The$effect$of$DNAsupercoilingon$transcription$initiation ...

47
The effect of DNA supercoiling on transcription initiation at the glnAp2 promoter Honors Thesis Presented to Brandeis University Biological Physics Program Jeff Gelles, Advisor In Partial Fulfillment of the Requirements for the Degree Bachelors of Science in Biological Physics by Abby Knecht May 2015

Transcript of The$effect$of$DNAsupercoilingon$transcription$initiation ...

The  effect  of  DNA  supercoiling  on  transcription  initiation  at  the  glnAp2  promoter    

     Honors  Thesis  

   

Presented  to      

Brandeis  University  Biological  Physics  Program  

Jeff  Gelles,  Advisor      

In  Partial  Fulfillment  of  the  Requirements  for  the  Degree  

 Bachelors  of  Science  

in    Biological  Physics  

     by  

Abby  Knecht          

May  2015    

   

  1  

                                                                 

Copyright  by    

Abigail  Knecht      

©  2015      

  2  

Abstract:       A  quantitative  kinetic  mechanism  for  transcription  initiation  at  the  bacterial  

promoter  glnAp2  was  previously  determined  using  single  molecule  experiments  

with  relaxed  DNA.  DNA  in  E.  Coli  cells,  however,  is  rarely  relaxed  but  is  instead  

negatively  supercoiled.    Bulk  experiments  in  the  literature  report  a  10  to  60  times  

increase  in  the  overall  rate  of  transcription  initiation  at  the  glnAp2  promoter  with  

negatively  supercoiled  DNA  compared  to  relaxed  DNA.    To  locate  where  in  the  

mechanism  this  increase  in  rate  occurs,  I  created  circular  DNA  that  contained  the  

glnAp2  promoter,  biotin  for  attachment  to  a  microscope  slide,  and  a  dye  for  

visualization.    Initiation  was  then  measured  using  single  molecule  techniques  on  

both  nicked  and  negatively  supercoiled  forms  of  this  template.    The  overall  rate  of  

transcription  initiation  was  seven  times  faster  on  negatively  supercoiled  DNA  

compared  to  on  nicked  DNA.    The  rate  of  RNA  polymerase  binding,  however,  was  

only  1.5  times  faster  on  supercoiled  DNA,  and  the  rate  of  open  complex  decay  on  the  

supercoiled  and  nicked  templates  was  not  significantly  different.  Initial  experiments  

on  the  RNA  polymerase  closed  complexes  suggest  that  their  stability  on  negatively  

supercoiled  and  nicked  templates  is  not  very  different.      Based  on  those  results,  I  

hypothesize  that  isomerization  from  closed  to  open  complex  is  most  likely  the  step  

in  the  mechanism  that  accounts  for  the  difference  in  overall  rate  of  transcription  

initiation  between  relaxed  and  supercoiled  DNA.    

   

  3  

Table  of  Contents:  

Chapter  1  –  Introduction    

  Supercoiling  Theory    

  Transcription  Initiation  

  TIRF  Microscopy  

  Supercoiling  and  Transcription  Initiation  

Chapter  2  –  Synthesis  of  Circular  Transcription  Templates  

  Results    

    Digesting  pJES534  

    Assembling  Dye/Biotin  Fragment  

    First  Ligation  

    Determining  the  Circular  Template  

    Nicking  and  purification  of  the  circular  template  

    Second  Ligation  and  Gyrase  Reaction  

    No  promoter  Circular  Templates    

  Calculations  

  Materials  and  Methods    

DNA  plasmids  and  oligonucleotides  

Enzymes  

Labeling  the  oligonucleotide  

Chapter  3  –  Transcription  Initiation  Mechanism    

  Results  

    Specificity  of  Initiation    

  4  

    Overall  rate  of  initiation  

    Rate  of  first  binding  of  RNAP  

    Closed  Complexes  

Open  complex  dissociation  

Materials  and  Methods  

    TIRF  Microscope  and  Slide  Preparation    

    Solutions  

    Fit  Equations  

Chapter  4  –  Discussion    

References    

  5  

List  of  Figures  

Chapter  1  –  Introduction  

  Figure  1.1:  DNA  Supercoiling  –  Linking  Number,  Twist,  and  Writhe  

  Figure  1.2:  TIRF  Microscope  

Chapter  2  –  Synthesis  of  the  Circular  Transcription  Templates  

Figure  2.1:  Overall  procedure  for  constructing  the  Nicked  and  Supercoiled  

Templates  

Figure  2.2:  Restriction  Fragment  

Figure  2.3:  Labeling  and  Annealing  the  Dye/Biotin  Fragment    

  Figure  2.4:  First  Ligation      

Figure  2.5:  Testing  for  the  circular  template  with  Gyrase  and  Nt.AlwI    

Figure  2.6:  Nicking  Digest  and  Gyrase  Reaction  

Figure  2.7:  Circular  Templates  with  and  without  a  promoter  

Chapter  3  –  Transcription  Initiation  Mechanism  

  Figure  3.1:  Testing  transcription  initiation  using  the  circular  templates  

Figure  3.2:  Tracing  intensity  of  labeled  probe      

Figure  3.3:  Transcription  initiation  fraction  on  different  circular  templates.      

Figure  3.4:  Rates  of  transcription  initiation  and  𝜎!"-­‐RNAP  binding    

Figure  3.5:  Closed  Complex  Dwell  Times      

Figure  3.6:  Dissociation  of  the  Open  Complex      

Chapter  4  –  Discussion  

Figure  4.1:  Mechanism  of  Transcription  Initiation  for  𝜎!"-­‐RNAP  on  Circular  

DNA      

  6  

Chapter  1:  Introduction  

Supercoiling  Theory    

DNA  is  commonly  portrayed  as  a  linear  double  helix,  but  DNA  is  not  linear  

and  relaxed  in  the  cell.  DNA  in  cells  is  supercoiled,  either  in  bacterial  plasmids,  or  in  

chromosomal  DNA  both  in  bacteria  and  eukaryotes  (Mirikin  2002).    Supercoiling  

occurs  when  the  DNA  double  helix  is  either  tightened  (known  as  positive  

supercoiling)  or  loosened  (known  as  negative  supercoiling).    In  cells,  chromosomal  

DNA  is  negatively  supercoiled  both  so  it  can  fit  into  the  cell  and  so  that  proteins  can  

more  easily  bind  to  the  DNA  and  dehybridize  the  hydrogen  bonds  between  base  

pairs  (Watson  2007).    

Supercoiling  can  mathematically  be  described  with  three  variables:  linking  

number  (Lk),  twist  (Tw),  and  writhe  (Wr).    When  a  closed  circular  piece  of  DNA  is  

flattened,  as  it  is  in  Figure  1.1A,  the  linking  number  is  defined  by  the  number  of  

times  one  strand  of  the  DNA  crosses  over  the  other  strand  (Mirkin  2002).  As  such,  

the  linking  number  is  always  an  integer.    The  twist  is  defined  as  the  total  number  of  

helical  turns  in  the  circular  DNA.    The  writhe  describes  the  3D  shape  of  the  DNA.    It  

is  defined  by  the  number  of  times  the  long  axis  of  the  DNA  crosses  over  itself  

(Watson  2007).    Writhe  presents  itself  as  either  a  plectoneme  (Figure  1.1B,  the  

figure  eight  shape  in)  or  a  toroid  and  can  be  either  greater  than,  less  than,  or  equal  

to  zero  (Marko  and  Neukirch  2012).      These  quantities  are  related  by  the  simple  

equation:  

𝐿𝑘 = 𝑇𝑤 +𝑊𝑟   (1.1)  

  7  

A  relaxed  DNA  wraps  around  its  axis  about  once  every  10  base  pairs.    

Therefore,  the  linking  number  of  a  relaxed  DNA  (LkO)  can  be  approximated  by  

dividing  the  number  of  base  pairs  by  10.    When  the  DNA  is  relaxed,  the  writhe  of  the  

molecule  is  zero,  so  𝐿𝑘 = 𝐿𝑘! = 𝑇𝑤  (Figure  1.1A).    Supercoiled  DNA  is  defined  by  

DNA  that  has  a  linking  number  does  not  equal  its  LkO.    Mathematically,  the  amount  

of  supercoiling  can  be  described  by  the  difference  between  the  current  linking  

number  of  the  DNA  and  its  LkO  (equation  1.2).  

Δ𝐿𝑘 = 𝐿𝑘 − 𝐿𝑘!   (1.2)  

  Since  the  linking  number  depends  on  the  number  of  base  pairs  in  the  DNA,  

the  superhelical  density  (𝜎)  is  most  commonly  used  to  measure  the  amount  of  

supercoiling.    The  superhelical  density  is  defined  by  equation  1.3:  

𝜎 = !!"!"!   (1.3)  

When  the  superhelical  density  is  greater  than  zero  the  DNA  is  positively  

supercoiled,  when  it  is  less  than  zero  the  DNA  is  negatively  supercoiled,  and  when  it  

is  equal  to  zero  the  DNA  is  relaxed.      

  8  

 Figure  1.1:  DNA  Supercoiling  –  Linking  Number,  Twist,  and  Writhe.    A.  Example  of  a  relaxed  circular  plasmid  where  the  linking  number  is  equal  to  the  twist,  so  the  writhe  is  zero.    B.    The  same  molecule  as  A,  but  a  topoisomerase  has  decreased  the  linking  number  by  4.  The  change  in  linking  number  created  a  writhe  of  -­‐4  in  the  molecule,  while  the  twist  remains  the  same.  This  molecule  is  supercoiled.    C.  The  DNA  here  has  the  same  linking  number  as  B,  but  here  the  writhe  is  0  and  the  twist  has  changed.    The  change  in  twist  but  not  writhe  causes  the  base  pairs  to  become  disrupted.  Figure  from  Watson  2007.               Cells  are  able  to  manipulate  the  superhelical  density  of  their  DNA  by  using  

topoisomerases  (Figure  1.1  A-­‐B).    Topoisomerases  are  enzymes  that  change  the  

linking  number  of  a  DNA  by  cutting  either  one  strand  (type  I  topoisomerases)  or  

two  strands  (type  II  topoisomerases)  and  then  re-­‐ligating  them  with  a  changed  

linking  number.    Most  topoisomerases  simply  relax  supercoiled  DNA  back  to  its  

relaxed  state,  but  some,  such  as  the  E.  Coli  enzyme  gyrase,  can  induce  negative  

supercoils  into  DNA  in  the  presence  of  ATP  (Bates  and  Maxwell  1989;  Gellert  et  al.  

1976).    I  used  gyrase  in  the  experiment  to  induce  negative  supercoils  into  the  

circular  template.      

  9  

Transcription  Initiation  

   Transcription  is  the  process  by  which  a  gene  is  copied  by  the  enzyme  RNA  

polymerase  (RNAP)  into  a  single  strand  of  RNA.    Transcription  consists  of  three  

main  parts:  initiation,  elongation,  and  termination  (Weaver  2012).    Transcription  

initiation  is  where  an  RNAP  finds  a  certain  sequence  in  the  DNA  before  the  

beginning  of  the  gene,  known  as  the  promoter,  and  opens  the  DNA  to  form  an  open  

complex.    Elongation  occurs  just  after  initiation  when  the  RNAP  creates  the  RNA  by  

hybridizing  nucleotides  to  the  DNA.    When  the  RNA  polymerase  has  finished  

transcribing  the  gene,  it  dissociates  from  the  DNA  in  a  process  known  as  

termination.    

Here  I  studied  transcription  initiation  in  vitro  using  proteins  from  E.  Coli.    The  

RNA  polymerase  holoenzyme  in  bacteria  consists  of  the  RNA  polymerase  core  and  a  

specificity  subunit  called  a  sigma  (𝜎)  factor.  Depending  on  the  promoter  involved,  a  

specific  𝜎  factor  is  needed  for  the  RNAP  to  begin  transcribing.    The  𝜎!"  factor  that  I  

study  here  is  responsible  for  activating  transcription  on  genes  that  are  needed  for  

Nitrogen  metabolism  in  E.  Coli  as  well  as  other  functions  (Mauri  and  Klumpp  2014,  

Weaver  2012).    Unlike  some  other  sigma  factors  in  E.  Coli,  the  𝜎!"  RNAP  

holoenzyme  is  unable  to  initiate  transcription  on  its  own  and  is  in  need  of  an  

activator  (Wedel  and  Kustu  1995).    The  well-­‐established  activator  for  the  glnAp2  

promoter  is  NtrC  (nitrogen  regulating  protein  C).    NtrC  hydrolyzes  ATP  or  GTP  to  

couple  the  energy  involved  in  hydrolyzation  to  open  the  DNA  at  the  promoter  

forming  the  open  complex  (Wedel  and  Kustu  1995).      

  10  

TIRF  Microscopy  

  Transcription  is  a  very  dynamic  process  with  proteins  binding  quickly  and  

then  dissociating.    While  bulk  experiments  can  be  elusive  in  determining  overall  

rates,  single  molecule  experiments  are  more  useful  in  determining  the  

heterogeneity  of  the  dynamic  process.    The  single  molecule  experiments  I  use  here  

are  with  total  internal  reflection  fluorescence  (TIRF)  microscopy.    TIRF  microscopy  

reduces  background  fluorescence  by  only  exciting  approximately  100-­‐nm  above  the  

surface  of  the  glass  slide  (Friedman,  Chung,  and  Gelles  2006).    The  TIRF  microscope  

used  in  my  project  can  simultaneously  excite  the  sample  at  multiple  wavelengths  by  

spatially  separating  the  excitation  and  emission  beams  (Figure  1.2,  Friedman,  

Chung,  and  Gelles  2006).    With  the  ability  to  simultaneously  excite  multiple  

wavelengths,  the  TIRF  microscope  can  be  used  to  study  single  molecules  interacting  

using  CoSMoS  (Co-­‐localization  single-­‐molecule  spectroscopy) (Friedman  and  Gelles  

2012).          

  11  

 

Figure  1.2:  TIRF  Microscope.    Diagram  of  the  TIRF  Microscope  from  Friedman,  Chung,  and  Gelles  2006.  The  excitation  beam  (green  arrows,  𝜆!)  is  reflected  by  the  dichroic  mirror  and  then  is  totally  internally  reflected  at  the  boundary  between  the  aqueous  buffer  and  the  glass  slide.    The  longer  emission  beam  (red  arrows,  𝜆!)  is  transmitted  through  the  dichroic  mirror.  

 

Supercoiling  and  Transcription  Initiation  

Transcription  initiation  at  the  glnAp2  promoter  is  a  dynamic  multi-­‐step  

process.    The  entire  mechanism  of  transcription  initiation  at  this  promoter  was  

determined  using  CoSMoS  with  linear  DNA  attached  to  the  slide  (Friedman  and  

Gelles  2012).    The  mechanism  includes  two  closed  complexes  followed  by  the  

formation  of  the  open  complex.  After  the  open  complex,  the  transcription  elongation  

complex  (TEC)  forms  and  transcription  elongation  begins  as  long  as  NTPs  are  

present.    

While  the  mechanism  of  transcription  initiation  was  previously  determined  

using  linear  DNA,  DNA  in  cells  is  negatively  supercoiled.  The  stability  of  the  open  

  12  

complex  for  the  𝜎!"  RNAP  changes  depending  on  whether  it  forms  on  negatively  

versus  positively  supercoiled  DNA  (Revyakin,  Ebright,  and  Strick  2004).  There  is  

also  evidence  that  the  formation  of  the  𝜎!"  RNAP  open  complex  peaks  at  a  

superhelical  density  of  -­‐0.024,  while  the  𝜎!"  RNAP  peaks  at  -­‐0.067,  showing  that  

transcription  initiation  depends  on  supercoiling  for  both  RNA  polymerases  

(Whitehall,  Austin,  and  Dixon  1992).    Bulk  experiments  similarly  determined  that  

the  overall  rate  of  initiation  at  the  glnAp2  promoter  is  10  to  60  times  faster  on  

negatively  supercoiled  DNA  compared  to  relaxed  DNA  (Schulz,  Langowski,  and  

Rippe  2000).    However  they  give  no  indication  of  where  this  increase  in  rate  occurs  

in  the  multi-­‐step  process  of  transcription  initiation.  

The  goal  of  my  experiments  was  to  determine  the  mechanism  of  

transcription  initiation  on  supercoiled  DNA  at  the  glnAp2  promoter.    There  were  

two  main  parts  of  my  project.    I  first  created  a  circular,  supercoiled  piece  of  DNA  

that  could  be  attached  the  microscope  slide  using  biotin,  had  a  fluorescent  dye  

attached,  and  had  the  sequences  necessary  for  transcription  initiation  and  

elongation.    After  the  circular  template  was  completed,  I  performed  single  molecule  

TIRF  microscope  experiments  to  determine  the  mechanism  of  transcription  

initiation  using  the  supercoiled  DNA.        

  13  

Chapter  2:  Synthesis  of  Circular  Transcription  Templates  

Results  

  In  order  to  perform  TIRF  experiments  to  determine  where  in  the  mechanism  

supercoiled  DNA  transcribed  faster,  I  had  to  first  construct  a  supercoiled  circular  

template.    The  template  needed  to  have  the  necessary  sequences  for  transcription  

initiation  and  elongation  for  a  𝜎!"  RNAP,  a  fluorescent  dye  to  be  visualized  in  the  

microscope,  and  a  biotin  moiety  to  attach  the  template  to  a  streptavidin-­‐coated  

microscope  slide.    The  construction  of  the  circular  template  was  similar  to  that  of  

Kalkbrenner  et  al.  (Kalkbrenner,  Arnold,  and  Tans  2009).  In  summary  (Figure  2.1),  

the  sequences  for  transcription  initiation  were  isolated  as  a  restriction  fragment  of  a  

stock  plasmid  and  then  ligated  with  a  synthesized  oligonucleotide  containing  the  

biotin  and  fluorescent  dye  (dye/biotin  fragment).      The  correct  circular  template  

was  then  purified  from  the  ligation  reaction.    After  purification,  the  circular  template  

was  supercoiled  using  the  enzyme  gyrase.      

  14  

 

Figure  2.1:  Overall  procedure  for  constructing  the  Nicked  and  Supercoiled  Templates.  The  restriction  fragment  (760  base  pairs)  is  in  green  while  the  dye/biotin  fragment  (32  base  pairs)  is  in  purple.  The  E  and  H  correspond  to  the  sticky  ends  that  resulted  from  the  restriction  digest  by  EcoRI  and  HindIII  respectively.    The  final  circular  templates  are  highlighted  in  red  surrounded  by  black  boxes.    

  15  

Digesting  pJES534  

The  sequences  needed  for  transcription  initiation  and  elongation  (the  

restriction  fragment)  were  purified  from  the  plasmid  pJES534  (Figure  2.1A,  

Friedman  and  Gelles  2012)  and  consisted  of  three  main  parts:  the  promoter  

sequence,  the  enhancer  sequences,  and  the  repeating  cassette  sequence.    The  

plasmid  was  digested  with  EcoRI  and  HindIII,  each  having  a  binding  site  on  either  

end  of  the  restriction  fragment  (Figure  2.2A).    The  restriction  fragment  was  then  gel  

purified  to  isolate  it  from  the  rest  of  the  plasmid.    The  promoter  sequence  I  used  for  

this  experiment  is  the  glnAp2  promoter,  which  requires  the  𝜎!"  initiation  factor  and  

the  activator  NtrC  to  activate  transcription  initiation  (Vidangos  et  al.  2013;  Wedel  

and  Kustu  1995).    The  enhancer  for  NtrC  consists  of  two  binding  sites  upstream  of  

the  promoter  (Figure  2.2B).    Directly  downstream  of  the  promoter  are  the  repeating  

cassettes  that  will  be  transcribed  by  the  RNA  polymerase  (Figure  2.2  B,  C).  Due  to  

the  construction  of  the  repeating  cassette  sequence,  the  RNA  transcribed  will  not  

contain  any  uracil  within  the  repeats.    If  UTP  is  not  added  to  the  reaction,  the  

polymerase  will  stall  when  it  reaches  a  thymine  base  at  the  end  of  the  repeating  

cassettes.    

   

 

  16  

 Figure  2.2  Restriction  Fragment.  A.  Plasmid  pJES534  with  the  EcoRI  and  HindIII  restriction  sites  labeled.    The  green  segment  is  the  restriction  fragment  that  is  gel  purified.    B.  The  restriction  fragment  after  it  is  purified.    The  locations  of  the  enhancer  sequences,  promoter  sequence,  and  repeating  cassette  sequence  are  shown  in  their  respective  locations.  C.  The  sequence  of  a  single  cassette.    The  repeating  cassettes  consisted  only  of  A,  C,  and  G  NTPs.      

 Assembling  Dye/Biotin  Fragment  

  To  create  the  dye/biotin  fragment,  two  different  synthetic  oligonucleotides  

were  annealed  together  (Figure  2.3A).  Initially,  one  of  the  oligonucleotides  

contained  biotin  and  the  other  that  had  an  amine  attached.  Since  I  wanted  to  create  

a  circular  template,  the  biotin  and  the  fluorescent  dye  had  to  be  attached  in  the  

middle  of  the  oligonucleotide,  as  attaching  it  at  the  ends  would  make  it  impossible  to  

close  the  circle.    In  addition,  I  was  worried  that  kinks  in  the  circular  template  from  a  

missing  base  that  would  interfere  with  the  supercoiling  of  the  circular  templates.    

Instead  the  oligonucleotides  were  ordered  with  the  dye  and  biotin  attached  to  a  

thymine  base  so  that  none  of  the  base  pairs  would  be  disrupted  in  the  final  circular  

  17  

template  (Figure  2.3  B-­‐C).    The  amine  group  was  replaced  with  an  Alexa  Fluor  488  

fluorescent  dye  using  an  amine-­‐ester  reaction.    After  the  dye  was  attached,  the  two  

oligonucleotides  were  annealed  and  then  phosphorylated  with  a  kinase  to  form  the  

dye/biotin  fragment  (Figure  2.3D).      

 

Figure  2.3:  Labeling  and  Annealing  the  Dye/Biotin  Fragment.    A.  Schematic  procedure  to  assemble  the  dye/biotin  fragment.    The  purple  fragments  represent  the  synthesized  oligonucleotides.  B.  Modified  chemical  structure  of  the  amine  attached  to  a  thymine  nucleotide  (original  structure  from  IDT).    C.  Modified  chemical  structure  of  the  biotin  attached  to  a  thymine  nucleotide  (original  structure  from  IDT).    D.  Sequence  of  the  dye/biotin  fragment  after  labeling  with  the  Alexa  Fluor  488  dye  and  annealing  the  two  strands  together.    The  red  T’s  represent  the  modified  thymine  bases  in  B  and  C.    E  and  H  correspond  to  the  5’  overhangs  that  result  from  an  EcoRI  and  HindIII  digest  respectively  (A,  D).        

  18  

First  Ligation  

  To  create  the  circular  template,  one  restriction  fragment  had  to  be  attached  

to  one  dye/biotin  fragment.    The  dye/biotin  fragment  had  complementary  sticky  

ends  to  the  restriction  fragment,  which  facilitated  ligation  of  the  two  pieces  (Figure  

2.4A).    As  expected,  the  ligation  did  not  only  produce  the  circular  template  with  one  

restriction  fragment  and  one  dye/biotin  fragment.    Instead,  the  ligation  produced  

many  products  (some  possible  products  are  depicted  in  Figure  2.4B-­‐G).    Figure  2.4H  

shows  the  products  of  the  first  ligation.      

 Figure  2.4:  First  Ligation.    A.    Cartoon  of  the  two  reactants  in  the  first  ligation.    The  restriction  fragment  (in  green)  and  the  dye/biotin  fragment  (in  purple)  were  ligated  together  in  a  1:1.5  ratio.    B  -­‐  G.  Products  that  could  have  been  formed  during  the  first  ligation.  Products  B-­‐D  contain  two  restriction  fragments.    I  hypothesize  that  they  should  run  in  the  1.5-­‐2  kb  range  on  an  agarose  gel.  Products  E-­‐G  contain  only  one  restriction  fragment.    Theoretically  they  should  run  around  the  1  kb  range  on  an  agarose  gel.    H.  Agarose  gel  electrophoresis  of  the  first  ligation  (imaged  by  Alexa  Fluor  488  fluorescence).    Bands  1-­‐5  were  excised  for  subsequent  use.  The  numbers  to  the  left  of  the  gel  represent  the  positions  of  the  1kb  ladder  for  this  gel.        

  19  

 Determining  the  Circular  Template  

  By  utilizing  how  topoisomers  run  on  an  agarose  gel,  the  identity  of  the  bands  

in  Figure  2.4H  could  be  determined.    On  an  agarose  gel,  an  open  circle,  a  linear  DNA,  

and  a  highly  supercoiled  circle  of  the  same  length  will  run  differently.    A  nicked  or  

open  circle  runs  the  slowest,  while  a  highly  supercoiled  circle  will  run  the  fastest.    

The  linear  DNA  as  well  as  the  other  topoisomers  of  the  same  length  will  run  

somewhere  between  the  open  circle  and  the  highly  supercoiled  circle  (Keller  1975).    

As  such,  the  circular  template  (Figure  2.4F)  and  its  topoisomers  (Figure  2.4G)  

should  run  close  to  the  position  of  the  linear  template  (Figure  2.4E)  on  the  gel.  

In  Figure  2.4  H  there  are  4  bands  that  are  close  to  the  position  of  the  linear  

template  on  the  gel  (at  800  base  pairs).    To  determine  if  these  were  topoisomers  of  

the  circular  template  (Figure  2.4G)  or  whether  they  were  other  linear  templates  

(Figure  2.4E),  each  band  was  gel  extracted  (Figure  2.4H,  bands  1-­‐4)  as  well  as  the  

next  highest  in  the  gel  for  a  control  (Figure  2.4H,  band  5).    The  extracted  DNA  was  

tested  with  gyrase  and  the  nicking  enzyme  Nt.AlwI  to  see  whether  they  were  

topoisomers  of  the  circular  template  (Figure  2.4G)  or  linear  templates  (2.4E).  If  they  

were  all  different  linear  templates,  then  neither  the  gyrase  nor  the  nicking  enzyme  

would  have  an  effect  on  the  migration  of  the  bands.    If  they  were  topoisomers  of  the  

circular  template  on  the  other  hand,  then  they  would  all  shift  to  the  same  position  

with  the  addition  of  either  gyrase  or  Nt.AlwI.      

When  incubated  with  gyrase,  bands  2-­‐4  migrated  to  the  same  position  

(Figure  2.5A,  lanes  d,  f,  and  h).  This  is  consistent  with  the  hypothesis  that  bands  2-­‐4  

are  topoisomers  of  the  circular  template.    The  control,  band  5,  however  did  not  

  20  

migrate  to  the  same  position  as  the  others  when  it  was  supercoiled  (Figure  2.5A,  

lanes  i-­‐j).  Since  it  ran  closer  to  the  2kb  range,  I  concluded  that  it  was  likely  a  linear  

dimer  (Figure  2.4B).    From  previous  experiments  I  determined  that  band  1  was  a  

linear  template  because  it  consistently  ran  at  800  base  pairs,  which  is  consistent  

with  where  the  linear  template  would  run.    

Figure  2.5:  Testing  for  the  circular  template  with  Gyrase  and  Nt.AlwI.      A.    Agarose  gel  of  the  gyrase  experiment.  The  numbers  for  DNA  refer  to  the  gel  extracted  bands  from  Figure  4H.  The  (+)-­‐sign  indicates  that  the  sample  was  incubated  with  gyrase  at  37˚C  to  supercoil  the  DNA.  Lane  a  is  a  1kb  ladder.    B.    Agarose  gel  of  the  nicking  digest  using  Nt.AlwI.  The  (+)-­‐sign  indicates  that  the  sample  was  incubated  with  the  nicking  enzyme  Nt.AlwI.    Both  gels  were  incubated  with  ethidium  bromide  after  the  gel  was  run  and  then  imaged  for  ethidium  bromide.    C.  Models  of  the  5  bands  based  on  the  gyrase  and  nicking  digest  experiments.  Band  1  is  the  linear  template,  bands  2  and  3  are  topoisomers  of  the  circular  template,  band  4  is  the  relaxed  circular  template,  and  band  5  is  a  linear  dimer.        

  21  

To  confirm  that  bands  2-­‐4  were  all  topoisomers  of  the  same  circular  

template,  I  did  the  same  experiment  but  incubated  the  extracts  with  the  nicking  

enzyme  Nt.AlwI  (Figure  2.5B).    After  the  incubation  with  Nt.AlwI,  bands  2-­‐4  

migrated  to  the  same  position  on  the  agarose  gel  (Figure  2.5B,  lanes  b,  d,  and  f).  

These  results  confirm  those  from  the  gyrase  experiment,  that  bands  2-­‐4  are  all  

topoisomers  of  the  circular  template.  Just  as  it  did  in  the  gyrase  experiment,  there  

was  no  difference  in  the  migration  of  band  5  with  or  without  the  nicking  enzyme;  it  

still  ran  at  1.5kb  (Figure  2.5B,  lane  h).    The  gyrase  supercoiling  experiment  

combined  with  the  nicking  digest  confirms  that  the  four  products  near  1  kb  in  the  

first  ligation  are  topoisomers  of  the  circular  template  (Figure  2.4G).    Figure  2.5  C  

gives  a  summary  of  what  each  of  the  five  bands  are  based  on  the  gyrase  and  nicking  

enzyme  tests.      

Nicking  and  purification  of  the  circular  template  

  The  next  step  was  to  purify  the  circular  template  from  the  first  ligation  

reaction.    To  do  so,  the  first  ligation  was  nicked  using  the  Nt.AlwI  enzyme  and  run  on  

a  gel  (Figure  2.6A,  lane:  First  Ligation  Nicked),  and  then  the  relaxed  circular  

template  was  gel  purified  (Figure  2.6A,  lane:  Nicked  Circular  Template).    Some  of  the  

purified  nicked  circular  template  (Figure  2.6B)  was  stored  for  a  comparison  to  the  

supercoiled  DNA  during  the  TIRF  experiments,  while  the  rest  was  used  to  make  the  

supercoiled  circular  template.      

  22  

 Figure  2.6:  Nicking  Digest  and  Gyrase  Reaction.      A.  Agarose  gel  that  illustrates  the  procedure  to  isolate  the  nicked  and  supercoiled  circular  templates.    The  gel  electrophoresis  was  run  without  ethidium  bromide,  but  was  incubated  with  ethidium  bromide  after  the  gel  was  finished  running  and  then  imaged  for  ethidium  bromide.  B  and  C.  Cartoon  diagrams  of  nicked  and  supercoiled  circular  templates  respectively.    Green  represents  the  promoter  fragment  while  purple  is  the  dye/oligo  fragment.        Second  Ligation  and  Gyrase  Reaction:  

  With  the  nicked  circular  template  purified,  the  next  step  was  to  negatively  

supercoil  it  (Figure  2.1).    Since  gyrase  is  unable  to  supercoil  DNA  that  is  nicked,  the  

nicked  circular  template  needs  to  incubated  with  ligase  before  it  can  be  supercoiled.    

The  second  ligation  resulted  in  two  distinct  products  (Figure  2.6A,  lane:  Second  

Ligation).    The  probability  that  a  circular  piece  of  DNA  has  a  certain  superhelical  

density  without  the  aid  of  topoisomerases  is  given  by  equation  2.1  and  2.2.  With  

these  equations,  I  calculated  the  probability  that  the  circular  template  was  relaxed  

to  be  66%  and  the  circular  template  to  have  a  change  in  linking  number  ±1  to  be  

33%.    The  ratio  in  the  intensities  of  bands  a  and  b  in  Figure  2.6A  was  approximately  

  23  

50:50.  Despite  the  difference  between  theoretical  ratio  and  the  measured  one,  it  is  

probable  that  band  a  is  the  relaxed  circular  template  and  band  b  is  the  topoisomers  

with  a  ±1  change  in  the  linking  number.    Once  the  nicks  had  been  removed  from  the  

circular  template  by  the  second  ligation,  the  circular  template  was  incubated  with  

gyrase  to  form  a  negatively  supercoiled  circular  template  (Figure  2.6A,  lane:  

Supercoiled  circular  template,  and  2.6C).      

No  Promoter  Circular  Templates  

A  circular  template  without  a  promoter  was  also  prepared  using  the  method  

described  above  (Figure  2.1).    The  restriction  fragment  for  the  no  promoter  circular  

template  was  isolated  from  a  plasmid  that  was  the  same  as  pJES534,  but  it  had  the  

glnAp2  promoter  sequence  (-­‐1  to  -­‐27  with  respect  to  the  transcription  start  site)  

removed.    Otherwise,  all  the  reactants  that  were  used  to  assemble  the  circular  

template  with  a  promoter  were  used  for  the  synthesis  of  the  circular  template  

without  the  promoter.    Figure  2.7  shows  the  final  circular  template  both  with  the  

glnAp2  promoter  (A)  and  without  the  promoter  (B).    It  also  describes  the  locations  

of  the  sites  where  Nt.AlwI  nicks  the  DNA  and  the  restriction  digest  sites  for  EcoRI  

and  HindIII.      

  24  

 Figure  2.7:  Circular  Templates  with  and  without  a  promoter.  A-­‐B.  Diagrams  of  the  final  circular  template  with  (A)  and  without  (B)  a  promoter.  The  renderings  describe  the  locations  of  the  sequences  needed  for  transcription  initiation  and  elongation,  as  well  as  the  positions  of  the  restriction  sites,  biotin,  and  dye  positions.  The  nicking  sites  do  not  interfere  with  any  of  the  sequences  needed  for  transcription  initiation  and  elongation.              Calculations  

  To  find  the  probability  that  the  circular  template  is  in  a  particular  energy  

state  without  assistance  from  an  outside  enzyme,  I  used  the  Boltzmann  distribution  

𝑃(𝐸!) =!!!

!!! !!!

!(!)     (2.1)  

where  Δ𝐺  is  the  change  in  the  Gibbs  free  energy  of  a  particular  state  from  its  relaxed  

state,  gi  is  the  number  of  times  that  energy  state  can  occur,  T  is  the  temperature,  kB  

is  the  Boltzmann  constant,  and  z(t)  is  the  partition  function.  To  calculate  Δ𝐺  for  one  

mole  of  topoisomer,  I  used  the  equation    

Δ𝐺 = 10𝑅𝑇𝑁𝜎!   (2.2)  

  25  

where  R  is  the  gas  constant,  N  is  the  number  of  base  pairs,  and  𝜎  is  the  superhelical  

density  (Seidl  and  Hinz  1984).    The  relaxed  state  occurs  when  the  superhelical  

density  is  zero  and  the  circular  DNA  is  relaxed.    As  explained  in  equation  1.3,  𝜎  is  

defined  by  Δ𝐿𝑘 𝐿𝑘!.    In  my  experiment,  the  circular  template  is  792  base  pairs  (N).      

  For  a  relaxed  topoisomer  (Δ𝐿𝑘 = 0),  Δ𝐺  =  0,  and  the  probability  that  it  will  

occur  is  66%.    For  a  topoisomer  where  Δ𝐿𝑘 = ±1,  Δ𝐺 = 𝑒!!.!" ≈ 0.25.    In  this  case  

since  both  the  positive  and  negative  supercoiled  topoisomers  have  the  same  energy,  

gi  =  2.    Therefore,  the  probability  that  the  topoisomer  will  be  supercoiled  by  one  

turn  in  either  the  positive  or  negative  direction  is  33%.    Applying  the  same  principle  

but  with  a  Δ𝐿𝑘 = ±2,  the  probability  is  only  0.56%.    Therefore  it  is  unlikely  that  a  

Δ𝐿𝑘 = ±2  or  higher  would  occur  without  assistance  from  an  outside  source  (such  as  

a  topoisomerase).    

 

Materials  and  Methods    

DNA  plasmids  and  oligonucleotides  

The  plasmids  used  to  isolate  the  restriction  fragments  were  pJES534  that  

either  contained  the  glnAp2  promoter  or  did  not  contain  the  promoter  (Friedman  

and  Gelles  2012).    The  plasmids  were  purified  using  a  Qiagen  miniprep  kit  as  per  the  

manufacturer’s  instructions.    The  oligonucleotides  were  purchased  from  IDT  with  

the  biotin  and  amine  already  attached  as  previously  described  (Figure  2.3  B,  C).    

Enzymes  

  The  restriction  endonuclease  HindIII,  the  nicking  enzyme  Nt.AlwI,  T4  DNA  

ligase,  and  DNA  gyrase  (E.  Coli)  were  all  bought  from  New  England  Biolabs  (NEB),  

  26  

while  the  restriction  endonuclease  EcoRI  was  bought  from  Promega.    During  the  

digest  of  the  plasmid  pJES534,  EcoRI  and  HindIII  were  incubated  together  in  the  

NEB  Buffer  2  at  37˚C  for  1  hour  as  per  NEB  instructions.    The  ligation  reactions  were  

performed  using  T4  DNA  ligase  and  the  DNA  ligase  buffer  provided  per  the  

manufacturer’s  instructions.  The  nicking  reactions  using  Nt.AlwI  were  performed  

using  NEB’s  cutsmart  buffer  and  the  instructions  provided  by  NEB.    The  gyrase  

reactions  were  executed  per  the  manufacturer’s  instructions  using  the  gyrase  buffer  

provided.      

Labeling  the  oligonucleotide  

  The  dye  used  to  label  the  oligonucleotide  was  an  Alexa  Fluor  488  carboxylic  

acid,  2,3,5,6-­‐tetrafluorophenyl  ester  ~*5-­‐isomer,  and  was  purchased  from  Life  

Technologies.    The  procedure  to  label  was  adapted  from  Life  Technologies’s  “Amine-­‐

Reactive  Probe  Labeling  Protocol”.    The  reaction  buffer  used  had  a  final  

concentration  of  0.33  g/L  of  amine  labeled  oligonucleotide,  1.2  g/L  of  dye,  and  0.066  

M  sodium  tetraborate  buffer.    The  reaction  was  mixed  per  the  manufacturer’s  

instructions  for  the  first  2  hours  and  then  left  to  sit  overnight  at  room  temperature.    

An  ethanol  precipitation  was  performed  the  next  day  to  remove  some  of  the  excess  

free  dye.    

   

  27  

Chapter  3  –  Transcription  Initiation  Mechanism    Results  

  With  the  purification  of  the  nicked  and  supercoiled  circular  templates,  I  next  

measured  the  mechanism  of  transcription  initiation  at  the  glnAp2  promoter  using  

single  molecule  TIRF  microscopy.    From  the  literature,  I  know  that  the  process  of  

transcription  initiation  at  this  promoter  on  linear  DNA  (Friedman  and  Gelles  2012)  

is    

𝑅 + 𝑃 ⇄ 𝑅𝑃!! ⇄ 𝑅𝑃!! ⇄ 𝑅𝑃! ⟶ 𝑇𝐸𝐶 + 𝜎!"  

where  R  is  the  DNA  and  P  is  the  RNA  polymerase.  In  the  mechanism,  there  are  two  

closed  complexes  (𝑅𝑃!!  and  𝑅𝑃!!)  before  the  formation  of  the  open  complex  (𝑅𝑃!).    

Compared  to  the  first  three  forward  rate  constants,  the  rate  constant  from  open  

complex  to  the  transcription  elongation  complex  (TEC)  is  much  faster.  Here  I  

determined  where  in  the  mechanism  transcription  initiation  on  the  supercoiled  

template  transcribes  faster  than  on  the  nicked  template.        

Specificity  of  Initiation    

  To  make  sure  that  the  circular  templates  could  be  used  in  place  of  linear  

DNA,  I  tested  transcription  initiation  using  the  supercoiled  and  nicked  circular  

templates.    The  circular  DNA  templates  were  attached  to  the  microscope  slide  and  

then  imaged  with  a  blue  laser  to  determine  their  locations  (Figure  3.1  A,  B).    The  

open  complex-­‐forming  solution,  consisting  of  the  cy3-­‐𝜎!"  RNAP  holoenzyme,  NtrC,  

and  ATP,  was  then  added  to  the  slide  (Figure  3.1  A).      I  allowed  open  complexes  to  

form  for  45  minutes,  at  the  end  of  which  the  locations  of  the  cy3-­‐𝜎!"  RNA  

polymerases  were  imaged  with  a  green  laser  (Figure  3.1C).    Finally  I  added  the  ATP,  

  28  

CTP,  and  GTP  as  well  as  the  cy5  probe  complementary  to  a  single  cassette  sequence  

to  begin  elongation.    A  red  laser  was  then  used  to  visualize  where  elongation  was  

occurring  (Figure  3.1D).    The  circular  templates,  the  cy3-­‐𝜎!"  RNAP,  and  the  cy5-­‐

probe  could  all  be  seen  on  the  microscope  and  I  could  see  co-­‐localization  of  the  

RNAP  and  probe  to  the  circular  templates  (Figure  3.1B-­‐D).      

 Figure  3.1:  Testing  transcription  initiation  using  the  circular  templates.    A.  Diagram  of  the  experimental  procedure.      B-­‐D.  Fluorescence  images  from  the  TIRF  microscope.  A  blue  laser  excited  the  Alexa  Fluor  488  dyes  on  the  DNA  (B).  After  the  addition  of  the  RNAP,  a  green  laser  excited  the  cy3  dyes  on  𝜎!"  (C).  Ten  minutes  after  the  addition  of  the  NTPs  and  cy5-­‐probe,  the  field  was  excited  with  a  red  laser  to  see  the  locations  of  the  probes  (D).  The  arrows  mark  corresponding  locations  in  the  three  images  (B-­‐D).      

 

I  next  needed  to  confirm  that  transcription  initiation  and  elongation  were  

occurring  when  the  probe  co-­‐localized  with  the  DNA.    To  do  so,  I  visualized  cy5-­‐

probe  and  cy3-­‐𝜎!"  binding  over  10  minutes  at  one  frame  per  second  after  the  

addition  of  NTPs.    The  longer  transcription  elongation  continued,  the  more  probes  

were  able  to  bind  to  the  mRNA,  increasing  the  probe  fluorescence  intensity  (Figure  

3.2A).    In  accordance  with  the  literature,  𝜎!"  leaves  the  RNAP  holoenzyme  after  the  

  29  

formation  of  the  open  complex,  allowing  the  transcription  elongation  complex  to  

form  and  progress  (Figure  3.2  B;  Friedman  and  Gelles  2012).  Therefore  

transcription  initiation  and  elongation  were  occurring  as  predicted  using  the  

circular  templates  attached  to  the  slide.      

 

 Figure  3.2:  Tracing  intensity  of  labeled  probe.    A.  Intensity  traces  from  a  single  nicked  circular  template  location.  The  red  line  represents  the  intensity  over  time  of  the  cy5-­‐probe  while  the  green  line  is  the  intensity  of  the  cy3-­‐𝜎!".    The  measurement  started  after  the  45-­‐minute  incubation  to  form  open  complexes,  but  just  before  the  addition  of  NTPs.    B.  Image  gallery  of  the  intensity  at  the  DNA  location  in  the  time  interval  (65s  to  95s).        

I  next  wanted  to  determine  how  the  fraction  that  initiated  changed  

depending  on  which  circular  template  was  used.    There  were  four  different  

constructs  that  were  compared  over  two  days:  the  supercoiled  circular  template  

with  a  promoter  (Figure  3.3A),  the  nicked  circular  templates  with  and  without  a  

promoter  (Figure  3.3  B  and  C  respectively),  and  the  areas  without  a  visible  template  

  30  

(off  DNA)  (Figure  3.3D).  The  fraction  that  initiated  was  calculated  as  the  number  of  

DNA  locations  that  had  a  co-­‐localized  cy5-­‐probe  after  10  minutes  divided  by  the  

total  number  of  DNA  locations  for  that  particular  template.    The  off  DNA  locations  

were  used  to  measure  the  amount  of  nonspecific  binding  to  the  surface  of  the  slide  

(the  background  signal).    As  expected,  the  fraction  that  initiated  at  the  nicked  and  

supercoiled  circular  templates  that  contained  the  promoter  (Figure  3.3  A,  B)  was  

significantly  higher  than  the  background  signal  (Figure  3.3D),  indicating  that  

transcription  did  occur  on  those  circular  templates.    The  nicked  template  without  a  

promoter  (Figure  3.3C),  however,  had  an  initiation  fraction  comparable  to  the  

background  signal  (Figure  3.3D),  suggesting  that  it  did  not  initiate.    Therefore,  

transcription  initiation  only  occurred  on  circular  templates  that  contained  the  

promoter,  and  could  occur  on  both  the  supercoiled  and  nicked  templates.    

The  cause  of  the  discrepancy  in  the  fraction  that  initiated  on  the  nicked  

templates  on  the  two  days  is  unclear.    It  is  possible  that  the  difference  was  caused  by  

the  fact  that  the  first  day  had  CTP  and  GTP  concentrations  of  0.5mM  each,  while  the  

second  day  they  had  concentrations  of  1mM  each.    The  higher  concentration  of  CTP  

and  GTP  on  the  second  day  may  have  allowed  for  faster  elongation  and  therefore  an  

increased  probability  that  a  probe  would  bind  by  the  end  of  the  ten  minutes.    

  31  

 

Figure  3.3:  Transcription  initiation  fraction  on  different  circular  templates.    Fraction  of  DNA  locations  that  showed  initiation  (i.e.,  a  cy5-­‐probe  co-­‐localized)  after  10  minutes.    The  different  colors  of  the  bars  indicate  that  the  experiments  were  performed  on  different  days.  A.  Fraction  with  transcription  initiation  on  the  supercoiled  template  with  a  promoter  (SC+:  n=301).    B.  Fraction  of  templates  with  transcription  initiation  on  the  nicked  circular  template  with  a  promoter  (N+  blue:  n=229,  N+  red:  n=415).    C.  Fraction  templates  with  transcription  initiation  on  the  nicked  circular  template  without  a  promoter  (N-­‐:  n=162).    D.  Fraction  of  off  DNA  sites  with  a  co-­‐localized  cy5  probe.  (Off  blue:  n=338,  Off  red:  n=352).    The  error  bars  indicate  standard  errors.          Overall  rate  of  initiation  

Next  I  determined  whether  transcription  initiation  with  the  supercoiled  

circular  template  was  faster  than  with  the  nicked  circular  template.      The  nicked  and  

supercoiled  circular  templates  were  attached  to  the  slide  and  incubated  with  a  

solution  containing  RNAP  holoenzyme,  NtrC,  NTPs,  and  cy5-­‐probe  (Figure  3.4A),  

allowing  steady  state  initiation  to  occur  in  a  single  reaction  mixture.    I  imaged  the  

reaction  for  an  hour  at  two  frames  per  second.    To  measure  the  overall  rate  of  

initiation,  (𝑅 + 𝑃⟶ 𝑇𝐸𝐶),  the  cumulative  fraction  of  templates  that  initiated,  

measured  as  the  co-­‐localization  of  the  cy5-­‐probe  with  a  template  for  at  least  10  

  32  

seconds,  was  plotted  against  time  (Figure  3.4B).    By  fitting  the  resulting  curves,  the  

rate  of  transcription  initiation  on  supercoiled  templates  was  measured  to  be  

2.9± 0.7 ×10!!  𝑠!!,  whereas  at  nicked  templates  it  was  measured  to  be   0.44±

0.18 ×10!!𝑠!!.    This  gives  a  seven-­‐fold  increase  in  the  overall  rate  of  transcription  

initiation  on  the  supercoiled  template,  which  agrees  with  previous  results  at  the  

glnAp2  promoter  (Schulz,  Langowski,  and  Rippe  2000).    

 Figure  3.4:  Rates  of  transcription  initiation  and  𝝈𝟓𝟒-­‐RNAP  binding.  A.  Diagram  of  protocol  for  TIRF  experiment.    B.  Cumulative  plot  of  the  overall  rate  of  transcription  initiation.  C.  Cumulative  plot  of  the  time  to  first  RNAP  binding.    In  B  and  C,  the  red  circles  indicate  co-­‐localization  on  negatively  supercoiled  templates  (n=233),  the  blue  circles  indicate  co-­‐localization  on  nicked  templates  (n=283),  while  the  black  circles  are  the  off-­‐DNA  control  locations  used  to  measure  the  background  signal  (n=804).    The  green  lines  are  fits  to  the  data  (equation  3.1).    Rate  of  first  binding  of  RNAP  

  Since  on  the  supercoiled  templates,  there  was  faster  initiation  than  on  the  

nicked  templates  and  these  results  quantitatively  agrees  with  previous  data,  this  

system  can  be  used  to  further  study  the  individual  rates  between  steps  in  the  

  33  

mechanism  of  transcription  initiation.    The  first  step  in  the  mechanism  I  studied  was  

the  rate  of  binding  of  the  RNAP  to  the  template,  (𝑅 + 𝑃⟶ 𝑅𝑃!!).    Using  data  from  

the  initiation  and  elongation  experiments  (Figure  3.4A),  I  made  a  cumulative  plot  of  

the  fraction  of  circular  templates  with  a  co-­‐localized  cy3-­‐𝜎!"  RNAP  versus  the  time  

of  its  first  binding  (Figure  3.4C).    The  rate  constant  for  RNAP  binding  to  the  

supercoiled  template  was  measured  to  be   3.0± 0.4 ×10!𝑀!!𝑠!!  and  the  rate  

constant  for  the  RNAP  binding  to  the  nicked  template  was   2.1± 0.3 ×10!𝑀!!𝑠!!.    

The  ratio  between  these  two  rate  constants  is  approximately  1.5,  which  does  not  

account  for  the  seven-­‐fold  ratio  of  the  overall  rates  of  initiation.    In  addition,  the  first  

RNAP  binding  rate  constant  on  the  nicked  template  matches  the  linear  result,  

2.1×10!𝑀!!𝑠!!,  in  the  previous  TIRF  experiments  (Friedman  and  Gelles  2012),  

which  is  to  be  expected  since  they  are  both  relaxed  constructs.    The  rate  of  binding  

the  RNAP  to  the  supercoiled  versus  nicked  circular  templates  does  not  account  for  

the  increase  in  overall  rate  of  transcription  initiation.      

Closed  Complexes  

  The  next  forward  rate  constant  in  the  mechanism  I  wanted  to  determine  was  

the  rate  constant  between  the  two  closed  complexes  (𝑅𝑃!! ⟶ 𝑅𝑃!!).    Since  closed  

complex  formation  does  not  require  NtrC  or  ATP  (Friedman  and  Gelles  2012),  I  

incubated  the  circular  templates  attached  to  the  slide  surface  with  0.15nM  of  cy3-­‐

𝜎!"  RNAP  alone  (Figure  3.5A).    The  first  experiment  I  performed  to  test  the  rate  

constants  of  the  closed  complexes,  was  to  measure  the  length  of  time  the  RNAP  

stayed  bound  to  the  circular  templates  at  1-­‐second  per  frame  (Figure  3.5  B,  C).    

Since  there  are  two  closed  complexes  in  the  mechanism  of  transcription  initiation,  

  34  

the  dwell  times  of  the  RNAP  are  expected  to  be  a  bi-­‐exponential  function  (Friedman  

and  Gelles  2012).  While  the  background  signal  interfered  with  the  experimental  

data,  there  was  not  much  qualitative  difference  between  the  dwell  times  of  the  RNA  

polymerases  on  supercoiled  versus  nicked  templates.    

  Using  the  same  experimental  procedure  as  before  (Figure  3.5A),  the  longer  

dwell  times  were  measured  by  increasing  the  time  between  frames  to  5  seconds  

(Figure  3.5  D,  E).  Unlike  the  1-­‐second  per  frame  experiment,  the  background  signal  

in  the  5-­‐second  per  frame  experiment  did  not  interfere  with  the  experimental  data  

from  the  nicked  and  supercoiled  templates.    Unfortunately,  the  bi-­‐exponential  fit  did  

not  agree  with  the  data  and  there  was  no  reason  that  it  should  be  fit  to  a  tri-­‐

exponential  curve  with  three  closed  complexes.    Qualitatively,  however,  the  dwell  

times  on  the  supercoiled  and  nicked  templates  for  the  five-­‐second  per  frame  are  

similar,  agreeing  with  the  data  from  the  1-­‐second  per  frame  experiment.  Taken  

together,  the  data  from  the  1-­‐second  and  5-­‐second  per  frame  experiments  were  not  

strong  enough  to  reach  a  conclusion  on  determining  the  rate  constants  between  the  

two  closed  complexes.    To  determine  the  rate  constants  involved  in  closed  complex  

formation,  these  experiments  should  be  repeated  with  a  different  slide  or  re-­‐labeled  

circular  templates  to  reduce  the  level  of  the  background  signal.      

  35  

 Figure  3.5:  Closed  Complex  Dwell  Times.    A.  Diagram  of  experimental  protocol.    B.  Cumulative  frequency  distribution  of  closed-­‐complex  lifetimes  for  the  1-­‐second/frame  experiment.    C.  Semi-­‐logarithmic  plot  of  data  in  B.    D.  Cumulative  frequency  distribution  of  closed-­‐complex  lifetimes  for  the  5-­‐second/frame  experiment.      E.    Semi-­‐logarithmic  plot  of  data  in  D.    In  B-­‐E,  the  red  circles  correspond  to  the  polymerases  bound  to  the  supercoiled  templates  (1-­‐second  per  frame:  n=241,  5-­‐second  per  frame:  n=  255),  the  blue  circles  correspond  to  the  RNA  polymerases  bound  on  the  nicked  templates  (1-­‐second  per  frame:  n=211,  5-­‐second  per  frame:  n=196),  and  the  black  circles  correspond  to  the  randomly  chosen  sites  that  did  not  contain  a  visible  template  (1-­‐second  per  frame:  n=850,  5-­‐second  per  frame:  n=942).    The  logarithms  used  here  were  loge  (C-­‐E).        

  36  

Open  complex  dissociation  

  In  addition  to  measuring  the  rates  of  the  forward  reaction  for  transcription  

initiation,  I  also  wanted  to  determine  the  rate  of  open  complex  dissociation  on  the  

supercoiled  and  nicked  circular  templates  (𝑅𝑃! → 𝑅 + 𝑃).  Open  complexes  were  

formed  in  the  same  way  as  they  were  for  the  initial  experiments  on  transcription  

initiation  (Figure  3.1A),  except  that  instead  of  adding  the  NTPs  after  45  minutes,  the  

lane  was  washed  with  buffer  and  oxygen  scavengers  (Figure  3.6A)  to  remove  free  

RNAP  and  allow  the  open  complexes  formed  to  dissociate.  The  positions  of  the  open  

complexes  were  viewed  only  once  every  10  minutes  to  minimize  photo  bleaching.    

At  the  first  frame,  I  found  all  of  the  open  complexes  that  were  co-­‐localized  with  

either  the  supercoiled  templates  or  the  nicked  templates.  The  rate  of  open  complex  

dissociation  on  the  supercoiled  template  was   1.3± 0.2 ×10!!𝑠!!  and  on  the  

nicked  template  was   1.6± 0.3 ×10!!𝑠!!  (Figure  3.6B).    Unlike  the  𝜎!"  results  

(Revyakin,  Ebright,  and  Strick  2004),  these  rates  are  not  statistically  different,  which  

indicates  that  there  is  no  evidence  that  the  𝜎!"  RNAP  dissociates  differently  on  the  

supercoiled  template  compared  to  the  nicked  template.    

 

  37  

 Figure  3.6:  Dissociation  of  the  Open  Complex.    A.  Diagram  of  the  procedure  to  determine  the  rate  of  open  complex  dissociation.    B.  Semi-­‐logarithmic  plot  of  the  open  complexes  present  as  a  function  of  time.    The  red  circles  represent  the  log  of  open  complexes  present  on  supercoiled  templates  (n=42)  at  a  certain  point  in  time,  while  the  blue  circles  represent  the  log  of  open  complexes  present  on  nicked  templates  (n=43).    The  natural  logarithm  of  the  number  of  open  complexes  present  was  taken  to  create  the  graph.    The  solid  lines  represent  single  exponential  fits  on  the  data  while  the  dotted  lines  describe  the  standard  error  on  the  fit  (Equation  3.2).        

Materials  and  Methods  

TIRF  Microscope  and  Slide  Preparation  

  The  TIRF  microscope  used  in  these  experiments  was  the  same  as  that  

previously  described  (Friedman  and  Gelles  2012;  Friedman,  Chung,  and  Gelles  

2006).    The  microscope  slides  were  prepared  with  PEG  and  biotinated  PEG  on  the  

slide,  and  PEG  on  the  coverslip  (Friedman,  Chung,  and  Gelles  2006).  The  slides  were  

  38  

stored  in  a  -­‐80˚C  freezer  for  up  to  two  years  after  the  PEG  was  added.    They  were  

then  cleaned  with  a  Tris-­‐Acetate  (pH  8)  buffer  on  the  day  of  the  experiment  and  four  

lanes  were  created  on  the  slide  using  grease.    Both  the  supercoiled  and  nicked  

circular  templates  were  attached  to  the  surface  of  the  microscope  slide  using  

streptavidin.      

Solutions  

All  buffers  containing  a  molecule  attached  to  a  fluorescent  dye  contained  

oxygen  scavengers  (Friedman,  Chung,  and  Gelles  2006).    The  buffer  for  the  circular  

templates,  cy3-­‐𝜎!"  RNA  polymerases,  and  probes  were  the  same  as  previous  

experiments  (Friedman  and  Gelles  2012).    The  cy3-­‐𝜎!"  was  stored  separately  from  

the  RNA  polymerase  core,  both  in  a  -­‐80˚C  freezer,  and  then  combined  in  a  1.5:1  ratio  

of  Cy3-­‐𝜎!":  core,  along  with  0.28  mg/ml  BSA,  and  0.9  mM  DTT  just  before  adding  to  

the  reaction  mixture.  Unless  otherwise  stated,  the  concentration  of  RNAP  was  

0.8nM,  of  NtrC  was  14nM,  of  ATP  was  2mM,  of  CTP  and  GTP  was  0.5mM,  and  of  the  

cy5-­‐probe  was  10nM.          

Fit  Equations  

  The  equation  used  to  fit  the  cumulative  plot  of  overall  initiation  and  the  time  

until  first  RNAP  binding  (Figure  3.4  B,  C)  was  

𝑓 𝑡 = (!"×!!!")×(!!!!!× !!!!"" !!"!!×(!!!")×(!!!!!×!!"")!

  (3.1)  

where  Af  is  the  fraction  of  the  templates  that  were  able  to  initiate  (the  active  

fraction),  n  is  the  total  number  of  templates  present,  Nz  is  the  number  of  templates  

with  a  co-­‐localized  probe  at  frame  one,  t  is  the  time,  R  is  the  rate  constant  on  either  

the  supercoiled  or  nicked  template,  and  ROFF  is  the  rate  constant  on  the  off  DNA  

  39  

locations  (Friedman  and  Gelles  2012).    The  equation  used  to  fit  the  single  

exponential  decay  for  the  open  complex  dissociation  (Figure  3.6B)  was    

𝑓 𝑡 = 𝑛×𝑒!! !   (3.2)  

where  n  is  the  number  of  open  complexes  present  at  frame  1,  t  is  the  time,  and  R  is  

the  rate  of  dissociation.      

   

  40  

Chapter  4  –  Discussion  

  Rather  than  using  linear  DNA  to  measure  the  mechanism  of  transcription  

initiation  at  the  glnAp2  promoter,  I  created  a  circular  template  that  could  be  used  in  

place  of  the  linear  DNA.    The  circular  template  was  labeled  with  an  Alexa  Fluor  488  

dye  and  biotin  such  that  it  could  be  seen  by  the  microscope  and  attached  to  a  

microscope  slide.    It  also  contained  the  necessary  sequences  for  transcription  

initiation  and  elongation  for  a  𝜎!"  RNAP  and  had  the  ability  to  be  negatively  

supercoiled  by  the  enzyme  gyrase  or  relaxed  by  the  enzyme  Nt.AlwI.    Using  two  

topoisomers  of  the  circular  template,  the  negatively  supercoiled  and  the  nicked  

templates,  I  performed  a  series  of  single  molecule  TIRF  experiments  to  determine  

the  mechanism  for  transcription  initiation  at  the  glnAp2  promoter.    The  rate  

constants  that  I  was  able  to  determine  are  summarized  in  Figure  4.1.    I  found  that  

the  overall  rate  of  initiation  on  negatively  supercoiled  DNA  is  seven  times  faster  

than  on  relaxed  DNA,  but  not  because  of  the  first  few  forward  rate  constants  in  the  

mechanism.      

  41  

 Figure  4.1:  Mechanism  of  Transcription  Initiation  for  𝝈𝟓𝟒-­‐RNAP  on  Circular  DNA.    The  rates  in  red  are  for  RNA  polymerases  on  supercoiled  templates  while  the  rates  in  blue  are  for  RNA  polymerases  on  nicked  templates.        

Throughout  the  TIRF  experiments  performed  here  to  determine  the  

mechanism  of  transcription  initiation,  the  background  signal  was  higher  than  it  was  

for  the  previous  experiments  with  linear  DNA  (Friedman  and  Gelles  2012).  In  the  

case  of  the  closed  complex  dwell  times,  the  background  signal  interfered  with  the  

results  on  supercoiled  and  nicked  templates.    I  believe  that  the  high  level  of  

background  signal  was  caused  by  the  significant  number  of  circular  templates  

attached  to  the  surface  of  the  slide  that  did  not  contain  an  Alexa  Fluor  488  dye.    The  

amine-­‐ester  labeling  reaction  that  I  performed  on  the  synthesized  oligonucleotide  

was  only  20%  efficient.  Since  I  assumed  that  the  cy5-­‐probe  could  not  be  visualized  

without  elongation  occurring  on  a  DNA  molecule,  I  determined  the  labeling  

efficiency  by  finding  the  fraction  of  probes  that  co-­‐localized  with  circular  templates.    

Another  factor  that  may  have  contributed  to  the  high  background  signal  is  that  there  

might  have  been  nonspecific  binding  to  the  surface  of  the  slide.    Repeating  the  

  42  

experiment  to  determine  the  dwell  times  of  the  closed  complexes  with  a  slide  

prepared  with  an  alternative  method  or  using  newly  labeled  oligonucleotide  during  

the  creation  of  the  circular  templates  may  reduce  the  background  signal.      

While  I  was  unable  to  determine  all  the  rate  constants  in  the  mechanism  of  

transcription  initiation  for  the  circular  templates,  the  preliminary  data  for  the  

𝑅𝑃!! ⟶ 𝑅𝑃!!  step  suggests  that  there  is  little  difference  between  the  rates  on  

negatively  supercoiled  and  nicked  templates.    Therefore,  the  step  that  accounts  for  

the  most  difference  between  the  rate  constants  of  transcription  initiation  on  

negatively  supercoiled  and  nicked  circular  templates  is  the  formation  of  the  open  

complex  (𝑅𝑃!! → 𝑅𝑃!),  which  is  also  the  rate  limiting  step  in  the  reaction  with  

linear  DNA  (Friedman  and  Gelles  2012).  If  this  is  the  case,  then  the  rate  of  open  

complex  formation  could  be  affected  by  negative  supercoiling  in  two  ways.    First,  the  

negative  supercoiling  may  reduce  the  force  needed  for  the  𝜎!"-­‐RNA  polymerase  to  

open  the  DNA.    The  second  is  that  the  plectonemes  formed  in  the  negatively  

supercoiled  DNA  may  make  it  easier  for  the  NtrC  to  interact  with  the  𝜎!"-­‐RNA  

polymerase  thereby  opening  the  double  helix  faster  (Schulz,  Langowski,  and  Rippe  

2000).    Finally  it  could  also  be  a  combination  of  both  of  these  factors.    To  test  how  

supercoiling  effects  the  rate  limiting  step  in  transcription  initiation,  I  could  use  the  

circular  template  described  in  chapter  two,  but  rather  than  negatively  supercoil  it  

with  gyrase  in  the  last  step,  I  could  positively  supercoil  the  template  with  a  reverse  

gyrase.    I  could  then  compare  the  overall  rate  of  transcription  initiation  on  positively  

supercoiled,  negatively  supercoiled,  and  nicked  templates.    Both  the  positively  and  

negatively  supercoiled  templates  create  plectonemes  in  the  DNA,  but  unlike  the  

  43  

negatively  supercoiled  template,  the  positively  supercoiled  template  will  make  the  

force  to  open  the  DNA  greater  rather  than  less  than  it  would  for  the  relaxed  

template.    Therefore,  if  the  overall  rate  of  transcription  initiation  on  the  positively  

supercoiled  template  is  the  same  as  that  on  the  negatively  supercoiled  template,  

then  the  proximity  of  the  NtrC  to  the  𝜎!"-­‐RNAP  accounts  for  the  change  in  rate,  not  

the  force  needed  to  open  the  double  helix.    If  however,  the  overall  rate  on  the  

positively  supercoiled  template  is  slower  than  it  is  on  the  nicked  template,  then  the  

reduced  force  needed  to  open  the  double  helix  explains  the  faster  rate  on  the  

negatively  supercoiled  template,  not  the  accessibility  of  the  𝜎!"-­‐RNAP  to  NtrC.    

Finally,  if  the  overall  rate  on  the  positively  supercoiled  templates  is  somewhere  

between  that  on  nicked  and  negatively  supercoiled  templates,  then  both  the  

proximity  of  the  NtrC  and  the  force  needed  to  open  the  DNA  account  for  the  

increased  speed  of  transcription  initiation  on  the  negatively  supercoiled  templates.      

  I  found  that  the  rate  constants  of  𝜎!"-­‐RNAP  open  complex  dissociation  on  

negatively  supercoiled  and  nicked  templates  were  the  same  within  error.    While  

open  complexes  attached  to  negatively  supercoiled  DNA  are  expected  to  be  more  

thermodynamically  stable,  it  apparently  does  not  affect  the  dissociation  rate  of  the  

𝜎!"-­‐RNAP.    My  finding  contrasts  with  open  complex  dissociation  of  the  𝜎!"-­‐RNAP  on  

supercoiled  DNA,  where  the  kinetic  stability  of  the  open  complex  does  depend  on  

the  superhelical  density  of  the  DNA  (Revyakin,  Ebright,  and  Strick  2004).    However  

in  those  results,  the  authors  compared  open  complexes  on  positively  supercoiled  

DNA  with  those  on  negatively  supercoiled  DNA  when  performing  their  experiments,  

rather  than  comparing  the  stability  on  negatively  supercoiled  and  relaxed  DNA  that  

  44  

I  use  here.    It  would  be  interesting  to  determine  if  in  my  system  the  𝜎!"  RNAP  has  

similar  open  complex  dissociation  rates  on  relaxed  and  negatively  supercoiled  

templates  like  its  𝜎!"  RNAP  counterpart,  or  as  the  literature  suggests,  a  differing  

stability.      

  Using  circular  templates  and  single  molecule  TIRF  microscopy,  I  have  

described  here  the  beginnings  of  the  mechanism  of  transcription  initiation  using  a  

𝜎!"  RNAP  on  negatively  supercoiled  DNA.    More  work  needs  to  be  done  to  

determine  which  is  the  step  in  the  mechanism  that  accounts  for  the  dramatic  change  

in  overall  rate  between  transcription  initiation  on  the  negatively  supercoiled  

templates  compared  to  nicked  templates,  but  preliminary  data  suggests  that  it  is  the  

isomerization  of  the  second  closed  complex  to  the  open  complex.      

   

  45  

References    Bates,  A  D,  and  A  Maxwell.  1989.  “DNA  Gyrase  Can  Supercoil  DNA  Circles  as  Small  as  

174  Base  Pairs.”  The  EMBO  Journal  8  (6):  1861–66.  Friedman,  Larry  J.,  Johnson  Chung,  and  Jeff  Gelles.  2006.  “Viewing  Dynamic  

Assembly  of  Molecular  Complexes  by  Multi-­‐Wavelength  Single-­‐Molecule  Fluorescence.”  Biophysical  Journal  91  (3):  1023–31.  doi:10.1529/biophysj.106.084004.  

Friedman,  Larry  J.,  and  Jeff  Gelles.  2012.  “Mechanism  of  Transcription  Initiation  at  an  Activator-­‐Dependent  Promoter  Defined  by  Single-­‐Molecule  Observation.”  Cell  148  (4):  679–89.  doi:10.1016/j.cell.2012.01.018.  

Gellert,  M,  K  Mizuuchi,  M  H  O’Dea,  and  H  A  Nash.  1976.  “DNA  Gyrase:  An  Enzyme  That  Introduces  Superhelical  Turns  into  DNA.”  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  73  (11):  3872–76.  

Kalkbrenner,  Thomas,  Axel  Arnold,  and  Sander  J.  Tans.  2009.  “Internal  Dynamics  of  Supercoiled  DNA  Molecules.”  Biophysical  Journal  96  (12):  4951–55.  doi:10.1016/j.bpj.2009.03.056.  

Keller,  W.  1975.  “Determination  of  the  Number  of  Superhelical  Turns  in  Simian  Virus  40  DNA  by  Gel  Electrophoresis.”  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  72  (12):  4876–80.  

Marko,  John  F.,  and  Sébastien  Neukirch.  2012.  “Competition  between  Curls  and  Plectonemes  near  the  Buckling  Transition  of  Stretched  Supercoiled  DNA.”  Physical  Review.  E,  Statistical,  Nonlinear,  and  Soft  Matter  Physics  85  (1  0  1):  011908.  

Mauri,  Marco,  and  Stefan  Klumpp.  2014.  “A  Model  for  Sigma  Factor  Competition  in  Bacterial  Cells.”  PLoS  Comput  Biol  10  (10):  e1003845.  doi:10.1371/journal.pcbi.1003845.  

Mirkin,  Sergei  M.  2002.  "DNA  Topology:  Fundamentals."  Encyclopedia  of  Life  Sciences.    pp.  1-­‐11.    London:  Nature.    

Revyakin,  Andrey,  Richard  H.  Ebright,  and  Terence  R.  Strick.  2004.  “Promoter  Unwinding  and  Promoter  Clearance  by  RNA  Polymerase:  Detection  by  Single-­‐Molecule  DNA  Nanomanipulation.”  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  101  (14):  4776–80.  doi:10.1073/pnas.0307241101.  

Schulz,  Alexandra,  Jörg  Langowski,  and  Karsten  Rippe.  2000.  “The  Effect  of  the  DNA  Conformation  on  the  Rate  of  NtrC  Activated  Transcription  of  Escherichia  Coli  RNA  Polymerase·σ54  Holoenzyme.”  Journal  of  Molecular  Biology  300  (4):  709–25.  doi:10.1006/jmbi.2000.3921.  

Seidl,  A,  and  H  J  Hinz.  1984.  “The  Free  Energy  of  DNA  Supercoiling  Is  Enthalpy-­‐Determined.”  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  81  (5):  1312–16.  

Vidangos,  Natasha,  Ann  E.  Maris,  Anisa  Young,  Eunmi  Hong,  Jeffrey  G.  Pelton,  Joseph  D.  Batchelor,  and  David  E.  Wemmer.  2013.  “Structure,  Function,  and  Tethering  of  DNA-­‐Binding  Domains  in  σ54  Transcriptional  Activators.”  Biopolymers  99  (12):  1082–96.  doi:10.1002/bip.22333.  

  46  

Watson,  James  D.  2007.  "The  Structures  of  DNA  and  RNA."  Molecular  Biology  of  the  Gene.  6th  ed.  Menlo  Park,  Calif.:  Benjamin/Cummings.  

Weaver,  Robert  F.  2012.  "Transcription  in  Bacteria."  Molecular  Biology.  5th  ed.  New  York,  NY:  The  McGraw-­‐Hill  companies.    

Wedel,  A.,  and  S.  Kustu.  1995.  “The  Bacterial  Enhancer-­‐Binding  Protein  NTRC  Is  a  Molecular  Machine:  ATP  Hydrolysis  Is  Coupled  to  Transcriptional  Activation.”  Genes  &  Development  9  (16):  2042–52.  doi:10.1101/gad.9.16.2042.  

Whitehall,  S.,  S.  Austin,  and  R.  Dixon.  1992.  “DNA  Supercoiling  Response  of  the  Sigma  54-­‐Dependent  Klebsiella  Pneumoniae  nifL  Promoter  in  Vitro.”  Journal  of  Molecular  Biology  225  (3):  591–607.