE DEMAND5. Lack of scientific information establishing

benefits provided by forests6. Lack of participation of key stakeholders7. Lack of willingness to pay

Payments for Ecosystem Services (PES), Background and Theory, Draft, May 2005, CI

Page 16: Totten Freshwater Challenges And Opportunities 09 26 08

Review of Ramsar COP9 National Reports in 2005 found only 18% of Contracting Parties reported that the Convention’s own guidelines on river-basin planning had been implemented, while fewer than a quarter reported “projects that promote and demonstrate good practice in water allocation and management for maintaining the ecological functions of wetlands have been developed”.

“There is an inadequate appreciation of the gap between rhetoric and implementation, and the profound overhaul of laws, policies and practices which acceptance of the principles of IWRM necessitates”

Global Water Partnership (GWP), 2003

Page 17: Totten Freshwater Challenges And Opportunities 09 26 08

“...there is no panacea for implementing IWRM; it must be tailored to prevailing conditions and flexible enough to permit this. Local circumstances can put obstacles in its way...

Probably because of these and other difficulties, very few countries have met the Johannesburg Plan of Implementation (JPOI) target that IWRM should be incorporated into national water resources plans by the end of 2005.

Thus, it is clear that more analysis of the practical means of moving from a fragmented, sector-by-sector approach to IWRM needs to be carried out for lower-income countries, and these experiences need to be shared widely.”

World Water Development Report 2, released at the 4th World Water Forum, 2006, UN’s World Water Assessment Programme, http://www.unesco.org/water/wwap

Integrated Water Resources Management (IWRM)

Page 18: Totten Freshwater Challenges And Opportunities 09 26 08

“IRBM is the process of coordinating conservation, management and development of water, land and related resources across sectors within a given river basin, in order to maximise the economic and social benefits derived from water resources in an equitable manner while preserving and, where necessary, restoring freshwater ecosystems.”

WWF, Managing Rivers Wisely, 2003

Integrated river basin management (IRBM)

Page 19: Totten Freshwater Challenges And Opportunities 09 26 08

There is a long-term vision for the river basin, which is supported by the major stakeholders;

Integration of policies, decisions and costs occurs across major sectoral interests such as industry, agriculture, urban development, poverty alleviation, navigation, fisheries management and conservation;

Strategic decision-making occurs at the river-basin scale and is used, in turn, to guide actions at sub-basin or local levels;

Great care is taken with the selection and timing of IRBM initiatives and actions; there is a need for readiness to seize unforeseen opportunities as they arise, providing that this will contribute clearly to realising the strategic vision;

Priority is given to maximising active stakeholder participation in decision-making processes that operate transparently and are based on provision of adequate and timely information;

There is sufficient investment by governments, the private sector, and civil society organisations in building capacity to enable effective river-basin planning, including the establishment and operation of participatory processes;

There is a solid foundation of knowledge about the river basin and the natural and socio-economic forces that influence it

WWF’s 7 general principles for successful IRBM initiatives

Page 20: Totten Freshwater Challenges And Opportunities 09 26 08

Peter H.Gleick, Global Freshwater Resources: Soft-Path Solutions for the 21st Century, Science, Nov. 28 2003 V. 302, pp. 1524-28.

Measured as $GNP (corrected for inflation) per m3 of water withdrawn, has risen sharply in recent years, from around $6 to $8/m3 to around $14/m3. Although GNP is an imperfect measure of economic well-being, it provides a consistent way to begin to evaluate the economic productivity of water use.

Economic productivity of water use in the United States,1900 to 19961 9

9 8 $

per

cub

ic m

e te r

Water Use Productivity Indicator

Page 21: Totten Freshwater Challenges And Opportunities 09 26 08

New York City’s nine million people receive 1.2 gallons per capita of water daily from three watersheds. The city has historically had high-quality drinking water,but nonpoint source pollution has threatened to degrade the water system.

Rather than pay $4–6 billion to construct filtration plants and $300–500 million more for annual operating costs, city commissioners developed a far more cost-effective and comprehensive watershed protection program—“whole farm planning.”

The city agreed to invest $1–1.5 billion within ten years, principally financed by additional taxes on water bills, bonds, and trust funds.

New York City Watershed Source Protection

Gleick, Peter H. Global Freshwater Resources: Soft-Path Solutions for the 21st Century. 28 November 2003, Vol 302, Science. www.sciencemag.org.

Winrock Intl., Financial Incentives to Communities for Stewardship of Environmental Resources Feasibility Study, Nov. 30, 2004, www.winrock.org/GENERAL/Publications/FinancialFINALrev.pdf

Page 22: Totten Freshwater Challenges And Opportunities 09 26 08

Water-based Finance Mechanism of NYC

NYC will also implement extensive watershed management measures, including water quality monitoring and disease surveillance, land acquisition and comprehensive planning, and upgrading wastewater treatment plants. The Watershed Agricultural Council (WAC), a local organization, was formed to support the improvement of land-use practices as well as economic development of local communities.

The program requires the city to pay the operating costs of the program and the capital costs for pollution-control investments on each farm as an incentive to farmers to join.

The program has successfully reduced watershed pollution loads, enabling the city to save millions of dollars, and demonstrating that watershed management can be more cost effective than water treatment for maintaining a drinking water supply.

Page 23: Totten Freshwater Challenges And Opportunities 09 26 08

Peter H.Gleick, Global Freshwater Resources: Soft-Path Solutions for the 21st Century, Science, Nov. 28 2003 V. 302, pp. 1524-28.

Projections of water use and actual global water withdrawals. Projections made before 1980 forecast very substantial increases in water use; more recent forecasts have begun to include possible improvements in water productivity to reflect recent historical experience.

Projections<1980 (forecasts for 2000

or 2015)between 1980 and 1995

(forecasts for 2000)>1995 (forecasts for

2000,2010, 2025,2030,2050,2075)

Cub

ic k

ilom

eter

s pe

r yea

rInefficient vs Efficient Water Path

No efficiency included

Little efficiency included

Optimum efficiency included

Page 24: Totten Freshwater Challenges And Opportunities 09 26 08

Total indoor residential water use in S. California in 2020 could be below the level of actual water use in 1980, despite a 50% increase in population.

Peter Gleick, Water Use, Annual Review of Environment and Resources, 2003. 28:275–314

Soft Water Path Savings

Page 25: Totten Freshwater Challenges And Opportunities 09 26 08

Sathaye, Jayant, and Scott Murtishaw. 2004. Market Failures, Consumer Preferences, and Transaction Costs in Energy Efficiency Purchase Decisions.Lawrence Berkeley National Laboratory for the California Energy Commission, PIER Energy-Related Environmental Research. CEC-500-2005-020, www.energy.ca.gov/2005publications/CEC-500-2005-020/CEC-500-2005-020.PDF

Supply Curve of Energy + Water Efficiency (& Information factors)

Page 26: Totten Freshwater Challenges And Opportunities 09 26 08

21st century Hydro Damming Threatens to Exceed Last

Century’s Damming -- Mostly in Biodiversity Habitat

Page 27: Totten Freshwater Challenges And Opportunities 09 26 08

Hydrodams 7% GHG emissions

Basin measurements suggest hydrodams account for ~7 % of global GHG emissions and could increase to 15% given projected dam growth, yet emissions are not fully accounted in the Kyoto Treaty GHG inventories.

Measurements at Brazil’s Tucuruídam indicate GHG releases of 1.4 to 2 million tons of CO2 per TeraWatt-hour (MtC02/TWh)

Higher than bituminous coal plant releases of 0.8 to 1.2 MtC02/TWh

Higher than natural gas-fired combined cycle plant releases of 0.3 to 0.5 MtC02/TWh

Tucuruí dam, BrazilSt. Louis VL, Kelly CA, Duchemin E, et al. 2000. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. BioScience 50: 766–75,

Page 28: Totten Freshwater Challenges And Opportunities 09 26 08

Net Emissions from Brazilian Reservoirs compared with Combined Cycle Natural Gas

Source: Patrick McCully, Tropical Hydropower is a Significant Source of Greenhouse Gas Emissions: Interim response to the International Hydropower Association, International Rivers Network, June 2004

DAMReservoir

Area (km2)

Generating Capacity

(MW)

Km2/MW

Emissions: Hydro

(MtCO2-eq/yr)

Emissions: CC Gas (MtCO2-eq/yr)

Emissions Ratio

Hydro/Gas

Tucuruí 24330 4240 5.7 8.60 2.22 3.87

Curuá-Una 72 40 1.8 0.15 0.02 7.50

Balbina 3150 250 12.6 6.91 0.12 57.58

Page 29: Totten Freshwater Challenges And Opportunities 09 26 08

Amazon damming75 planned dams and reservoirs in Brazil’s Amazonian region

Source: Fearnside PM. 1995. Hydroelectric dams in the Brazilian Amazon assources of “greenhouse”gases. Environmental Conservation 22: 7–19.

Cana Brava I on Tocantins

Page 30: Totten Freshwater Challenges And Opportunities 09 26 08

By 2100, an additional 1700 million ha of land may be required for agriculture.

Combined with the 800 million ha of additional land needed for medium growth bioenergy scenarios, threatens intact ecosystems and biodiversity-rich habitats.

Food, Fuel, SpeciesTradeoffs?

Page 31: Totten Freshwater Challenges And Opportunities 09 26 08

Corn ethanol

Cellulosic ethanol

Wind-w/storage turbine spacing

Wind turbines ground footprint

Solar-w/storage

Mark Z. Jacobson, Wind Versus Biofuels for Addressing Climate, Health, and Energy, Atmosphere/Energy Program, Dept. of Civil & Environmental Engineering, Stanford University, March 5, 2007, http://www.stanford.edu/group/efmh/jacobson/E85vWindSol

Area to Power 100% of U.S. Onroad Vehicles?

Solar-storage and Wind-storage refer to battery storage of these intermittent renewableresources in plug-in electric driven vehicles, CAES or other storage technologies

Page 32: Totten Freshwater Challenges And Opportunities 09 26 08

Forests, generally, are expected to use more water (the sum of transpiration and evaporation of water intercepted by tree canopies) than crops, grass, or natural short vegetation. This effect, occurring in lands that are subjected to afforestation or reforestation, may be related to increased interception loss, especially where the canopy is wet for a large proportion of the year or, in drier regions, to the development of more massive root systems, which allow water extraction and use during prolonged dry seasons.

Interception losses are greatest from forests that have large leaf areas throughout the year. Thus, such losses tend to be greater for evergreen forests than for deciduous forests and may be expectedto be larger for fast-growing forests with high rates of carbon storage than for slow-growing forests. Consequently, afforestationwith fast-growing conifers on non-forest land commonly decreases the flow of water from catchments and can cause water shortages during droughts

Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., 2008: Climate Change and Water. Technical, Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp.

Afforestation, Climate and Water

Page 33: Totten Freshwater Challenges And Opportunities 09 26 08

Efficiency servicesImmense pool

Highly cost-effectiveExtraordinarily low risk

A myriad of benefits

Page 34: Totten Freshwater Challenges And Opportunities 09 26 08

No. 1, 2,3 Actions: Efficiency, Efficiency, and more EfficiencyDecoupling, Financial Alignment, Standards, Dynamic Pricing

The Art of Efficiency

Page 35: Totten Freshwater Challenges And Opportunities 09 26 08

Envision 18 million coal railcars that would wrap around the world seven times each year.

Or, imagine 8,800 Exxon Valdez oil supertanker shipments per year.

Only 2 nations consume > 75 EJ per year: USA and China.

Efficiency gains 1973-2005 Eliminated 75 ExaJoules of Energy Supply

$700 billion per year in energy bill savings

Page 36: Totten Freshwater Challenges And Opportunities 09 26 08

McKinsey’s recent assessment concluded energy efficiency improvements with a 10% or higher ROI could provide half of all new energy demand through 2030.

And IEA’s “Aggressive Innovation” scenario concluded efficiency gains could provide 75% of projected new energy service demand through 2030.

Page 37: Totten Freshwater Challenges And Opportunities 09 26 08

agriculture5%

bldgs EE15%

transport EE15%

industry EE15%

solar15%

wind15%

biomass10%

geothermal1%

oil1%

gas2%

coal1%

forests5%

Wedges Scenario for 21st Century CO2 Reductions

Assumes:

1) Global economic growth 2-3% per year all century long;

2) sustaining 3% per year efficiency gains;

3) Combined carbon cap & carbon tax

oil gas coal

Page 38: Totten Freshwater Challenges And Opportunities 09 26 08

Energy, water and resource efficiency gains can satisfy half of the necessary GHG reductions this century

-- even as the global economy grows 10 to 20-fold --– providing services equal to 14 billion coal rail cars

(1800 TW-yrs or 57,000 EJs).

KEY INSIGHTKEY INSIGHT

Page 39: Totten Freshwater Challenges And Opportunities 09 26 08

BUSINESS-AS-USUAL TRAJECTORY 200 times this amount over 100 years –113,000 EJ (3600 TW-yrs). Fossil fuels will account for 75% of this sum.

CURRENT GLOBAL ENERGY CONSUMPTION ~ 475 ExaJoules (15 TW-yrs)

Envision eliminating the need for 13.8 billion coal railcars this century.

SMART ENERGY SERVICES (EFFICIENCY) can deliver 57,000 EJs (1800 TW-yrs). Save $50 trillion. Avoid several trillion tons CO2 emissions.

OR, Envision eliminating the need for 6,700 Chernobyl reactors.

OR, Envision eliminating the need for 13,800 Glen Canyon dams.

OR, Envision eliminating the need for 17 million LNG tanker shipments.

Page 40: Totten Freshwater Challenges And Opportunities 09 26 08

80% of all new electricity-consuming appliances, motors, office equipment will be purchased in developing countries in coming decades. Promoting production & purchase of hi-efficiency devices is 10 times less costly than any new power plant –hydro or coal.For example, the CFL factory above costs $5 million and over its lifespan will produceenough CFLs to displace inefficient incandescent bulbs that result in eliminating need for $6 billion investment constructing 3,600 MW of power plants.

Advanced Lighting and Window Technologies for Reducing Electricity Consumption and Peak Demand: Overseas Manufacturing and Marketing Opportunities, byAshok Gadgil et al., Lawrence Berkeley National Lab, 1992, posted at http://www.crest.org/efficiency/gadgil/index.html

MORE ENERGY EFFICIENCY REQUIRES LESS HYDRODAMS

Upper Mekong dam, China Compact Fluorescent Lamp (CFL) manufacturing

Page 41: Totten Freshwater Challenges And Opportunities 09 26 08

Contribution of hydropower to netelectricity generation in Africa (2002)

Page 42: Totten Freshwater Challenges And Opportunities 09 26 08

0

500

1000

1500

2000

2500

Wind turbine Solar-electric combined cycle coal-fired nuclear

Water Consumption (liters per MWh)

Water Use in Energy Production

Page 43: Totten Freshwater Challenges And Opportunities 09 26 08

Hashem Akbari Arthur Rosenfeld and Surabi Menon, Global Cooling: Increasing World-wide Urban Albedos to Offset CO2, 5th Annual California Climate Change Conference, Sacramento, CA, September 9, 2008, http://www.climatechange.ca.gov/events/2008_conference/presentations/index.html

$50 billion/yr Global Savings Potential, 44 Gigaton CO2 Reduction

Page 44: Totten Freshwater Challenges And Opportunities 09 26 08

Hashem Akbari Arthur Rosenfeld and Surabi Menon, Global Cooling: Increasing World-wide Urban Albedos to Offset CO2, 5th Annual California Climate Change Conference, Sacramento, CA, September 9, 2008, http://www.climatechange.ca.gov/events/2008_conference/presentations/index.html

Page 45: Totten Freshwater Challenges And Opportunities 09 26 08

Biggest Efficiency Option of Them All:Supplier Chain Factories & Products

Industrial electric motor systems consume 40% of electricity worldwide, 50% in USA, 60% in China – over 7 trillion kWh per year.

Retrofit savings of 30%, New savings of 50% -- @ 1 ¢/kWh.

2 trillion kWh per year savings –equal to 1/4th all coal plants to be built through 2030 worldwide.

$240 billion savings per decade.

$200 to $400 billion benefits per decade in avoided emissions of GHGs, SO2 and NOx.

Efficiency OutcomesDemand Facts

Support SEEEM (Standards for Energy Efficiency of Electric Motor Systems)

SEEEM (www.seeem.org/) is a comprehensive market transformation strategy to promote efficient industrial electric motor systems worldwide

Page 46: Totten Freshwater Challenges And Opportunities 09 26 08

Public library – North Carolina

Heinz Foundation Green Building, PA

Oberlin College Ecology Center,

Ohio

Green Buildings – ecologically sustainable, economically superior, higher occupant satisfaction

The Costs and Financial Benefits

of Green Buildings, A Report to California’s Sustainable

Building Task Force, Oct. 2003, by

Greg Kats et al.

$50 to $70 per ft2 net present

value

Page 47: Totten Freshwater Challenges And Opportunities 09 26 08

Less Large Power Plants & MinesMore Retail “Efficiency Power Plants - EPPs”

Less Coal Power Plants

Less Coal Rail Cars

Less Coal Mines

Page 48: Totten Freshwater Challenges And Opportunities 09 26 08

Align utility and customer financial interests to capture the vast pool of end-use efficiency,

onsite and distributed energy and water service opportunities.

KEY POLICY – UTILITY DECOUPLINGKEY POLICY – UTILITY DECOUPLING

Page 49: Totten Freshwater Challenges And Opportunities 09 26 08

New York

California

USA minus CA & NYPer Capital Electricity Consumption

165 GW Coal

Power Plants

Californian’s have net savings of

$1,000 per family

[EPPs]

Integrated Resource Planning (IRP) Key to harnessing “Efficiency Power Plants” (EPPs)For delivering least-cost & risk electricity, natural gas & water services

California proof of IRP value in promoting lower cost efficiency over new power plants or hydro dams, and lower GHG emissions.

Efficiency improvements “deliver” electricity services at 4 to 5 times lower cost than new power plants.

Page 50: Totten Freshwater Challenges And Opportunities 09 26 08

Consumers and Businesses ignore upwards of 90% of energy & water efficiency opportunities because they demand a payback within months or less than 1 year.

This results in massive lost opportunities for capturing low-cost carbon mitigation & freshwater savings options.

Utilities, in sharp contrast, have multi-decade time horizons, and find ROIs of 10% profitable.

However, the century-old utility regulatory structure that links revenues and profits undermines any incentive to capture the other 90% of efficiency gains.

Fortunately, there are innovative regulatory mechanisms for aligning Utility and consumer financial interests to capture this vast pool of end-use efficiency gains in buildings, appliances, factories, motors, lights, agriculture.

Page 51: Totten Freshwater Challenges And Opportunities 09 26 08

Utility Big Game ChangesWhat would it mean worldwide if utilities promoted energy and water efficiency and greening facilities whenever it was more cost-effective than building new power plants?

Several thousand giant power plants are projected to be constructed by 2030. Over the operating lifetimes of these power plants, some $48 trillion of revenues will be spent for the electricity services.

However, given the immensity of new factory expansion, building construction, and manufacturing of billions of new appliances, lights, office equipment, motors and other devices used in buildings, that will occur worldwide in the coming decades – it is technically feasible and financially preferable to eliminate half of these power plants through taking advantage of radical efficiency gains.

Bottom line: through innovative utility regulatory reform, utilities could profit as much from efficiency as from building power plants, but while freeing up half the revenues – part provided as incentives to architects, builders, manufacturers, customers, and a large fraction freed up from the utility sector to spur more economic development.

Page 52: Totten Freshwater Challenges And Opportunities 09 26 08

President Hu Jintao repeatedly calls for China to build a great “resource-conserving, water-conscious, and innovating society.”

Premier Wen Jiabao continually emphasizes China's development depends on scientific knowledge, technological progress and innovation, with a top priority on energy, water and resource conservation and environmental protection.

The 11th 5 Year Plan is unprecedented in giving highest priority to pursuing the 4E’s over the traditional fixation on resource expansion.

Premier Wen Jiabao

SEIZING THE 4 E’S

President Hu Jintao

EFFICIENCY OF ENERGY, WATER, RESOURCES AND LAND USE

Page 53: Totten Freshwater Challenges And Opportunities 09 26 08

Avoids Externalized cost from pollutants between $50 million & $360 million per yearAccrues $67.5 million annual savingsSaves 45 billion gallons watersAvoids Waste generation of 70,000 tons/year of sludge

Avoids significant quantities of toxic mercury, cadmium, arsenic, and other heavy metals

Avoids emitting 2 million tons CO2

Avoids emitting 5,400 tons NOx

Avoids emitting 5,400 tons SO2

Avoids burning 600,000 to 800,000 tons coalEliminates 6,000 to 8,000 railroad car shipments of coal delivered each year

Each 300 MW Conventional Coal Power Plant (CPP) Eliminated by an equivalent Efficiency Power Plant (EPP)

(1.8 billion kWh per year)

Avoided Emissions & Savings per China EPP

[1] Estimated at between 2.7 to 20 cents per kWh by the European Commission, Directorate-General XII, Science, Research and Development, JOULE, ExternE: Externalities of Energy, Methodology Report, 1998, Twww.externe.info/reportex/vol2.pdfT

And EPPs generates several times more jobs per $ of investment

Page 54: Totten Freshwater Challenges And Opportunities 09 26 08

Amory Lovins & Imran Sheikh, The Nuclear Illusion, May 2008, www.rmi.org

Page 55: Totten Freshwater Challenges And Opportunities 09 26 08

Amory Lovins & Imran Sheikh, The Nuclear Illusion, May 2008, www.rmi.org

How much coal-fired electricity can be displaced by investing one dollar to make or save delivered electricity

Page 56: Totten Freshwater Challenges And Opportunities 09 26 08

Amory Lovins & Imran Sheikh, The Nuclear Illusion, May 2008, www.rmi.org

Operating CO2 emitted per delivered kWh

Page 57: Totten Freshwater Challenges And Opportunities 09 26 08

Amory Lovins & Imran Sheikh, The Nuclear Illusion, May 2008, www.rmi.org

Coal-fired CO2 emissions displaced per dollar spent on electrical services

Page 58: Totten Freshwater Challenges And Opportunities 09 26 08

CHINA WATER

Chinese Paddlefish(21 feet long)

Page 59: Totten Freshwater Challenges And Opportunities 09 26 08

Map shows hydro dams planned on rivers running through the biodiversity hotspots in Sichuan and Yunnan provinces.

Yet, China has other economically viable options, such as four times more wind power than hydropower resources, 50% water efficiency savings through farm drip irrigation, and low-cost combined heat & power (CHP) for treating and recycling 60 trillion liters per year of discharged wastewater.

CHINA TO CONSTRUCT 200 DAMS IN BIODIVERSITY HOTSPOTS

Nu Jiang (Salween)

Lancang Jiang (Mekong)

Yangtze

Litang He

YalongJiang

Dadu He Min Jiang

Jin Sha Jiang (Yangtze)

>150 MW50 to 150 MW

Page 60: Totten Freshwater Challenges And Opportunities 09 26 08

CHINA SOUTH TO NORTH WATER DIVERSION PROJECTS

Will take water from Yangtze basin and transfer over 1000 km to Yellow, Huaiheand Haihe river basins in the North.

Plans for the water transfer schemes are based on questionable assumptions, (e.g., exaggerated water consumption predictions). Beijing’s population increased 20% since 1980, but city’s total water consumption remained same, due to realistic municipal water pricing and industrial water saving initiatives.

Even by official estimates, water savings in the 3 drought-stricken northern Chinese provinces is 50-90 billion m3 (vs. 60 billion m3 the whole S-N scheme could divert.

WWF China, The unacceptable cost of the proposed south-north water transfer scheme in China, 2001, cited in WWF, Dam Right! Rivers at Risk, Dams & Future of Freshwater Ecosystems, 2003.

Page 61: Totten Freshwater Challenges And Opportunities 09 26 08

The building of access roads to the construction site of the Xiaowan dam on the Upper Mekong (Lancang) river in China has already caused considerable damage.

Dam Construction Destruction

WWF, Dam Right! Rivers at Risk, Dams & Future of Freshwater Ecosystems, 2003

Page 62: Totten Freshwater Challenges And Opportunities 09 26 08

Half of proposed global dams not cost-effective against a large and expanding pool of water & energy efficiency options.For example, in Latin America, water distribution losses have been estimated at some 9 trillion m3 per year, or 1/3rd of the total water collected and treated. Losses could be cut by 3/4th if international water delivery standards were achieved, saving money & foregoing new dams.

Source:Savedoff, W and Spiller, Agua perdida(Spilled Water), 1999, Inter-American Development Bank.

Cheaper to capture losses than expand dams

Leaking water distribution pipesGuri dam, Venezuela

Page 63: Totten Freshwater Challenges And Opportunities 09 26 08

The efficiency of irrigation techniques is low and globally up to 1500 trillion liters (~400 trillion gallons) of water are wasted annually

Immense Water Waste

WWF, Dam Right! Rivers at Risk, Dams & Future of Freshwater Ecosystems, 2003

Page 64: Totten Freshwater Challenges And Opportunities 09 26 08

Globally, nearly 70% of water withdrawals go to irrigated agriculture, yet conventional irrigation can waste as much as 80% of the water.

Such waste is driven by misplaced subsidies and artificially low water prices, often unconnected to the amount of water used.

Drip irrigation systems for water intensive crops such as cotton can mean water savings of up to 80% compared to conventional flood irrigation systems, but these techniques are out of reach for most small farmers.

Currently drip irrigation accounts for only 1% of the world’s irrigated area.

Soft Water PathMore productive, Less cost, Less damage

Gleick, Peter H., Global Freshwater Resources: Soft-Path Solutions for the 21st Century, State of the Planet Special, Science, Nov. 28, 2003 V. 302, pp.1524-28, www.pacinst.org/

Page 65: Totten Freshwater Challenges And Opportunities 09 26 08

Water in Agricultural Production

Water productivity

Micro (drip) irrigation consumes 50% less water. However, only 1% of all irrigated land in 2000 was drip irrigating.

In China, vast quantities of agriculture water are used inefficiently.

In 2000, 97% of all Chinese irrigation used furrow/ flood irrigation; only 3% was watered with micro-sprinklers and drip systems.

Peter Gleick, Global Freshwater Resources, Soft-Path Solutions for 21st Century, 2003, www.pacinst.org/

Small-scale Drip irrigation

Large-scale Drip irrigation

Page 66: Totten Freshwater Challenges And Opportunities 09 26 08

Reverse Osmosis estimates considered valid for China today ranges from a cost of $0.60 per m3

(1000 liters) for brackish and wastewater desalination to $1 per m3

for seawater desalination by RO.

Extrapolating from technological trends, and the promise of ongoing innovations in lower-cost, higher performance membranes, seawater desalination costs will continue to fall. The average cost may decline to $0.30 per m3 in 2025.

Reverse Osmosis (RO) of Wastewater

Page 67: Totten Freshwater Challenges And Opportunities 09 26 08

For comparison, China’s average water prices are about $0.20 to $0.25 per m3 for domestic and industrial use, and $0.34 per m3 for commercial use, to a high of $0.60/m3

in Tianjin and Dalian.

China’s State Council is moving to raise the price of urban water supply in Beijing to $0.72 per m3.

This reverse-osmosis plant in Ashkelon, Israel, will eventually turn out 100 million cubic meters of fresh water a year, at a cost of $0.53 cents per m3, the cheapest ever by a desalination facility.

RO of Wastewater into Clean Water

Page 68: Totten Freshwater Challenges And Opportunities 09 26 08

Desalination of wastewater has double benefits: it reduces contaminated discharges directly into rivers, and instead, economically expands the city’s freshwater supplies rather than importing remote water resources.

China’s total wastewater discharges annually exceed 60 km3,(16 trillion gallons), and less than one-seventh of this wastewater was treated as of the late 1990s.

Close to 600 million Chinese people have water supplies that are contaminated by animal and human waste.

Harnessing 30 GW of cogeneration available in cities and industrial facilities potentially could operate reverse osmosis technologies to purify these wastewaters, while also providing ancillary energy services like space and water heating & cooling, etc.

RO & CHP Synergism for Clean Water

Page 69: Totten Freshwater Challenges And Opportunities 09 26 08

Extra Slides

Page 70: Totten Freshwater Challenges And Opportunities 09 26 08

2nd Water Decade, ‘Water for Life’ (2005 to 2015)

By the year 2025, it is estimated that one-third of the world’s population will face severe and chronic water shortages.

Some 3/4th of the 1.2 billion poor and the 800 million malnourished people in the world live in affected areas, with subsistence agriculture as their sole or primary source of food and income. WHO

The UN World Water Development Report (2003) provides global estimates of funding for the water sector in the range of US$110 to US$180 billion, and concludes that there is a massive investment gap and that the sources of finance are inadequate. It is also estimated that the bulk of both current and future financing comes, and will have to come, from domestic public and private funding – not international financing through development.

Page 71: Totten Freshwater Challenges And Opportunities 09 26 08

A schematical summary of the amount of food produced, globally, at field level and estimates of the losses, conversionsand wastage in the food chain. Source: Smil (2000). Illustration: Britt-Louise Andersson, SIWI. Cited in Lundqvist, J., C. de Fraiture and D. Molden. Saving Water: From Field to Fork – Curbing Losses and Wastage in the Food Chain. SIWI Policy Brief. SIWI, 2008.

Page 72: Totten Freshwater Challenges And Opportunities 09 26 08

A study of Poverty Reduction Strategy Papers (PRSPs)8 was carried out for WWF in 2004 (ODI, 2004). Updated (at least in principle) every three years and reviewed in annual progress reports, PRSPs describe each country’s macroeconomic, structural and social policies/programmes for promoting broad-based growth and reducing poverty, and are used as a means of identifying investment priorities and financing needs. Find out more about PRSPs at: http://www.imf.org/external/np/prsp/prsp.aspand in the WWF-UK guides to PRSPs and water: http://www.wwf.org.uk/researcher/issues/internationaldevelopment/0000000235.asp

UN Task Force on Water and Sanitation has noted that there is “currently no global system in place to produce a systematic, continuing, integrated, and comprehensive global picture of freshwater and its management in relation to the MDGs” (UN 2005).

Page 73: Totten Freshwater Challenges And Opportunities 09 26 08

Applying the principles of integrated water resource and river basin management –an introduction, A Report to WWF-UK prepared by: Tim Jones, Peter Newborneand Bill Phillips, June 2006, www.panda.org/freshwater

Allan, T. (2003). ‘IWRM/IWRAM: a new sanctioned discourse’, SOAS Occasional Papers, April 2003.

CCICED (2004). Promoting Integrated River Basin Management and Restoring China’s Living Rivers. Report of the CCICED Task Force on Integrated River Basin Management. China Council for International Cooperation on Environment and Development.

ODI (2004 a). ‘Water and Poverty Reduction: review of WRM and WSS under PRSPs and equivalent development strategies in ten countries’, Report for WWF, March 2004.

WWF (2002). ‘Managing Water Wisely: promoting sustainable development through integrated river basin management’, WWF Living Waters Programme, WWF International, 2002.

Page 74: Totten Freshwater Challenges And Opportunities 09 26 08

The components of the water footprint of a business

WATER NEUTRALITY: a concept paper, Winnie Gerbens-Leenes, Arjen Hoekstra, Richard Holland, Greg Koch, Jack Moss, PanchoNdebele, Stuart Orr, Mariska Ronteltap, Eric de Ruyter van Stevenink, Nov 2007, WWF Freshwater Program

Page 75: Totten Freshwater Challenges And Opportunities 09 26 08

Water stress indicators (WSI) taking into account Environmental Water Requirements

Smakhtin, V.; Revenga, C; and Doll, P. 2004. Taking into account environmental water requirements in global-scale water resources assessments. Comprehensive Assessment Research Report 2. Colombo, Sri Lanka: Comprehensive Assessment Secretariat.

Page 76: Totten Freshwater Challenges And Opportunities 09 26 08

It takes about 70 times more water to grow food for people than people use directly for domestic purposes – and roughly 1000 times more than people need for drink.

www.worldwatercouncil.org/virtual_water/documents/virtual_water_final_synthesis.pdf

Page 77: Totten Freshwater Challenges And Opportunities 09 26 08

Hydropower in Africa – key facts

• 290 GW – economically feasible hydropower potential in Africa

• only 7% of the potential developed – vs. 33% globally and 65% in Europe

• Countries with largest potential: Democratic Republic of Congo, Cameroon, Ethiopia

• 20 GW, 73 large hydro projects in operation, 4 GW new hydro under construction

• Key rivers proposed for hydropower development: Congo, Nile, Zambezi

• Proposed Grand Inga Project on Congo: 40,000 MW, would be world’s largest hydropower project, estimated cost up to US$50 billion

• The Congo River is also the second richest in the world for fish. Fish diversity could be threatened by insensitive hydropower development

• Downstream fisheries and ecosystems have been heavily impacted by large hydropower projects, for example in the Zambezi and Senegal Basins

• 400,000 people displaced by dams in Africa

Page 78: Totten Freshwater Challenges And Opportunities 09 26 08

The gross per capita water availability in India is projected to decline from about 1,820 m3/yr in 2001 to as little as 1,140 m3/yr in 2050, as a result of population growth. Another study indicates that India will reach a state of water stress before 2025, when the availability is projected to fall below 1,000 m3 per capita.

Page 79: Totten Freshwater Challenges And Opportunities 09 26 08

Globally, the negative impacts of future climate change on freshwater systems are expected to outweigh the benefits (high confidence). By the 2050s, the area of land subject to increasing water stress due to climate change is projected to be more than double that with decreasing water stress.

Globally, the area of land classified as very dry has more than doubled since the 1970s.

Many semi-arid and arid areas (e.g., the Mediterranean Basin, western USA,southern Africa and northeastern Brazil) are particularly exposed to the impacts of climate change and are projected to suffer a decrease of water resources due to climate change.

the proportion of land surface in extreme drought at any one time is projected to increase (likely), in addition to a tendency for drying in continental interiors during summer, especially in the sub-tropics, low and mid-latitudes.

Water supplies stored in glaciers and snow cover are projected to decline in the course of the century, thus reducing water availability during warm and dry periods (through a seasonal shift in streamflow, an increase in the ratio of winter to annual flows, and reductions in low flows) in regions supplied by melt water from major mountain ranges, where more than one-sixth of the world’s population currently live.

Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., 2008: Climate Change and Water. Technical, Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp.

Page 80: Totten Freshwater Challenges And Opportunities 09 26 08

Changes in water quantity and quality due to climate change are expected to affect food availability, stability, access and utilisation. This is expected to lead to decreased food security and increased vulnerability of poor rural farmers, especially in the arid and semi-arid tropics and Asian and African megadeltas.

Adaptation options designed to ensure water supply during average and drought conditions require integrated demand-side as well as supply-side strategies.

Water resources management clearly impacts on many other policy areas, e.g., energy, health, food security and nature conservation. Thus, the appraisal of adaptation and mitigation options needs to be conducted across multiple water-dependent sectors.

Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., 2008: Climate Change and Water. Technical, Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp.

Page 81: Totten Freshwater Challenges And Opportunities 09 26 08

Examples of current vulnerabilities of freshwater resources and their management; in the background, a water stress map based on WaterGAP

Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., 2008: Climate Change and Water. Technical, Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp.

Page 82: Totten Freshwater Challenges And Opportunities 09 26 08

Cumulative mean specific mass balances (a) and cumulative total mass balances (b) of glaciers and ice caps, calculated for large regions

Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., 2008: Climate Change and Water. Technical, Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp.

Page 83: Totten Freshwater Challenges And Opportunities 09 26 08

Changes in extremes based on multi-model simulations from nine global coupled climate models in 2080–2099 relative to 1980–1999.

Stippling denotes areas where at least five of the nine models concur in determining that the change is statistically significant.

Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., 2008: Climate Change and Water. Technical, Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp.

Page 84: Totten Freshwater Challenges And Opportunities 09 26 08

Large-scale relative changes in annual runoff for the period 2090–2099, relative to 1980–1999.

White areas are where less than 66% of the ensemble of 12 models agree on the sign of change, and hatched areas are where more than 90%of models agree on the sign of change.

Page 85: Totten Freshwater Challenges And Opportunities 09 26 08

Palmer Drought Severity Index

Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., 2008: Climate Change and Water. Technical, Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp.

Page 86: Totten Freshwater Challenges And Opportunities 09 26 08

Simulated impact of climate change on long-term average annual diffuse groundwater recharge

Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., 2008: Climate Change and Water. Technical, Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp.

Page 87: Totten Freshwater Challenges And Opportunities 09 26 08

Illustrative map of future climate change impacts related to freshwater which threaten the sustainable development of the affected regions

Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., 2008: Climate Change and Water. Technical, Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp.

Page 88: Totten Freshwater Challenges And Opportunities 09 26 08

(a) Current suitability for rain-fed crops (excluding forest ecosystems).SI = suitability index; (b) ensemble mean percentage projected change in

annual mean runoff between the present (1980–1999) and 2090–2099.

Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., 2008: Climate Change and Water. Technical, Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp.

Page 89: Totten Freshwater Challenges And Opportunities 09 26 08

Source: United Nations Economic Commission for Africa (UNECA), Addis Abeba ; Global Environment Outlook 2000(GEO), UNEP, Earthscan, London, 1999.

Page 90: Totten Freshwater Challenges And Opportunities 09 26 08

National virtual water trade balances over the period 1995-1999

A.Y. Hoekstra and P.Q. Hung, Virtual Water Trade A Quantification of Virtual Water Flows Between Nations in Relation to International Crop Trade, September 2002Value of Water Research Report Series No. 11, IHE Delft.

Green colored countries have net virtual water export. Red colored countries have net virtual water import.

Page 91: Totten Freshwater Challenges And Opportunities 09 26 08

The real and the virtual water balance of China in 1999 (data in Gm3/yr).

Arjen Hoekstra, Virtual water trade between nations: a global mechanism affecting regional water systems, UNESCO-IHE Institute for Water Education, Delft,

Page 92: Totten Freshwater Challenges And Opportunities 09 26 08

Details of water footprints of the USA, China India and Japan. Period: 1997–2001

USA

INDIA JAPAN

CHINA

A. Y. Hoekstra · A. K. Chapagain, Water footprints of nations: Water use by people as a function of their consumption pattern, Water Resources Management, (2007) 21:35–48

Page 93: Totten Freshwater Challenges And Opportunities 09 26 08

Contribution of different crops to the global water footprint

A. Y. Hoekstra · A. K. Chapagain, Water footprints of nations: Water use by people as a function of their consumption pattern, Water Resources Management, (2007) 21:35–48