ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf ·...

18
8/1/2013 1 www.heartandstroke.com Thermal Fluids Modeling of Localized Hypothermia in a Canine Brain Graduate Student: Ryan A. Sikorski Thesis Advisor: Dr. Thomas L. Merrill Rowan University Department of Mechanical Engineering August 2 nd 2013 Committee Members: Dr. Smitesh Bakrania Dr. Krishan Bhatia Dr. JenniferVernengo 2

Transcript of ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf ·...

Page 1: ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf · 8/1/2013 12 Comsol Settings 23 Boundary Condition Value Artery Inlet No Flow, Fully

8/1/2013

1

www.heartandstroke.com

Thermal Fluids Modeling of Localized Hypothermia in a Canine Brain

Graduate Student: Ryan A. Sikorski Thesis Advisor: Dr. Thomas L. MerrillRowan University Department of Mechanical EngineeringAugust 2nd 2013

Committee Members:Dr. Smitesh BakraniaDr. Krishan BhatiaDr. Jennifer Vernengo

2

Page 2: ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf · 8/1/2013 12 Comsol Settings 23 Boundary Condition Value Artery Inlet No Flow, Fully

8/1/2013

2

Google Image

Reperfusion Injury and Therapeutic HypothermiaReperfusion Injury and Therapeutic Hypothermia1Other Published Therapeutic Hypothermia ResearchOther Published Therapeutic Hypothermia Research

Previous Models and Final Model GeometryPrevious Models and Final Model Geometry

ResultsResults

Conclusions and Future WorkConclusions and Future Work

2

3

4

53

CNN Tech

Mechanical ThrombectomyMechanical Thrombectomy

4www.wikipedia.com

Page 3: ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf · 8/1/2013 12 Comsol Settings 23 Boundary Condition Value Artery Inlet No Flow, Fully

8/1/2013

3

CNN Tech

Reperfusion InjuryReperfusion Injury

Paradox – reperfusion sustains, reperfusion damages

Inflammation to the tissue

Metabolic rate of brain reduced 6-10% per 1°C

Therapeutic Hypothermia -What is the critical temperature range?

What 5 critical questions should be answered

Paradox – reperfusion sustains, reperfusion damages

Inflammation to the tissue

Metabolic rate of brain reduced 6-10% per 1°C

Therapeutic Hypothermia -What is the critical temperature range?

What 5 critical questions should be answered

5www.topnews.in

CNN Tech

Author StudyTissue 

TemperatureResults

Van der Worp, 2007 

‐ Animal meta study, 101 different publications, 3300 animals

‐ Best results,           < 33°C

‐ Usage of TH improves outcomes by 30%

Schwab, 1998 ‐ Human external cooling

‐ 32 ‐ 33°C, 14 hours

‐ Intracranial pressure reduced 

Krieger, 2001 ‐Human surface cooling hypothermia 

‐ 32 ±1 °C, 12 – 72hours

‐ Feasible and safe in patients

Neimark, 2007, 2011

‐ Predictive model / Safety trial

‐ Estimated temperature reduction of 2.8°C

‐ No major complications‐ Simple quantitative 

model

6

Page 4: ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf · 8/1/2013 12 Comsol Settings 23 Boundary Condition Value Artery Inlet No Flow, Fully

8/1/2013

4

CNN Tech

Problem StatementProblem Statement

7

Summer 2012 – Predict tissue temperature in a human thermal fluids model.

Summer 2013 – Predict blood temperature’s in a physiologically accurate canine intracranial model

Summer 2012 – Predict tissue temperature in a human thermal fluids model.

Summer 2013 – Predict blood temperature’s in a physiologically accurate canine intracranial model

1) Summer 2012Benchmark Models, Human Carotid Bifurcation

- Comsol Conference 2012: Paper & Poster

2) Fall 2012, Winter 2013

In-vitro canine, CFD model

- ASME Design of Medical Device Conference: Paper &Poster

- ASME Bioengineering Conference 2013: Poster

3) Spring/Summer 2013Physiological AccurateCanine Blood Model

- ASME Journal of Medical Devices: Technical Brief

Work CompletedWork Completed

8

Page 5: ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf · 8/1/2013 12 Comsol Settings 23 Boundary Condition Value Artery Inlet No Flow, Fully

8/1/2013

5

Modeling AssumptionsModeling Assumptions

9

Assumption Reasoning

1) Steady State< 5% effect on thermal problems, balloon occlusion

2) Rigid VesselFluid-structure interaction complexity, reasonable assumption [Waite]

3) Newtonian FlowVessel diameter is much larger than blood cell, < 5% velocity differential [Steinman]

4) Inlet Laminar Flow Catheter length >> Entry length

5) Constant Wall Temperature Blood only model

Governing EquationsGoverning Equations

Steady State ‐ Three Dimensional Navier‐Stokes Equations

Steady State ‐Thermal Energy Equation 

+ Q + 

Page 6: ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf · 8/1/2013 12 Comsol Settings 23 Boundary Condition Value Artery Inlet No Flow, Fully

8/1/2013

6

CNN Tech

Previous ModelsPrevious Models

11

Linking the experimental and the computational Linking the experimental and the computational

12

Page 7: ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf · 8/1/2013 12 Comsol Settings 23 Boundary Condition Value Artery Inlet No Flow, Fully

8/1/2013

7

13

Circle of WillisCircle of Willis

Page 8: ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf · 8/1/2013 12 Comsol Settings 23 Boundary Condition Value Artery Inlet No Flow, Fully

8/1/2013

8

Area of modeling interest

15

In-Vivo WorkIn-Vivo Work

16

Page 9: ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf · 8/1/2013 12 Comsol Settings 23 Boundary Condition Value Artery Inlet No Flow, Fully

8/1/2013

9

In-Vivo WorkIn-Vivo Work

17

100 ml/min 50 ml/min 70 ml/min

Inner Carotid Artery

Middle Cerebral Artery

18

Page 10: ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf · 8/1/2013 12 Comsol Settings 23 Boundary Condition Value Artery Inlet No Flow, Fully

8/1/2013

10

1) Research canine anatomy journals and textbooks2) Start simple, add complexity3) Receive feedback from experts - Matt Gounis, etc.4) Iterate 5) Fine tune for meshing

1) Research canine anatomy journals and textbooks2) Start simple, add complexity3) Receive feedback from experts - Matt Gounis, etc.4) Iterate 5) Fine tune for meshing

Building a Physiologically Accurate ModelBuilding a Physiologically Accurate Model

19

0

5

10

15

20

25

30

35

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000

Percent Difference In

let Mass Flow Rate : Outlet Mass Flow Rate

Number of Elements ‐ Fluid Domain

20

Page 11: ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf · 8/1/2013 12 Comsol Settings 23 Boundary Condition Value Artery Inlet No Flow, Fully

8/1/2013

11

21

22

Page 12: ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf · 8/1/2013 12 Comsol Settings 23 Boundary Condition Value Artery Inlet No Flow, Fully

8/1/2013

12

Comsol SettingsComsol Settings

23

Boundary Condition Value

Artery  Inlet No Flow, Fully Occluded ‐

Catheter  Inlet Laminar Inflow, Velocity  0.35 – 0.64 [m/s]

All Flow Outlets Pressure No Viscous [Taylor] 0 [Pa]

Wall Boundaries No Slip ‐

Blood/Wall Thermal Conductivity

Constant 0.45 / 0.49[W/(m*K)]

Artery Wall Temperature

Temperature 311.65 [K]

Catheter InletTemperature

Temperature, Varies with Flow 295 – 296.5  [K]

24

LocationVolumetric Flow Rate [ml/min]

% of 90 ml/min total flow

1 42.7424 47.49%2 6.6838 7.43%3 12.4511 13.83%4 16.6755 18.53%5 4.8135 5.35%6 0.5385 0.60%7 1.9282 2.14%8 4.8518 5.39%

1

Page 13: ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf · 8/1/2013 12 Comsol Settings 23 Boundary Condition Value Artery Inlet No Flow, Fully

8/1/2013

13

25

296

298

300

302

304

306

308

0 20 40 60 80 100 120 140 160

Temperature [K]

S ‐ Length ]mm]

Branch #1

Branch #2

Branch #3

26

296

297

298

299

300

301

302

0 10 20 30 40 50 60 70 80 90 100

Temperature [K]

S ‐Length [mm]

60 ml/min

80 ml/min

100 ml/min

Page 14: ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf · 8/1/2013 12 Comsol Settings 23 Boundary Condition Value Artery Inlet No Flow, Fully

8/1/2013

14

300

301

302

303

304

305

306

307

308

5 10 15 20 25 30 35

Temperature [K]

S‐Length [mm]

60 ml/min

80 ml/min

100 ml/min

27

301

302

303

304

305

306

307

308

309

310

5 15 25 35 45 55 65

Temperature [K]

S‐Length [mm]

60 ml/min

80 ml/min

100 ml/min

28

Page 15: ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf · 8/1/2013 12 Comsol Settings 23 Boundary Condition Value Artery Inlet No Flow, Fully

8/1/2013

15

300

301

302

303

304

305

306

2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5

Temperature [K]

S‐Length [mm]

60 ml/min

80 ml/min

100 ml/min

29

30

302

304

306

308

310

50 60 70 80 90 100 110

Temp [K]

Volumetric Flow Rate [ml/min]

Computational Blood, 40mmalong bifurcation path

In‐vivo tissue 10 minutes

Page 16: ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf · 8/1/2013 12 Comsol Settings 23 Boundary Condition Value Artery Inlet No Flow, Fully

8/1/2013

16

1) Constant Wall Temperature2) Steady State3) Based on Two-Dimensional Angiograms4) No Tissue Domain

1) Constant Wall Temperature2) Steady State3) Based on Two-Dimensional Angiograms4) No Tissue Domain

Model LimitationsModel Limitations

31

Proposed Future WorkProposed Future Work

32

1. Address limitations2. Increase computational capacity, switch to

finite volume solver3. Transition to human model, building off of

canine work4. Incorporate scanned images to construct

accurate 3D model

1. Address limitations2. Increase computational capacity, switch to

finite volume solver3. Transition to human model, building off of

canine work4. Incorporate scanned images to construct

accurate 3D model

Page 17: ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf · 8/1/2013 12 Comsol Settings 23 Boundary Condition Value Artery Inlet No Flow, Fully

8/1/2013

17

• Rowan University • Department of Mechanical Engineering• Barbara Wynn • Faculty and Lab Staff• South Jersey Technology Park

• FocalCool, LLC• Denise Merrill• Jennifer Mitchell • Madina Yermagambetova• Anthony La Barck

• Graduate Students• Dylan McNally• Jared Wasserman

• Thesis Committee• Dr. Smitesh Bakrania• Dr. Krishan Bhatia• Dr. Jennifer Vernengo

• Thesis Adviser • Dr. Thomas Merrill

• Mom + Dad 

AcknowledgementsAcknowledgements

33

ReferencesReferences

34

[1] “Heart and Stroke Foundation,” 2013. [Online]. Available: http://www.heartandstroke.com/site/c.ikIQLcMWJtE/b.3484151/. [Accessed: 08‐Jan‐2013].[2] “Merci Retriever,” 2013. .[3] H. B. van der Worp, E. S. Sena, G. a Donnan, D. W. Howells, and M. R. Macleod, “Hypothermia in animal models of acute ischaemic stroke: a systematic review and meta‐analysis.,” Brain : a journal of neurology, vol. 130, no. Pt 12, pp. 3063–74, Dec. 2007.[4] W. S. Smith, G. Sung, J. Saver, R. Budzik, G. Duckwiler, D. S. Liebeskind, H. L. Lutsep, M. M. Rymer, R. T. Higashida, S. Starkman, Y. P. Gobin, D. Frei, T. Grobelny, F. Hellinger, D. Huddle, C. Kidwell, W. Koroshetz, M. Marks, G. Nesbit, and I. E. Silverman, “Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI trial.,” Stroke; a journal of cerebral circulation, vol. 39, no. 4, pp. 1205–12, Apr. 2008.[5] NINDS t‐PA Stroke Study Group, “Tissue plasminogen activator for acute ischemic stroke,” New England Journal of Medicine, vol. 333, pp. 1581–1587, 1995.[6] T. Merrill, D. R. Merrill, and J. Akers, “Localized Brain Tissue cooling For Use During Intracranial Thrombectomy,” 2012.[7] H. B. van der Worp, M. R. Macleod, and R. Kollmar, “Therapeutic hypothermia for acute ischemic stroke: ready to start large randomized trials?,” Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, vol. 30, no. 6, pp. 1079–93, Jun. 2010.[8] S. Schwab, S. Schwarz, M. Spranger, E. Keller, M. Bertram, and W. Hacke, “Moderate Hypothermia in the Treatment of Patients With Severe Middle Cerebral Artery Infarction,” Stroke, vol. 29, no. 12, pp. 2461–2466, Dec. 1998.[9] S. Schwab, S. Schwarz, M. Spranger, E. Keller, M. Bertram, and W. Hacke, “Moderate Hypothermia in the Treatment of Patients With Severe Middle Cerebral Artery Infarction,” Stroke, vol. 29, no. 12, pp. 2461–2466, Dec. 1998.[10] M. a Neimark, A.‐A. Konstas, A. F. Laine, and J. Pile‐Spellman, “Integration of jugular venous return and circle of Willis in a theoretical human model of selective brain cooling.,” Journal of applied physiology (Bethesda, Md. : 1985), vol. 103, no. 5, pp. 1837–47, Nov. 2007.[11] M. a Neimark, A.‐A. Konstas, J. H. Choi, A. F. Laine, and J. Pile‐Spellman, “Brain cooling maintenance with cooling cap following induction with intracarotid cold saline infusion: a quantitative model.,” Journal of theoretical biology, vol. 253, no. 2, pp. 333–44, Jul. 2008.[12] A.‐A. Konstas, M. a Neimark, A. F. Laine, and J. Pile‐Spellman, “A theoretical model of selective cooling using intracarotid cold saline infusion in the human brain.,” Journal of applied physiology (Bethesda, Md. : 1985), vol. 102, no. 4, pp. 1329–40, Apr. 2007.[13] E. Tanaka, a Tanaka, T. Sekka, Y. Shinozaki, K. Hyodo, K. Umetani, and H. Mori, “Digitized cerebral synchrotron radiation angiography: quantitative evaluation of the canine circle of Willis and its large and small branches.,” AJNR. American journal of neuroradiology, vol. 20, no. 5, pp. 801–6, May 1999.[14] B.‐T. Kang, D.‐P. Jang, S.‐H. Gu, Y.‐B. Kim, C.‐Y. Lim, J.‐H. Lee, E.‐J. Woo, Z.‐H. Cho, and H.‐M. Park, “Three‐dimensional time‐of‐flight magnetic resonance angiography of intracranial vessels in a canine model of ischemic stroke with permanent occlusion of the middle cerebral artery.,” Comparative medicine, vol. 59, no. 1, pp. 72–7, Feb. 2009.[15] J. Hendrikse, a F. van Raamt, Y. van der Graaf, W. P. T. M. Mali, and J. van der Grond, “Distribution of cerebral blood flow in the circle of Willis.,” Radiology, vol. 235, no. 1, pp. 184–9, Apr. 2005.[16] L. Waite and J. Fine, Applied Biofluid Mechanics. New York, NY: McGraw‐Hill, 2007.[17] T. L. Merrill, D. R. Merrill, T. J. Nilsen, and J. E. Akers, “Design of a cooling guide catheter for rapid heart cooling,” ASME Journal of Medical Devices, vol. 4, no. 3, pp. 035001–1 – 035001–8, 2010.[18] K. Perktold, M. Resch, and H. Florian, “Pulsatile Non‐Newtonian Flow Characteristics in a 3‐Dimensional Human Carotid Bifurcation,” Journal of Biomechanical Engineering, no. 113, pp. 467–475, 1991. 

Page 18: ThesisDefenser Rev2 - PBworkstlmerrill.pbworks.com/w/file/fetch/91435023/ThesisDefenser Rev2.pdf · 8/1/2013 12 Comsol Settings 23 Boundary Condition Value Artery Inlet No Flow, Fully

8/1/2013

18

35