Comsol Multiphysics

27
Lecture 11: Introduction to COMSOL Multiphysics Simulations Dr. Ryan D. Sochol ME138/238 Micro/Nano Mechanical Systems Laboratory Department of Mechanical Engineering University of California, Berkeley

description

Tutorial

Transcript of Comsol Multiphysics

Page 1: Comsol Multiphysics

Lecture 11: Introduction to COMSOL Multiphysics Simulations

Dr. Ryan D. Sochol

ME138/238 Micro/Nano Mechanical Systems Laboratory

Department of Mechanical Engineering University of California, Berkeley

Page 2: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

2/27

Outline • Example: Micropost Arrays

for Cell Mechanics ◦ Uniform Micropost Arrays

to Detect Cellular Traction Forces

• COMSOL Multiphysics v3.5 Demonstration ◦ Micropost Force-Displacement Simulation ◦ Microfluidics Simulations

Page 3: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

3/27

Background • Uniform Micropost Arrays ◦ Cellular Traction Force

Quantification

J.L. Tan, J. Tien, D.M. Pirone, D.S. Gray, K. Bhadriraju & C.S. Chen, PNAS (2003).

Page 4: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

4/27

Introduction

10 µm

• Uniform Micropost Arrays ◦ Cellular Traction Force

Quantification

J.L. Tan et al., PNAS (2003). (Images) R.D. Sochol, S. Li, L. Lin et al., Soft Matter (2011).

Micropost Stiffness

Page 5: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

5/27

Micropost Arrays to Direct Stem Cell Fate

Jianping Fu, Y.-K. Wang, M.T. Yang, R.A. Desai, X. Yu, Z. Liu & Christopher S. Chen, Nature Methods (2010).

Page 6: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

6/27

Micropost Arrays to Direct Stem Cell Fate

EXAMPLE for COMSOL

Jianping Fu, Y.-K. Wang, M.T. Yang, R.A. Desai, X. Yu, Z. Liu & Christopher S. Chen, Nature Methods (2010).

Page 7: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

7/27

COMSOL Multiphysics v3.5 Demonstration • Determine the Type of Model

Page 8: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

8/27

COMSOL Multiphysics v3.5 Demonstration • Determine the Type of Model

Page 9: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

9/27

COMSOL Multiphysics v3.5 Demonstration • Build a Cylinder

Page 10: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

10/27

COMSOL Multiphysics v3.5 Demonstration • Build a Cylinder

Page 11: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

11/27

COMSOL Multiphysics v3.5 Demonstration • Input the “Subdomain Settings” of the Material

Note: These are material properties the authors used for PDMS; however, ν = 0.499 was used instead of ν = 0.5 to avoid crashing COMSOL

Page 12: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

12/27

COMSOL Multiphysics v3.5 Demonstration • Input the “Boundary Settings” (e.g., constraint)

Page 13: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

13/27

COMSOL Multiphysics v3.5 Demonstration • Input the “Boundary Settings” (e.g., load)

Note: 20 nN distributed over a face with Diameter = 2 µm is ~6.4x103 N/m2

Page 14: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

14/27

COMSOL Multiphysics v3.5 Demonstration • Create a “Mesh”

Note: The type and size of mesh can influence the final solution. Overall, higher mesh sizes are better, but increase solution times.

Page 15: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

15/27

COMSOL Multiphysics v3.5 Demonstration • Click “Solve Problem”

Page 16: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

16/27

COMSOL Multiphysics v3.5 Demonstration • More Meshed “Elements” = Longer “Solution Time”

Note: More Meshed Elements = Higher Accuracy; Balance Time vs. Accuracy

Page 17: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

17/27

COMSOL Multiphysics v3.5 Demonstration • Input the “Plot Parameters” (under “Postprocessing”)

Note: The initial “Plot Parameters” are rarely ideal.

Page 18: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

18/27

COMSOL Multiphysics v3.5 Demonstration • Input the “Plot Parameters” (under “Postprocessing”)

The deformed shape can be plotted. Note: The scale factor can be set to “1” to see the ‘exact’ deformation.

Page 19: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

19/27

COMSOL Multiphysics v3.5 Demonstration • Input the “Plot Parameters” (under “Postprocessing”)

The number of ‘Slices’ can be increased. A variety of properties can be plotted. Note: Too many ‘Slices’ can cause COMSOL to crash.

Page 20: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

20/27

COMSOL Multiphysics v3.5 Demonstration • Input the “Plot Parameters” (under “Postprocessing”)

Finally, we have a plot similar to Fig. 1a in the Nature Methods paper.

Page 21: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

21/27

COMSOL Multiphysics v3.5 Demonstration • Problem? 0.3 MPa or 0.3 Pa?

Page 22: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

22/27

COMSOL Multiphysics Simulations • Complex Microstructures

Displacement Fields (μm); Load = 50 nN

R.D. Sochol, S. Li, L. Lin, S. Takeuchi et al., IEEE MEMS 2013.

Page 23: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

23/27

Additional COMSOL Simulation Examples • Microfluidic Simulations

Arrayed Microposts Reagent 1

Reagent 2

Ryan D. Sochol, S. Li, L.P. Lee & Liwei Lin, Lab on a Chip (2012).

Page 24: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

24/27

α

FAILURE

Additional COMSOL Simulation Examples • Microfluidic Simulations

Page 25: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

25/27

Additional COMSOL Simulation Examples • Microfluidic Simulations

Ryan D. Sochol, S. Li, L.P. Lee & Liwei Lin, Lab on a Chip (2012).

Page 26: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

26/27

Additional COMSOL Simulation Examples • Microfluidic Simulations

Ryan D. Sochol, S. Li, L.P. Lee & Liwei Lin, Lab on a Chip (2012).

Page 27: Comsol Multiphysics

Dr. Ryan D. Sochol Lecture 11: Introduction to COMSOL Multiphysics Simulations March 4, 2013

27/27

Additional COMSOL Simulation Examples • Microfluidic Simulations

Bead Releases to Promote Fluid Flow

Pressure Drop Fluidic Resistance

Ryan D. Sochol, Luke P. Lee, Liwei Lin et al., IEEE MEMS 2012.