The$firstgalaxies$– radiave $feedback$ from$the$firststars · 2018. 4. 20. · Assemblyunder...

15
The first galaxies – radia0ve feedback from the first stars Andreas Pawlik (MPA) Reioniza0on in the Red Center, Uluru, July 2013 Joop Schaye (Leiden) Ali Rahma0 (Leiden) Milan Raicevic (Leiden) Claudio Dalla Vecchia (MPE) Milos Milosavljevic (UT Aus0n) Volker Bromm (UT Aus0n) Jacob Hummel (UT Aus0n) Myoungwon Jeon (UT Aus0n)

Transcript of The$firstgalaxies$– radiave $feedback$ from$the$firststars · 2018. 4. 20. · Assemblyunder...

Page 1: The$firstgalaxies$– radiave $feedback$ from$the$firststars · 2018. 4. 20. · Assemblyunder radiave $feedback:$ numerical$methods$ • SPH/Gadget3$zoomed$simulaons$ (Schaye$etal.$2010;$

The  first  galaxies  –  radia0ve  feedback  from  the  first  stars  

Andreas  Pawlik  (MPA)  

Reioniza0on  in  the  Red  Center,  Uluru,  July  2013  

Joop  Schaye  (Leiden)  Ali  Rahma0  (Leiden)  

Milan  Raicevic  (Leiden)  Claudio  Dalla  Vecchia  (MPE)  

Milos  Milosavljevic  (UT  Aus0n)  Volker  Bromm  (UT  Aus0n)  Jacob  Hummel  (UT  Aus0n)  

Myoungwon  Jeon  (UT  Aus0n)  

Page 2: The$firstgalaxies$– radiave $feedback$ from$the$firststars · 2018. 4. 20. · Assemblyunder radiave $feedback:$ numerical$methods$ • SPH/Gadget3$zoomed$simulaons$ (Schaye$etal.$2010;$

Outline  

•  The  first  galaxies:  assembly  under  radia0ve  feedback  from  the  first  stars  •  Tracing  the  first  galaxies  – stellar  radia0on  – pair  instability  supernovae  – miniquasars/HMXBs  

•  Outlook:  large-­‐scale  reioniza0on  

Andreas  Pawlik  (MPA)  

Page 3: The$firstgalaxies$– radiave $feedback$ from$the$firststars · 2018. 4. 20. · Assemblyunder radiave $feedback:$ numerical$methods$ • SPH/Gadget3$zoomed$simulaons$ (Schaye$etal.$2010;$

first  atomic    coolers  

The  First  Galaxies:    current  simula0ons*  

Abel  et  al.  ‘99  

Greif  et  al.  ’08  Wise  &  Abel  ‘08  

Yoshida  et  al.  ’06    

Reagan  &  Haehnelt  ‘09  

106                  107                  10

8                      10

9                  >10

10        

                                                 virial  m

ass  [M

sun]  

redshij          20                                    15                                        10                                      6                                                              

Mashchenko  et  al.  ’08  

Wise  et  al.  ‘11  

minihalos  

JWST  (dwarf  galaxies)  

too  faint  for  JWST  (unless  lensed,  e.g.,    Zackrisson  et  al.  ’12,  Johnson  et  al.  ’09)  

*a  representa0ve  selec0on,  not  to  scale  

Andreas  Pawlik  (MPA)  

Page 4: The$firstgalaxies$– radiave $feedback$ from$the$firststars · 2018. 4. 20. · Assemblyunder radiave $feedback:$ numerical$methods$ • SPH/Gadget3$zoomed$simulaons$ (Schaye$etal.$2010;$

Assembly  under  radia0ve  feedback:  numerical  methods  

•  SPH/Gadget-­‐3  zoomed  simula0ons  (Schaye  et  al.  2010;  Springel  2005)  

•  Mvir  ~  109  Msun  at  z  =  10,  mgas  ≈  500  Msun  •  Non-­‐equilibrium  H2/HD  chemistry    

(Johnson  &  Bromm  2006;  Greif  et  al.  2010)    •  Star  forma0on  above  nH  =  500  cm-­‐3  

(metal-­‐free,  top-­‐heavy  IMF,  Schaerer  2003)  

•  LW  in  the  op0cally  thin  limit  +  selfshielding  correc0on    (e.g.,  Wise  &  Abel  2008,  Greif  et  al.  2011)  

•  Ionizing  radia0ve  transfer    (TRAPHIC;  AP  &  Schaye  2008,  2010)  

Andreas  Pawlik  (MPA)  

Page 5: The$firstgalaxies$– radiave $feedback$ from$the$firststars · 2018. 4. 20. · Assemblyunder radiave $feedback:$ numerical$methods$ • SPH/Gadget3$zoomed$simulaons$ (Schaye$etal.$2010;$

Radia0on-­‐hydrodynamical  galaxy  assembly:  gas  densi0es  

-­‐3            -­‐2              -­‐1                0                  1                2  Log10  nH  [cm-­‐3]  

circle  =  virial  radius   zoom  

AP,  Milosavljevic,  Bromm,  ApJ,  2013  

Andreas  Pawlik  (MPA)  

Page 6: The$firstgalaxies$– radiave $feedback$ from$the$firststars · 2018. 4. 20. · Assemblyunder radiave $feedback:$ numerical$methods$ • SPH/Gadget3$zoomed$simulaons$ (Schaye$etal.$2010;$

The  First  Galaxies:    gas  morphology*  

Abel  et  al.  ‘99  

AP,  Milosavljevic,  Bromm  2011  

Prieto  et  al.  2013  

Wise  &  Abel  ‘08  

Yoshida  et  al.  ’06    

Reagan  &  Haehnelt  ‘09  

106                  107                  10

8                      10

9                  >10

10        

                                                 virial  m

ass  [M

sun]  

redshij          20                                    15                                        10                                      6                                                              

Mashchenko  et  al.  ’08  

Wise  et  al.  ‘11  

Andreas  Pawlik  (MPA)  

disks  no  disks  

18 Prieto, Jimenez & Haiman

Figure 19. The logarithm of the projected mass–weighted density. Despite significant variations in their details, all haloes are charac-terised by a dense core, and filamentary accretion. Two of the most massive haloes (#16 and #18) develop compact over-dense blobs,here seen to be located near the haloes’ outskirts.

connection between the strength of the filamentary accretionand the nature of the object formed at the center of the halo.Namely, that stronger streams lead to stronger shocks and amore turbulent environment, which can produce COBs. Bycontrast, the less collimated, and weaker accretion proceedsin a more orderly fashion, which allows the specific angularmomentum of the gas to be conserved, and a rotationallysupported core (RSC) to develop.

Next, we examine the merger histories of the haloes. InTable 2, for each halo, we list the total number of merg-

ers it has experienced, the number of minor and majormergers (defined as having mass ratios below and aboveM1/M2 = 1/3, respectively), the redshift and mass ratioof each merger, and the first (highest) redshift at which thegas in the halo could cool. For our available hydro outputs,zcool was computed as the z when the gas temperature insideRvir reaches the T = 104K. Because we do not have all thehydro outputs at high z for every simulation, for the z⇤ casesin the last column of Table 2 we used the DM-only simula-

c� 0000 RAS, MNRAS 000, 000–000

18 Prieto, Jimenez & Haiman

Figure 19. The logarithm of the projected mass–weighted density. Despite significant variations in their details, all haloes are charac-terised by a dense core, and filamentary accretion. Two of the most massive haloes (#16 and #18) develop compact over-dense blobs,here seen to be located near the haloes’ outskirts.

connection between the strength of the filamentary accretionand the nature of the object formed at the center of the halo.Namely, that stronger streams lead to stronger shocks and amore turbulent environment, which can produce COBs. Bycontrast, the less collimated, and weaker accretion proceedsin a more orderly fashion, which allows the specific angularmomentum of the gas to be conserved, and a rotationallysupported core (RSC) to develop.

Next, we examine the merger histories of the haloes. InTable 2, for each halo, we list the total number of merg-

ers it has experienced, the number of minor and majormergers (defined as having mass ratios below and aboveM1/M2 = 1/3, respectively), the redshift and mass ratioof each merger, and the first (highest) redshift at which thegas in the halo could cool. For our available hydro outputs,zcool was computed as the z when the gas temperature insideRvir reaches the T = 104K. Because we do not have all thehydro outputs at high z for every simulation, for the z⇤ casesin the last column of Table 2 we used the DM-only simula-

c� 0000 RAS, MNRAS 000, 000–000

Greif  et  al.  ’08  

*a  representa0ve  selec0on,  not  to  scale  

Page 7: The$firstgalaxies$– radiave $feedback$ from$the$firststars · 2018. 4. 20. · Assemblyunder radiave $feedback:$ numerical$methods$ • SPH/Gadget3$zoomed$simulaons$ (Schaye$etal.$2010;$

Detec0on  with  JWST:    UV  con0nuum  flux  

Z=0,  top-­‐heavy  IMF  Z=0,  normal  IMF  Z=5  x  10-­‐4  Zsun,    normal  IMF  

SFR  

Mstar  

Andreas  Pawlik  (MPA)  

UV1500  

AP,  Milosavljevic,  Bromm,  ApJ,  2013;  see  also,  e.g.,  Zackrisson  et  al.  2012  

Page 8: The$firstgalaxies$– radiave $feedback$ from$the$firststars · 2018. 4. 20. · Assemblyunder radiave $feedback:$ numerical$methods$ • SPH/Gadget3$zoomed$simulaons$ (Schaye$etal.$2010;$

Pair  instability  supernovae    Jacob  Hummel,  AP,  Milosavljevic,  Bromm,  ApJ,  2012  

THE FIRST SUPERNOVAE 5

Fig. 2.— a) npisn in the upper limit of no feedback (blue), withchemical feedback (green), LW feedback (red) and the resultingPISN rate for the conservative (chemical plus LW) feedback case(black). b) Same as (a), but for enhanced massive star formation.

enriched beyond a critical metallicity of Zcrit ⇠ 10�4 Z�will no longer form Pop III stars (Bromm et al. 2001;Schneider et al. 2002; Bromm & Loeb 2003), and henceno PISNe. Chemical feedback can thus be representedas the fraction of halos forming from pristine gas at agiven redshift. Realistic three-dimensional simulations ofthis process starting from cosmological initial conditionshave become possible in the past decade, showing thatenrichment by Pop III SNe, if they are highly energetic,proceeds very inhomogeneously, enriching the IGM be-fore penetrating into denser regions (Scannapieco et al.2005; Greif et al. 2007; Tornatore et al. 2007; Wise &Abel 2008; Maio et al. 2010).

In modeling ⌘chem, we use the results of Furlanetto &Loeb (2005). Their semi-analytic treatment of SN windsutilizes the Sedov (1959) solution for an explosion ex-panding into a uniform medium and yields a probabilityfunction Ppristine(z) that the gas in a newly formed halois pristine. This is plotted in Figure 2 of their paper forvarious strengths of chemical feedback. We identify thisquantity as the fraction of newly collapsed halos thathave been polluted with metals, ⌘chem. Given the re-cent detection of pristine gas at z = 3 by Fumagalliet al. (2011), we choose the weakest feedback scenariopresented by Furlanetto & Loeb (2005) among the sce-narios that incorporate a clustering of sources. The re-sulting PISN rate is given by the green line in Figure 2.

2.3. Enhanced Massive Star Formation

Gas cooling and subsequent star formation in halos af-fected by LW feedback can be delayed until nearly an or-der of magnitude more gas is available for star formation(Figure 1). This increases the likelihood that multiplemassive stars form per halo, o↵seting the negative e↵ectsof LW radiation considered above. We quantify this bypositing that the number of PISNe produced per haloat redshift z is given by the ratio of the critical mass in

5 10 15 20 25 30z

10�6

10�5

10�4

10�3

10�2

10�1

100

101

SNra

te[y

r�1

(10

arcm

in�

2 )]

Miralda-Escude & Rees 97

Mackey et al. 03

Weinmann & Lilly 05

Wise & Abel 05

Fig. 3.— The observable PISN rates in number per year perJWST field of view above a given redshift in the upper limit of nofeedback (blue line), in the conservative feedback case (solid redline), and the enhanced star formation case (dashed red line). Therates calculated by Miralda-Escude & Rees (1997), Mackey et al.(2003), Weinmann & Lilly (2005) and Wise & Abel (2005) are alsoshown for reference. Red points account for feedback; blue pointsdo not.

the presence of LW feedback Mcrit,lw to the critical massin the no-feedback case Mcrit. For example, at z = 17,Mcrit,lw/Mcrit ⇡ 1.4, so for every 10 pristine halos thatform, 14 PISNe are produced. In this case the PISN rateis modified such that

npisn(z) =Mcrit,lw(z)

Mcrit(z)⌘chem(z) ⌘rad(z) n+(z). (10)

The resulting enhanced PISN rate can be seen inFigure 2b. In contrast to the conservative feedback case,the net e↵ect of LW feedback is much less significant here,with chemical feedback controlling the final PISN rate.

2.4. The Observable Rate

The observed PISN rate per unit time per unit redshiftper unit solid angle is given by

dN

dtobs dz d⌦=

dN

dtobs dV

dV

dzd⌦

=1

(1 + z)

dN

dtem dVr2

dr

dz.

(11)

Cosmological time dilation between tobs and tem is ac-counted for by the (1 + z) in the denominator; dV isthe comoving volume element and r(z) is the comovingdistance to redshift z given by

r(z) =c

H0

Z z

0

dz0p⌦m(1 + z0)3 + ⌦⇤

, (12)

where c/H0 is the Hubble distance. With the assump-tions outlined above, we estimate the PISN rate in eventsper year per comoving Mpc3 in the source rest frame:

dN

dtem dV= npisn(z). (13)

These results—shown in Figure 3—are in reasonableagreement with previous work; our no-feedback limit of

THE FIRST SUPERNOVAE 7

0 5 10 15 20 25 30tobs [years]

10�19

10�18

10�17

10�16

Flu

x[e

rgss�

1cm

�2]

z = 5z = 10z = 15z = 20z = 25z = 30

5 10 15 20 25 30 35z

0

5

10

15

20

�t v

is[y

ears

]

F444WF356WF277WF200WF150WF115WF090WF070W

0 5 10 15 20 25 30tobs [years]

10�22

10�21

10�20

10�19

10�18

10�17

Flu

x[e

rgss�

1cm

�2]

z = 5z = 10z = 15z = 20z = 25z = 30

2 4 6 8 10 12z

0

1

2

3

4

5

6

7

8

�t v

is[y

ears

]

F444WF356WF277WF200WF150WF115WF090WF070W

Fig. 5.— Left: Lightcurves for the Kasen et al. (2011) R250 (top) and B200 (bottom) models as they would be observed by JWST’sF444W NIRCam filter at z = 5, 10, 15, 20, 25 and 30. The flux limits for a 106 s (dashed line) and 104 s (dotted line) exposure are shownfor reference. Right: The visibility time �tvis in years for R250 (top) and B200 (bottom) as a function of redshift for each of the NIRcamwide filters. Note that the axes are scaled independently. Similar plots for models He100 and R175 are included in the appendix.

3.2. Visibility

The NIRCam instrument on the JWST will observethe early universe through a number of narrow, medium-width, and wide filters5. The widest, longest-wavelengthfilter, F444W, will observe from 3.3 to 5.6 µm with asensitivity limit of 24.5 nJy required for a 10� detectionin 104 seconds (Gardner et al. 2006). Shown in the left-hand column of Figure 5 is the observable flux as it wouldappear in the F444W NIRCam filter at various redshiftsfor the most and least easily observable models, R250and B200, respectively. See Figure 7 for why these twowere chosen; models He100 and R175 can be found in theappendix. The flux limits for the filter of 4.4⇥ 10�19 ergs�1 cm�2 for a 106 s exposure and 4.4 ⇥ 10�18 erg s�1

cm�2 for a 104 s exposure are also shown for reference.We see that the brightest explosions (R250) would bevisible to beyond z ⇠ 25, but are never so bright as tobe detectable with current generation telescopes. This isconsistent with the non-detection by Frost et al. (2009)in a search of the Spitzer/IRAC Dark Field for possiblePop III PISN candidates.

To account for absorption of flux by neutral hydrogenalong the line of sight we implement a simple model of

5 http://www.stsci.edu/jwst/instruments/nircam/instrument-design/filters

instant reionization at z = 10. For sources above thisredshift, we assume no flux is observed shortward of therest frame Ly↵ line. This is not relevant for the F444WNIRcam filter as Ly↵ does not redshift into the filter untilz ⇠ 40, when the lightcurve is already far below even the106 s sensitivity limit. It does however have an e↵ect,albeit a small one, on the F115W and F090W filters.

At low redshifts the duration of the lightcurve pre-sented in Kasen et al. (2011) is not quite long enough forthe observed flux to reach the sensitivity limit; we ex-tend it to the limit by extrapolating assuming a power-law scaling. The visible time �tvis is then simply givenby the time the lightcurve is above the filter sensitivitylimit. Shown in Figure 5 are the visibility times as afunction of redshift for each of the NIRcam filters.

3.3. The Observable Number

With this estimate for �tvis, we may finally calculatethe observable number of PISNe on the sky, given by theproduct of the PISN rate at z, as seen in the observerframe, and the time a PISN at z is visible, �tvis. Thisyields an estimate for the number of PISNe visible onthe sky at any given time per unit redshift per unit solidangle:

dN

dz d⌦'

dN

dtobs dz d⌦�tvis. (17)

JWST  106  s  

JWST  104  s  

light  curves  based  on  Kasen  et  al.  2011  

 explosion  rate    (per  JWST  field  of  view)  

PISNe:  bright  but  rare  

Andreas  Pawlik  (MPA)  

Page 9: The$firstgalaxies$– radiave $feedback$ from$the$firststars · 2018. 4. 20. · Assemblyunder radiave $feedback:$ numerical$methods$ • SPH/Gadget3$zoomed$simulaons$ (Schaye$etal.$2010;$

Pair  instability  supernovae    Jacob  Hummel,  AP,  Milosavljevic,  Bromm,  ApJ,  2012  

10 HUMMEL ET AL.

102 103 104 105

JWST Fields of View

10�1

100

101

102

103

104

Num

ber

Vis

ible

106 s

102 103 104 105

JWST Fields of View

107 s

102 103 104 105

JWST Fields of View

108 s

Fig. 8.— The total number of PISNe observable with a campaign of 106, 107 and 108 s (from left to right) as a function of survey area forthe R250 PISN model. In each case, the total campaign time is apportioned equally over the total survey area to determine the exposuretime for individual pointings. The blue region represents all PISNe, the red only PISNe from z > 15. Upper boundaries correspond to theno-feedback upper limit to the PISN rate and lower boundaries to the conservative feedback case. For reference we mark the case of onlyone PISN visible (dashed line).

of PISNe that will be observable with the JWST in ob-serving campaigns totalling 106, 107 and 108 s for theR250 PISN model. The exposure time for each point-ing varies with the total area covered by the survey inorder to keep the total observing time constant. Up-per boundaries correspond to the number visible in theno-feedback case, lower boundaries to the conservativefeedback case. As in Figure 7, the blue region shows theobservable number from all redshifts, the red region onlythose from z > 15. We see that the observable numberincreases until the resulting exposure time is no longersu�cient to detect PISNe. The optimal search strategythen will be to cover as large an area as possible, going

only as deep as necessary, possibly in a similar manner tothe ongoing Brightest of Reionizing Galaxies survey withthe Hubble Space Telescope (Trenti et al. 2011; Bradleyet al. 2012).

V.B. and M.M. acknowledge support from NSF grantsAST-0708795 and AST-1009928 and NASA ATFP grantNNX09AJ33G. V.B. thanks the Max-Planck-Institut furAstrophysik for its hospitality during part of the workon this paper. The simulations were carried out at theTexas Advanced Computing Center (TACC).

REFERENCES

Abel, T., Bryan, G. L., & Norman, M. L. 2002, Science, 295, 93Alvarez, M. A., Bromm, V., & Shapiro, P. R. 2006, ApJ, 639, 621Alvarez, M. A., Wise, J. H., & Abel, T. 2009, ApJ, 701, L133Barkana, R., & Loeb, A. 2001, Phys. Rep., 349, 125Barkat, Z., Rakavy, G., & Sack, N. 1967, Phys. Rev. Lett., 18, 379Bradley, L. D., et al. 2012, ApJ, submitted (arXiv:1204.3641)Bromm, V., Coppi, P. S., & Larson, R. B. 1999, ApJ, 527, L5—. 2002, ApJ, 564, 23Bromm, V., Kudritzki, R. P., & Loeb, A. 2001, ApJ, 552, 464Bromm, V., & Larson, R. B. 2004, ARA&A, 42, 79Bromm, V., & Loeb, A. 2003, Nature, 425, 812Bromm, V., Yoshida, N., & Hernquist, L. 2003, ApJ, 596, L135Bromm, V., Yoshida, N., Hernquist, L., & McKee, C. F. 2009,

Nature, 459, 49Chatzopoulos, E., & Wheeler, J. C. 2012, ApJ, 748, 42Chen, K.-J., Heger, A., & Almgren, A. S. 2011, Comp. Phys.

Communications, 182, 254Chiappini, C., Frischknecht, U., Meynet, G., Hirschi, R., Barbuy,

B., Pignatari, M., Decressin, T., & Maeder, A. 2011, Nature,472, 454

Ciardi, B., Ferrara, A., & Abel, T. 2000, ApJ, 533, 594Clark, P. C., Glover, S. C. O., Smith, R. J., Greif, T. H., Klessen,

R. S., & Bromm, V. 2011, Science, 331, 1040Couchman, H. M. P., & Rees, M. J. 1986, MNRAS, 221, 53Dahlen, T., & Fransson, C. 1999, A&A, 350, 349Fraley, G. S. 1968, Ap&SS, 2, 96Frost, M. I., Surace, J., Moustakas, L. A., & Krick, J. 2009, ApJ,

698, L68

Fryer, C. L., Woosley, S. E., & Heger, A. 2001, ApJ, 550, 372Fumagalli, M., O’Meara, J. M., & Prochaska, J. X. 2011, Science,

334, 1245Furlanetto, S. R., & Loeb, A. 2003, ApJ, 588, 18—. 2005, ApJ, 634, 1Gal-Yam, A., et al. 2009, Nature, 462, 624Gardner, J. P., et al. 2006, Space Sci. Rev., 123, 485Glover, S. C. O., & Brand, P. W. J. L. 2001, MNRAS, 321, 385Greif, T. H., & Bromm, V. 2006, MNRAS, 373, 128Greif, T. H., Bromm, V., Clark, P. C., Glover, S. C. O., Smith,

R. J., Klessen, R. S., Yoshida, N., & Springel, V. 2012,MNRAS, in press (arXiv:1202.5552)

Greif, T. H., Glover, S. C. O., Bromm, V., & Klessen, R. S. 2010,ApJ, 716, 510

Greif, T. H., Johnson, J. L., Bromm, V., & Klessen, R. S. 2007,ApJ, 670, 1

Greif, T. H., Johnson, J. L., Klessen, R. S., & Bromm, V. 2008,MNRAS, 387, 1021

Greif, T. H., Springel, V., White, S. D. M., Glover, S. C. O.,Clark, P. C., Smith, R. J., Klessen, R. S., & Bromm, V. 2011,ApJ, 737, 75

Haiman, Z., Abel, T., & Rees, M. J. 2000, ApJ, 534, 11Haiman, Z., Rees, M. J., & Loeb, A. 1997, ApJ, 476, 458Haiman, Z., Thoul, A. A., & Loeb, A. 1996, ApJ, 464, 523Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann,

D. H. 2003, ApJ, 591, 288Heger, A., & Woosley, S. E. 2002, ApJ, 567, 532

number  controlled  by    scarcity  of  PISNe    

number  controlled  by    JWST  detec0on  limit  

op0mal  number    of  poin0ngs  

all  redshijs  

z  >  15  

feedback  

Num

ber    visib

le  with

 JWST  

10-­‐1      10

0          10

1          10

2          10

3              10

4  

Andreas  Pawlik  (MPA)  

Page 10: The$firstgalaxies$– radiave $feedback$ from$the$firststars · 2018. 4. 20. · Assemblyunder radiave $feedback:$ numerical$methods$ • SPH/Gadget3$zoomed$simulaons$ (Schaye$etal.$2010;$

The  first  black  holes                Myoungwon  Jeon,  AP,  et  al.,  ApJ,  2012  

w/o  X-­‐ray  feedback    w/  X-­‐ray  feedback  

10 kpc

Eddington  rate  

z = 20

see  also  Kuhlen  &  Madau  2005;  Wise  &  Abel  2011  Andreas  Pawlik  

(MPA)  

Page 11: The$firstgalaxies$– radiave $feedback$ from$the$firststars · 2018. 4. 20. · Assemblyunder radiave $feedback:$ numerical$methods$ • SPH/Gadget3$zoomed$simulaons$ (Schaye$etal.$2010;$

Outlook:  spa0ally  adap0ve  radia0on-­‐hydro  simula0ons  of  reioniza0on  with  TRAPHIC  

AP,  Schaye,  Rahma0,  Raicevic,  Dalla  Vecchia    •  Computa0on  0me  independent  of  the  number  of  sources  (vs.  propor0onal  to  the  number  of  sources)  

•  Spa0ally  adap0ve  radia0ve  transfer  (vs.  radia0ve  transfer  on  uniform  grids)  

•  Radia0on-­‐hydrodynamically  coupled  (vs.  post-­‐processing  of  sta0c  density  fields)  

 Andreas  Pawlik  

(MPA)  

Page 12: The$firstgalaxies$– radiave $feedback$ from$the$firststars · 2018. 4. 20. · Assemblyunder radiave $feedback:$ numerical$methods$ • SPH/Gadget3$zoomed$simulaons$ (Schaye$etal.$2010;$

TRAPHIC  in  the  cosmological  galaxy  forma0on  code  GADGET    

(version  3-­‐OWLS;  Springel  2005;  Schaye+  2010)  

•  accurate  radia0ve  transfer  coupled  to  cosmological  hydrodynamical  simula0ons      

•  high  spa0ally  adap0ve  resolu0on  (equivalent  to  ~130003  uniform  grid)  

                           

25  Mpc/h,  2x5123  

Mhalo    >  8  x  108  solar  

Andreas  Pawlik  (MPA)  

Page 13: The$firstgalaxies$– radiave $feedback$ from$the$firststars · 2018. 4. 20. · Assemblyunder radiave $feedback:$ numerical$methods$ • SPH/Gadget3$zoomed$simulaons$ (Schaye$etal.$2010;$

Effect  of  feedback  on    stellar  mass  func0on  at  z  =  6  

Andreas  Pawlik  (MPA)  

No  feedback  RHD  only  SN  only  D.  Vecchia  &  Schaye  ‘12  

Page 14: The$firstgalaxies$– radiave $feedback$ from$the$firststars · 2018. 4. 20. · Assemblyunder radiave $feedback:$ numerical$methods$ • SPH/Gadget3$zoomed$simulaons$ (Schaye$etal.$2010;$

Posi0ve  feedback  

Effect  of  photohea0ng  on    IGM  clumping  factor    

(AP,  Schaye,  &  van  Scherpenzeel  2009)  

See  also,  e.g.,  Shull  et  al.  2012,  Finlator  et  al.  2012  

IGM  clumping  factor  

Andreas  Pawlik  (MPA)  

Page 15: The$firstgalaxies$– radiave $feedback$ from$the$firststars · 2018. 4. 20. · Assemblyunder radiave $feedback:$ numerical$methods$ • SPH/Gadget3$zoomed$simulaons$ (Schaye$etal.$2010;$

Summary  

•  Extended  disks  can  form  at  redshijs  as  high  as  z≈10  in  halos  as  small  as  ~109  Msun  

•  JWST  will  collect  the  stellar  light  from  halos  with  masses  as  low  as  ~>109  Msun  

•  Halos  with  masses  ~<  109  Msun  may  be  traced  by  hun0ng  for  PISNe  and  accre0ng  black  holes  

•  Spa0ally  adap0ve  radia0on-­‐hydro  simula0ons  of  reioniza0on  with  TRAPHIC  

Andreas  Pawlik  (MPA)