The Origin of Universe 1

download The Origin of Universe 1

of 18

Transcript of The Origin of Universe 1

  • 8/3/2019 The Origin of Universe 1

    1/18

    The Big Bang theory is the prevailingcosmologicalmodelof the early development of the universe.[1]The

    major premise of the Big Bang theory is that the universe was once in an extremely hot and dense state

    thatexpandedrapidly (a "Big Bang"). This rapid expansion caused the young universe to cool and

    resulted in its present continuously expanding state. According to recent measurements, scientific

    evidence, and observations,[2][3]the original state happened around 13.7 billion years ago (see age of the

    Universe),[4][5]which can be referred to as the time that the Big Bang occurred.[6][7]

    Georges Lematre proposed what became known as the Big Bang theory of the origin of the Universe; he

    called it his "hypothesis of the primeval atom". The framework for the model relies on Albert

    Einstein's general relativity and on simplifying assumptions (such ashomogeneity and isotropy of space).

    The governing equations had been formulated by Alexander Friedmann. In 1929, Edwin

    Hubblediscovered that the distances to far away galaxieswere generally proportional to theirredshifts

    an idea originally suggested by Lematre in 1927. Hubble's observation was taken to indicate that all very

    distant galaxies and clusters have an apparent velocity directly away from our vantage point: the farther

    away, the higher the apparent velocity.[8]

    If the distance between galaxy clusters is increasing today, everything must have been closer together in

    the past. This idea has been considered in detail back in time to extremedensities and temperatures,[9][10]

    [11] and large particle acceleratorshave been built to experiment on and test such conditions, resulting in

    significant confirmation of this theory. On the other hand, these accelerators have limited capabilities to

    probe into such high energy regimes. There is little evidence regarding the absolute earliest instant of the

    expansion. Thus, the Big Bang theory cannotand does notprovide any explanation for such an initial

    condition; rather, it describes and explains the general evolution of the universe going forward from that

    point on. The observed abundances of the light elements throughout the cosmos closely match the

    calculated predictions for the formation of these elements from nuclear processes in the rapidly

    expanding and cooling first minutes of the universe, as logically and quantitatively detailed according

    to Big Bang nucleosynthesis.

    Fred Hoyle is credited with coining the term Big Bangduring a 1949 radio broadcast. It is popularly

    reported that Hoyle, who favored an alternative "steady state" cosmological model, intended this to be

    pejorative, but Hoyle explicitly denied this and said it was just a striking image meant to highlight the

    difference between the two models.[12][13][14]After the discovery of thecosmic microwave background

    radiationin 1964, and especially when its spectrum (i.e., the amount of radiation measured at each

    wavelength) was found to match that ofthermal radiation from a black body, most scientists were fairly

    convinced by the evidence that some version of the Big Bang scenario must have occurred.

    Contents

    [hide]

    1 Motivation and development

    2 Overview

    o 2.1 Timeline of the Big Bang

    o 2.2 Underlying assumptions

    o 2.3 FLRW metric

    http://en.wikipedia.org/wiki/Physical_cosmologyhttp://en.wikipedia.org/wiki/Physical_cosmologyhttp://en.wikipedia.org/wiki/Physical_cosmologyhttp://en.wikipedia.org/wiki/Scientific_theoryhttp://en.wikipedia.org/wiki/Scientific_theoryhttp://en.wikipedia.org/wiki/Universehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-0http://en.wikipedia.org/wiki/Big_Bang#cite_note-0http://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Scientific_methodhttp://en.wikipedia.org/wiki/Scientific_methodhttp://en.wikipedia.org/wiki/Observational_cosmologyhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-1http://en.wikipedia.org/wiki/Big_Bang#cite_note-1http://en.wikipedia.org/wiki/Big_Bang#cite_note-2http://en.wikipedia.org/wiki/Big_Bang#cite_note-2http://en.wikipedia.org/wiki/Age_of_the_Universehttp://en.wikipedia.org/wiki/Age_of_the_Universehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-3http://en.wikipedia.org/wiki/Big_Bang#cite_note-3http://en.wikipedia.org/wiki/Big_Bang#cite_note-4http://en.wikipedia.org/wiki/Big_Bang#cite_note-4http://en.wikipedia.org/wiki/Big_Bang#cite_note-5http://en.wikipedia.org/wiki/Big_Bang#cite_note-6http://en.wikipedia.org/wiki/Georges_Lema%C3%AEtrehttp://en.wikipedia.org/wiki/Hypothesishttp://en.wikipedia.org/wiki/Atomhttp://en.wikipedia.org/wiki/Albert_Einsteinhttp://en.wikipedia.org/wiki/Albert_Einsteinhttp://en.wikipedia.org/wiki/Albert_Einsteinhttp://en.wikipedia.org/wiki/General_relativityhttp://en.wikipedia.org/wiki/Homogeneity_(physics)#Translation_invariancehttp://en.wikipedia.org/wiki/Isotropyhttp://en.wikipedia.org/wiki/Alexander_Friedmannhttp://en.wikipedia.org/wiki/Alexander_Friedmannhttp://en.wikipedia.org/wiki/Edwin_Hubblehttp://en.wikipedia.org/wiki/Edwin_Hubblehttp://en.wikipedia.org/wiki/Galaxyhttp://en.wikipedia.org/wiki/Galaxyhttp://en.wikipedia.org/wiki/Proportionality_(mathematics)http://en.wikipedia.org/wiki/Redshifthttp://en.wikipedia.org/wiki/Big_Bang#cite_note-hubble-7http://en.wikipedia.org/wiki/Densityhttp://en.wikipedia.org/wiki/Densityhttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-8http://en.wikipedia.org/wiki/Big_Bang#cite_note-9http://en.wikipedia.org/wiki/Big_Bang#cite_note-10http://en.wikipedia.org/wiki/Particle_acceleratorhttp://en.wikipedia.org/wiki/Particle_acceleratorhttp://en.wikipedia.org/wiki/Scientific_theoryhttp://en.wikipedia.org/wiki/High-energy_physicshttp://en.wikipedia.org/wiki/Big_Bang_nucleosynthesishttp://en.wikipedia.org/wiki/Fred_Hoylehttp://en.wikipedia.org/wiki/Steady_state_universehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-11http://en.wikipedia.org/wiki/Big_Bang#cite_note-12http://en.wikipedia.org/wiki/Big_Bang#cite_note-13http://en.wikipedia.org/wiki/Big_Bang#cite_note-13http://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Thermal_radiationhttp://en.wikipedia.org/wiki/Black_bodyhttp://en.wikipedia.org/wiki/Big_Banghttp://en.wikipedia.org/wiki/Big_Banghttp://en.wikipedia.org/wiki/Big_Banghttp://en.wikipedia.org/wiki/Big_Bang#Motivation_and_developmenthttp://en.wikipedia.org/wiki/Big_Bang#Motivation_and_developmenthttp://en.wikipedia.org/wiki/Big_Bang#Overviewhttp://en.wikipedia.org/wiki/Big_Bang#Timeline_of_the_Big_Banghttp://en.wikipedia.org/wiki/Big_Bang#Underlying_assumptionshttp://en.wikipedia.org/wiki/Big_Bang#FLRW_metrichttp://en.wikipedia.org/wiki/Scientific_theoryhttp://en.wikipedia.org/wiki/Universehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-0http://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Scientific_methodhttp://en.wikipedia.org/wiki/Scientific_methodhttp://en.wikipedia.org/wiki/Observational_cosmologyhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-1http://en.wikipedia.org/wiki/Big_Bang#cite_note-2http://en.wikipedia.org/wiki/Age_of_the_Universehttp://en.wikipedia.org/wiki/Age_of_the_Universehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-3http://en.wikipedia.org/wiki/Big_Bang#cite_note-4http://en.wikipedia.org/wiki/Big_Bang#cite_note-5http://en.wikipedia.org/wiki/Big_Bang#cite_note-6http://en.wikipedia.org/wiki/Georges_Lema%C3%AEtrehttp://en.wikipedia.org/wiki/Hypothesishttp://en.wikipedia.org/wiki/Atomhttp://en.wikipedia.org/wiki/Albert_Einsteinhttp://en.wikipedia.org/wiki/Albert_Einsteinhttp://en.wikipedia.org/wiki/General_relativityhttp://en.wikipedia.org/wiki/Homogeneity_(physics)#Translation_invariancehttp://en.wikipedia.org/wiki/Isotropyhttp://en.wikipedia.org/wiki/Alexander_Friedmannhttp://en.wikipedia.org/wiki/Edwin_Hubblehttp://en.wikipedia.org/wiki/Edwin_Hubblehttp://en.wikipedia.org/wiki/Galaxyhttp://en.wikipedia.org/wiki/Proportionality_(mathematics)http://en.wikipedia.org/wiki/Redshifthttp://en.wikipedia.org/wiki/Big_Bang#cite_note-hubble-7http://en.wikipedia.org/wiki/Densityhttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-8http://en.wikipedia.org/wiki/Big_Bang#cite_note-9http://en.wikipedia.org/wiki/Big_Bang#cite_note-10http://en.wikipedia.org/wiki/Particle_acceleratorhttp://en.wikipedia.org/wiki/Scientific_theoryhttp://en.wikipedia.org/wiki/High-energy_physicshttp://en.wikipedia.org/wiki/Big_Bang_nucleosynthesishttp://en.wikipedia.org/wiki/Fred_Hoylehttp://en.wikipedia.org/wiki/Steady_state_universehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-11http://en.wikipedia.org/wiki/Big_Bang#cite_note-12http://en.wikipedia.org/wiki/Big_Bang#cite_note-13http://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Thermal_radiationhttp://en.wikipedia.org/wiki/Black_bodyhttp://en.wikipedia.org/wiki/Big_Banghttp://en.wikipedia.org/wiki/Big_Bang#Motivation_and_developmenthttp://en.wikipedia.org/wiki/Big_Bang#Overviewhttp://en.wikipedia.org/wiki/Big_Bang#Timeline_of_the_Big_Banghttp://en.wikipedia.org/wiki/Big_Bang#Underlying_assumptionshttp://en.wikipedia.org/wiki/Big_Bang#FLRW_metrichttp://en.wikipedia.org/wiki/Physical_cosmology
  • 8/3/2019 The Origin of Universe 1

    2/18

    o 2.4 Horizons

    3 Observational evidence

    o 3.1 Hubble's law and the

    expansion of space

    o 3.2 Cosmic microwave background

    radiation

    o 3.3 Abundance of primordial

    elements

    o 3.4 Galactic evolution and

    distribution

    o 3.5 Other lines of evidence

    4 Features, issues and problems

    o 4.1 Horizon problem

    o 4.2 Flatness/oldness problem

    o 4.3 Magnetic monopoles

    o 4.4 Baryon asymmetry

    o 4.5 Globular cluster age

    o 4.6 Dark matter

    o 4.7 Dark energy

    5 The future according to the Big Bang

    theory

    6 Speculative physics beyond Big Bang

    theory

    7 Religious interpretations

    8 Notes

    9 References

    o 9.1 Books

    10 Further reading

    11 External links

    Motivation and development

    http://en.wikipedia.org/wiki/Big_Bang#Horizonshttp://en.wikipedia.org/wiki/Big_Bang#Observational_evidencehttp://en.wikipedia.org/wiki/Big_Bang#Hubble.27s_law_and_the_expansion_of_spacehttp://en.wikipedia.org/wiki/Big_Bang#Hubble.27s_law_and_the_expansion_of_spacehttp://en.wikipedia.org/wiki/Big_Bang#Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Big_Bang#Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Big_Bang#Abundance_of_primordial_elementshttp://en.wikipedia.org/wiki/Big_Bang#Abundance_of_primordial_elementshttp://en.wikipedia.org/wiki/Big_Bang#Abundance_of_primordial_elementshttp://en.wikipedia.org/wiki/Big_Bang#Galactic_evolution_and_distributionhttp://en.wikipedia.org/wiki/Big_Bang#Galactic_evolution_and_distributionhttp://en.wikipedia.org/wiki/Big_Bang#Other_lines_of_evidencehttp://en.wikipedia.org/wiki/Big_Bang#Features.2C_issues_and_problemshttp://en.wikipedia.org/wiki/Big_Bang#Horizon_problemhttp://en.wikipedia.org/wiki/Big_Bang#Flatness.2Foldness_problemhttp://en.wikipedia.org/wiki/Big_Bang#Magnetic_monopoleshttp://en.wikipedia.org/wiki/Big_Bang#Baryon_asymmetryhttp://en.wikipedia.org/wiki/Big_Bang#Globular_cluster_agehttp://en.wikipedia.org/wiki/Big_Bang#Dark_matterhttp://en.wikipedia.org/wiki/Big_Bang#Dark_energyhttp://en.wikipedia.org/wiki/Big_Bang#The_future_according_to_the_Big_Bang_theoryhttp://en.wikipedia.org/wiki/Big_Bang#The_future_according_to_the_Big_Bang_theoryhttp://en.wikipedia.org/wiki/Big_Bang#Speculative_physics_beyond_Big_Bang_theoryhttp://en.wikipedia.org/wiki/Big_Bang#Speculative_physics_beyond_Big_Bang_theoryhttp://en.wikipedia.org/wiki/Big_Bang#Religious_interpretationshttp://en.wikipedia.org/wiki/Big_Bang#Noteshttp://en.wikipedia.org/wiki/Big_Bang#Referenceshttp://en.wikipedia.org/wiki/Big_Bang#Bookshttp://en.wikipedia.org/wiki/Big_Bang#Further_readinghttp://en.wikipedia.org/wiki/Big_Bang#External_linkshttp://en.wikipedia.org/wiki/Big_Bang#Horizonshttp://en.wikipedia.org/wiki/Big_Bang#Observational_evidencehttp://en.wikipedia.org/wiki/Big_Bang#Hubble.27s_law_and_the_expansion_of_spacehttp://en.wikipedia.org/wiki/Big_Bang#Hubble.27s_law_and_the_expansion_of_spacehttp://en.wikipedia.org/wiki/Big_Bang#Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Big_Bang#Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Big_Bang#Abundance_of_primordial_elementshttp://en.wikipedia.org/wiki/Big_Bang#Abundance_of_primordial_elementshttp://en.wikipedia.org/wiki/Big_Bang#Galactic_evolution_and_distributionhttp://en.wikipedia.org/wiki/Big_Bang#Galactic_evolution_and_distributionhttp://en.wikipedia.org/wiki/Big_Bang#Other_lines_of_evidencehttp://en.wikipedia.org/wiki/Big_Bang#Features.2C_issues_and_problemshttp://en.wikipedia.org/wiki/Big_Bang#Horizon_problemhttp://en.wikipedia.org/wiki/Big_Bang#Flatness.2Foldness_problemhttp://en.wikipedia.org/wiki/Big_Bang#Magnetic_monopoleshttp://en.wikipedia.org/wiki/Big_Bang#Baryon_asymmetryhttp://en.wikipedia.org/wiki/Big_Bang#Globular_cluster_agehttp://en.wikipedia.org/wiki/Big_Bang#Dark_matterhttp://en.wikipedia.org/wiki/Big_Bang#Dark_energyhttp://en.wikipedia.org/wiki/Big_Bang#The_future_according_to_the_Big_Bang_theoryhttp://en.wikipedia.org/wiki/Big_Bang#The_future_according_to_the_Big_Bang_theoryhttp://en.wikipedia.org/wiki/Big_Bang#Speculative_physics_beyond_Big_Bang_theoryhttp://en.wikipedia.org/wiki/Big_Bang#Speculative_physics_beyond_Big_Bang_theoryhttp://en.wikipedia.org/wiki/Big_Bang#Religious_interpretationshttp://en.wikipedia.org/wiki/Big_Bang#Noteshttp://en.wikipedia.org/wiki/Big_Bang#Referenceshttp://en.wikipedia.org/wiki/Big_Bang#Bookshttp://en.wikipedia.org/wiki/Big_Bang#Further_readinghttp://en.wikipedia.org/wiki/Big_Bang#External_links
  • 8/3/2019 The Origin of Universe 1

    3/18

    Artist's depiction of theWMAP satellite gathering data to help scientists understand the Big Bang

    Main article: History of the Big Bang theory

    See also:Timeline of cosmologyandHistory of astronomy

    The Big Bang theory developed from observations of the structure of the Universe and from theoretical

    considerations. In 1912 Vesto Sliphermeasured the firstDoppler shift of a "spiral nebula" (spiral nebula is

    the obsolete term for spiral galaxies), and soon discovered that almost all such nebulae were recedingfrom Earth. He did not grasp the cosmological implications of this fact, and indeed at the time it was highly

    controversial whether or not these nebulae were "island universes" outside ourMilky Way.[15][16] Ten years

    later, Alexander Friedmann, aRussiancosmologistand mathematician, derived theFriedmann

    equationsfrom Albert Einstein's equationsofgeneral relativity, showing that the Universe might be

    expanding in contrast to thestatic Universe model advocated by Einstein at that time.[17]In 1924, Edwin

    Hubble's measurement of the great distance to the nearest spiral nebulae showed that these systems

    were indeed othergalaxies. Independently deriving Friedmann's equations in 1927,Georges Lematre, a

    Belgian physicist and Roman Catholic priest, proposed that the inferred recession of the nebulae was due

    to the expansion of the Universe.[18]

    In 1931 Lematre went further and suggested that the evident expansion of the universe, if projected back

    in time, meant that the further in the past the smaller the universe was, until at some finite time in the past

    all the mass of the Universe was concentrated into a single point, a "primeval atom" where and when the

    fabric of time and space came into existence.[19]

    Starting in 1924, Hubble painstakingly developed a series of distance indicators, the forerunner of

    the cosmic distance ladder, using the 100-inch (2,500 mm) Hooker telescope at Mount Wilson

    Observatory. This allowed him to estimate distances to galaxies whose redshifts had already been

    measured, mostly by Slipher. In 1929, Hubble discovered a correlation between distance and recession

    velocitynow known asHubble's law.[8][20]Lematre had already shown that this was expected, given

    the Cosmological Principle.[21]

    During the 1930s other ideas were proposed asnon-standard cosmologies to explain Hubble'sobservations, including the Milne model,[22]the oscillatory Universe (originally suggested by Friedmann,

    but advocated by Albert Einsteinand Richard Tolman)[23]andFritz Zwicky's tired light hypothesis.[24]

    AfterWorld War II, two distinct possibilities emerged. One wasFred Hoyle's steady state model, whereby

    new matter would be created as the Universe seemed to expand. In this model, the Universe is roughly

    the same at any point in time.[25]The other was Lematre's Big Bang theory,[notes 1]advocated and

    developed by George Gamow, who introduced big bang nucleosynthesis(BBN)[26] and whose

    associates, Ralph Alpherand Robert Herman, predicted thecosmic microwave background

    http://en.wikipedia.org/wiki/WMAPhttp://en.wikipedia.org/wiki/WMAPhttp://en.wikipedia.org/wiki/History_of_the_Big_Bang_theoryhttp://en.wikipedia.org/wiki/Timeline_of_cosmologyhttp://en.wikipedia.org/wiki/Timeline_of_cosmologyhttp://en.wikipedia.org/wiki/History_of_astronomyhttp://en.wikipedia.org/wiki/Vesto_Slipherhttp://en.wikipedia.org/wiki/Doppler_shifthttp://en.wikipedia.org/wiki/Doppler_shifthttp://en.wikipedia.org/wiki/Spiral_nebulahttp://en.wikipedia.org/wiki/Shapley%E2%80%93Curtis_debatehttp://en.wikipedia.org/wiki/Shapley%E2%80%93Curtis_debatehttp://en.wikipedia.org/wiki/Milky_Wayhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-14http://en.wikipedia.org/wiki/Big_Bang#cite_note-14http://en.wikipedia.org/wiki/Big_Bang#cite_note-15http://en.wikipedia.org/wiki/Alexander_Alexandrovich_Friedmanhttp://en.wikipedia.org/wiki/Russiahttp://en.wikipedia.org/wiki/Physical_cosmologyhttp://en.wikipedia.org/wiki/Physical_cosmologyhttp://en.wikipedia.org/wiki/Mathematicianhttp://en.wikipedia.org/wiki/Friedmann_equationshttp://en.wikipedia.org/wiki/Friedmann_equationshttp://en.wikipedia.org/wiki/Friedmann_equationshttp://en.wikipedia.org/wiki/Friedmann_equationshttp://en.wikipedia.org/wiki/Albert_Einsteinhttp://en.wikipedia.org/wiki/Albert_Einsteinhttp://en.wikipedia.org/wiki/Einstein_equationhttp://en.wikipedia.org/wiki/Einstein_equationhttp://en.wikipedia.org/wiki/General_relativityhttp://en.wikipedia.org/wiki/General_relativityhttp://en.wikipedia.org/wiki/General_relativityhttp://en.wikipedia.org/wiki/Static_Universehttp://en.wikipedia.org/wiki/Static_Universehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-af1922-16http://en.wikipedia.org/wiki/Big_Bang#cite_note-af1922-16http://en.wikipedia.org/wiki/Edwin_Hubblehttp://en.wikipedia.org/wiki/Edwin_Hubblehttp://en.wikipedia.org/wiki/Edwin_Hubblehttp://en.wikipedia.org/wiki/Galaxieshttp://en.wikipedia.org/wiki/Georges_Lema%C3%AEtrehttp://en.wikipedia.org/wiki/Georges_Lema%C3%AEtrehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-gl1927-17http://en.wikipedia.org/wiki/Georges_Lema%C3%AEtrehttp://en.wikipedia.org/wiki/Atomhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-18http://en.wikipedia.org/wiki/Cosmic_distance_ladderhttp://en.wikipedia.org/wiki/Cosmic_distance_ladderhttp://en.wikipedia.org/wiki/Mount_Wilson_Observatoryhttp://en.wikipedia.org/wiki/Mount_Wilson_Observatoryhttp://en.wikipedia.org/wiki/Mount_Wilson_Observatoryhttp://en.wikipedia.org/wiki/Redshifthttp://en.wikipedia.org/wiki/Hubble's_lawhttp://en.wikipedia.org/wiki/Hubble's_lawhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-hubble-7http://en.wikipedia.org/wiki/Big_Bang#cite_note-christianson-19http://en.wikipedia.org/wiki/Georges_Lema%C3%AEtrehttp://en.wikipedia.org/wiki/Georges_Lema%C3%AEtrehttp://en.wikipedia.org/wiki/Cosmological_Principlehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-peebles-20http://en.wikipedia.org/wiki/Non-standard_cosmologieshttp://en.wikipedia.org/wiki/Non-standard_cosmologieshttp://en.wikipedia.org/wiki/Milne_modelhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-21http://en.wikipedia.org/wiki/Big_Bang#cite_note-21http://en.wikipedia.org/wiki/Oscillatory_Universehttp://en.wikipedia.org/wiki/Albert_Einsteinhttp://en.wikipedia.org/wiki/Albert_Einsteinhttp://en.wikipedia.org/wiki/Richard_Tolmanhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-22http://en.wikipedia.org/wiki/Big_Bang#cite_note-22http://en.wikipedia.org/wiki/Fritz_Zwickyhttp://en.wikipedia.org/wiki/Fritz_Zwickyhttp://en.wikipedia.org/wiki/Fritz_Zwickyhttp://en.wikipedia.org/wiki/Tired_lighthttp://en.wikipedia.org/wiki/Big_Bang#cite_note-23http://en.wikipedia.org/wiki/World_War_IIhttp://en.wikipedia.org/wiki/World_War_IIhttp://en.wikipedia.org/wiki/Fred_Hoylehttp://en.wikipedia.org/wiki/Fred_Hoylehttp://en.wikipedia.org/wiki/Fred_Hoylehttp://en.wikipedia.org/wiki/Steady_state_modelhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-24http://en.wikipedia.org/wiki/Big_Bang#cite_note-24http://en.wikipedia.org/wiki/Big_Bang#cite_note-24http://en.wikipedia.org/wiki/Georges_Lema%C3%AEtrehttp://en.wikipedia.org/wiki/Georges_Lema%C3%AEtrehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-25http://en.wikipedia.org/wiki/Big_Bang#cite_note-25http://en.wikipedia.org/wiki/George_Gamowhttp://en.wikipedia.org/wiki/Big_bang_nucleosynthesishttp://en.wikipedia.org/wiki/Big_bang_nucleosynthesishttp://en.wikipedia.org/wiki/Big_Bang#cite_note-26http://en.wikipedia.org/wiki/Ralph_Alpherhttp://en.wikipedia.org/wiki/Robert_Hermanhttp://en.wikipedia.org/wiki/Robert_Hermanhttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/File:WMAP2.jpghttp://en.wikipedia.org/wiki/File:WMAP2.jpghttp://en.wikipedia.org/wiki/WMAPhttp://en.wikipedia.org/wiki/History_of_the_Big_Bang_theoryhttp://en.wikipedia.org/wiki/Timeline_of_cosmologyhttp://en.wikipedia.org/wiki/History_of_astronomyhttp://en.wikipedia.org/wiki/Vesto_Slipherhttp://en.wikipedia.org/wiki/Doppler_shifthttp://en.wikipedia.org/wiki/Spiral_nebulahttp://en.wikipedia.org/wiki/Shapley%E2%80%93Curtis_debatehttp://en.wikipedia.org/wiki/Shapley%E2%80%93Curtis_debatehttp://en.wikipedia.org/wiki/Milky_Wayhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-14http://en.wikipedia.org/wiki/Big_Bang#cite_note-15http://en.wikipedia.org/wiki/Alexander_Alexandrovich_Friedmanhttp://en.wikipedia.org/wiki/Russiahttp://en.wikipedia.org/wiki/Physical_cosmologyhttp://en.wikipedia.org/wiki/Mathematicianhttp://en.wikipedia.org/wiki/Friedmann_equationshttp://en.wikipedia.org/wiki/Friedmann_equationshttp://en.wikipedia.org/wiki/Albert_Einsteinhttp://en.wikipedia.org/wiki/Einstein_equationhttp://en.wikipedia.org/wiki/General_relativityhttp://en.wikipedia.org/wiki/Static_Universehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-af1922-16http://en.wikipedia.org/wiki/Edwin_Hubblehttp://en.wikipedia.org/wiki/Edwin_Hubblehttp://en.wikipedia.org/wiki/Galaxieshttp://en.wikipedia.org/wiki/Georges_Lema%C3%AEtrehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-gl1927-17http://en.wikipedia.org/wiki/Georges_Lema%C3%AEtrehttp://en.wikipedia.org/wiki/Atomhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-18http://en.wikipedia.org/wiki/Cosmic_distance_ladderhttp://en.wikipedia.org/wiki/Mount_Wilson_Observatoryhttp://en.wikipedia.org/wiki/Mount_Wilson_Observatoryhttp://en.wikipedia.org/wiki/Redshifthttp://en.wikipedia.org/wiki/Hubble's_lawhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-hubble-7http://en.wikipedia.org/wiki/Big_Bang#cite_note-christianson-19http://en.wikipedia.org/wiki/Georges_Lema%C3%AEtrehttp://en.wikipedia.org/wiki/Cosmological_Principlehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-peebles-20http://en.wikipedia.org/wiki/Non-standard_cosmologieshttp://en.wikipedia.org/wiki/Milne_modelhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-21http://en.wikipedia.org/wiki/Oscillatory_Universehttp://en.wikipedia.org/wiki/Albert_Einsteinhttp://en.wikipedia.org/wiki/Richard_Tolmanhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-22http://en.wikipedia.org/wiki/Fritz_Zwickyhttp://en.wikipedia.org/wiki/Tired_lighthttp://en.wikipedia.org/wiki/Big_Bang#cite_note-23http://en.wikipedia.org/wiki/World_War_IIhttp://en.wikipedia.org/wiki/Fred_Hoylehttp://en.wikipedia.org/wiki/Steady_state_modelhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-24http://en.wikipedia.org/wiki/Georges_Lema%C3%AEtrehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-25http://en.wikipedia.org/wiki/George_Gamowhttp://en.wikipedia.org/wiki/Big_bang_nucleosynthesishttp://en.wikipedia.org/wiki/Big_Bang#cite_note-26http://en.wikipedia.org/wiki/Ralph_Alpherhttp://en.wikipedia.org/wiki/Robert_Hermanhttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiation
  • 8/3/2019 The Origin of Universe 1

    4/18

    radiation(CMB).[27]Ironically, it was Hoyle who coined the phrase that came to be applied to Lematre's

    theory, referring to it as "this big bangidea" during a BBC Radiobroadcast in March 1949.[28][notes 2] For a

    while, support was split between these two theories. Eventually, the observational evidence, most notably

    from radio source counts, began to favor Big Bang over Steady State. The discovery and confirmation of

    the cosmic microwave background radiation in 1964[29] secured the Big Bang as the best theory of the

    origin and evolution of the cosmos. Much of the current work in cosmology includes understanding howgalaxies form in the context of the Big Bang, understanding the physics of the Universe at earlier and

    earlier times, and reconciling observations with the basic theory.

    Huge strides in Big Bang cosmology have been made since the late 1990s as a result of major advances

    intelescopetechnology as well as the analysis of copious data from satellites such as COBE,[30] the Hubble Space Telescope and WMAP.[31] Cosmologists now have fairly precise and accurate

    measurements of many of the parameters of the Big Bang model, and have made the unexpected

    discovery that the expansion of the Universe appears to be accelerating.

    Overview

    Timeline of the Big BangMain article: Timeline of the Big Bang

    A graphical timeline is available at

    Graphical timeline of the Big Bang

    Extrapolation of the expansion of the Universe backwards in time using general relativity yields an

    infinite densityand temperature at a finite time in the past.[32] Thissingularitysignals the breakdown of

    general relativity. How closely we can extrapolate towards the singularity is debatedcertainly no closer

    than the end of the Planck epoch. This singularity is sometimes called "the Big Bang", [33] but the term can

    also refer to the early hot, dense phase itself,[34][notes 3]which can be considered the "birth" of our Universe.

    Based on measurements of the expansion using Type Ia supernovae, measurements of temperature

    fluctuations in the cosmic microwave background, and measurements of the correlation functionof

    galaxies, the Universe has a calculated age of 13.75 0.11 billion years.[35]The agreement of these three

    independent measurements strongly supports the CDM model that describes in detail the contents of

    the Universe.

    The earliest phases of the Big Bang are subject to much speculation. In the most common models, the

    Universe was filled homogeneously and isotropicallywith an incredibly highenergy density,

    huge temperatures and pressures, and was very rapidly expanding and cooling. Approximately

    1037 seconds into the expansion, a phase transitioncaused acosmic inflation, during which the Universe

    grewexponentially.[36]

    After inflation stopped, the Universe consisted of a quarkgluon plasma, as well asall otherelementary particles.[37]Temperatures were so high that the random motions of particles were

    at relativisticspeeds, and particleantiparticle pairs of all kinds were being continuously created and

    destroyed in collisions. At some point an unknown reaction called baryogenesis violated the conservation

    ofbaryon number, leading to a very small excess ofquarksandleptons over antiquarks and antileptons

    of the order of one part in 30 million. This resulted in the predominance ofmatteroverantimatterin the

    present Universe.[38]

    http://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-27http://en.wikipedia.org/wiki/Big_Bang#cite_note-27http://en.wikipedia.org/wiki/BBC_Radiohttp://en.wikipedia.org/wiki/BBC_Radiohttp://en.wikipedia.org/wiki/Big_Bang#cite_note-singh_summary-28http://en.wikipedia.org/wiki/Big_Bang#cite_note-29http://en.wikipedia.org/wiki/Source_countshttp://en.wikipedia.org/wiki/Big_Bang#cite_note-penzias-30http://en.wikipedia.org/wiki/Telescopehttp://en.wikipedia.org/wiki/Telescopehttp://en.wikipedia.org/wiki/Telescopehttp://en.wikipedia.org/wiki/COBEhttp://en.wikipedia.org/wiki/COBEhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-cobe-31http://en.wikipedia.org/wiki/Hubble_Space_Telescopehttp://en.wikipedia.org/wiki/WMAPhttp://en.wikipedia.org/wiki/WMAPhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-wmap1year-32http://en.wikipedia.org/wiki/Timeline_of_the_Big_Banghttp://en.wikipedia.org/wiki/Graphical_timeline_of_the_Big_Banghttp://en.wikipedia.org/wiki/General_relativityhttp://en.wikipedia.org/wiki/Densityhttp://en.wikipedia.org/wiki/Densityhttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-33http://en.wikipedia.org/wiki/Gravitational_singularityhttp://en.wikipedia.org/wiki/Gravitational_singularityhttp://en.wikipedia.org/wiki/Gravitational_singularityhttp://en.wikipedia.org/wiki/Planck_epochhttp://en.wikipedia.org/wiki/Planck_epochhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-34http://en.wikipedia.org/wiki/Big_Bang#cite_note-35http://en.wikipedia.org/wiki/Big_Bang#cite_note-35http://en.wikipedia.org/wiki/Big_Bang#cite_note-36http://en.wikipedia.org/wiki/Big_Bang#cite_note-36http://en.wikipedia.org/wiki/Type_Ia_supernovahttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Correlation_functionhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-wmap7year-37http://en.wikipedia.org/wiki/Big_Bang#cite_note-wmap7year-37http://en.wikipedia.org/wiki/Big_Bang#cite_note-wmap7year-37http://en.wikipedia.org/wiki/Lambda-CDM_modelhttp://en.wikipedia.org/wiki/Homogeneous_spacehttp://en.wikipedia.org/wiki/Isotropichttp://en.wikipedia.org/wiki/Isotropichttp://en.wikipedia.org/wiki/Energy_densityhttp://en.wikipedia.org/wiki/Energy_densityhttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Phase_transitionhttp://en.wikipedia.org/wiki/Phase_transitionhttp://en.wikipedia.org/wiki/Cosmic_inflationhttp://en.wikipedia.org/wiki/Cosmic_inflationhttp://en.wikipedia.org/wiki/Exponential_growthhttp://en.wikipedia.org/wiki/Exponential_growthhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-guth-38http://en.wikipedia.org/wiki/Big_Bang#cite_note-guth-38http://en.wikipedia.org/wiki/Quark%E2%80%93gluon_plasmahttp://en.wikipedia.org/wiki/Elementary_particlehttp://en.wikipedia.org/wiki/Elementary_particlehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-39http://en.wikipedia.org/wiki/Big_Bang#cite_note-39http://en.wikipedia.org/wiki/Special_relativityhttp://en.wikipedia.org/wiki/Relativistic_speedhttp://en.wikipedia.org/wiki/Pair_productionhttp://en.wikipedia.org/wiki/Baryogenesishttp://en.wikipedia.org/wiki/Baryon_numberhttp://en.wikipedia.org/wiki/Baryon_numberhttp://en.wikipedia.org/wiki/Quarkhttp://en.wikipedia.org/wiki/Quarkhttp://en.wikipedia.org/wiki/Leptonhttp://en.wikipedia.org/wiki/Leptonhttp://en.wikipedia.org/wiki/Matterhttp://en.wikipedia.org/wiki/Matterhttp://en.wikipedia.org/wiki/Antimatterhttp://en.wikipedia.org/wiki/Antimatterhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-kolb_c6-40http://en.wikipedia.org/wiki/Big_Bang#cite_note-kolb_c6-40http://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-27http://en.wikipedia.org/wiki/BBC_Radiohttp://en.wikipedia.org/wiki/Big_Bang#cite_note-singh_summary-28http://en.wikipedia.org/wiki/Big_Bang#cite_note-29http://en.wikipedia.org/wiki/Source_countshttp://en.wikipedia.org/wiki/Big_Bang#cite_note-penzias-30http://en.wikipedia.org/wiki/Telescopehttp://en.wikipedia.org/wiki/COBEhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-cobe-31http://en.wikipedia.org/wiki/Hubble_Space_Telescopehttp://en.wikipedia.org/wiki/WMAPhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-wmap1year-32http://en.wikipedia.org/wiki/Timeline_of_the_Big_Banghttp://en.wikipedia.org/wiki/Graphical_timeline_of_the_Big_Banghttp://en.wikipedia.org/wiki/General_relativityhttp://en.wikipedia.org/wiki/Densityhttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-33http://en.wikipedia.org/wiki/Gravitational_singularityhttp://en.wikipedia.org/wiki/Planck_epochhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-34http://en.wikipedia.org/wiki/Big_Bang#cite_note-35http://en.wikipedia.org/wiki/Big_Bang#cite_note-36http://en.wikipedia.org/wiki/Type_Ia_supernovahttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Correlation_functionhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-wmap7year-37http://en.wikipedia.org/wiki/Lambda-CDM_modelhttp://en.wikipedia.org/wiki/Homogeneous_spacehttp://en.wikipedia.org/wiki/Isotropichttp://en.wikipedia.org/wiki/Energy_densityhttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Phase_transitionhttp://en.wikipedia.org/wiki/Cosmic_inflationhttp://en.wikipedia.org/wiki/Exponential_growthhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-guth-38http://en.wikipedia.org/wiki/Quark%E2%80%93gluon_plasmahttp://en.wikipedia.org/wiki/Elementary_particlehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-39http://en.wikipedia.org/wiki/Special_relativityhttp://en.wikipedia.org/wiki/Relativistic_speedhttp://en.wikipedia.org/wiki/Pair_productionhttp://en.wikipedia.org/wiki/Baryogenesishttp://en.wikipedia.org/wiki/Baryon_numberhttp://en.wikipedia.org/wiki/Quarkhttp://en.wikipedia.org/wiki/Leptonhttp://en.wikipedia.org/wiki/Matterhttp://en.wikipedia.org/wiki/Antimatterhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-kolb_c6-40
  • 8/3/2019 The Origin of Universe 1

    5/18

    The Universe continued to grow in size and fall in temperature, hence the typical energy of each particle

    was decreasing. Symmetry breakingphase transitions put the fundamental forcesof physics and the

    parameters ofelementary particles into their present form.[39]After about 1011 seconds, the picture

    becomes less speculative, since particle energies drop to values that can be attained inparticle

    physicsexperiments. At about 106 seconds, quarks and gluons combined to form baryons such as

    protons and neutrons. The small excess of quarks over antiquarks led to a small excess of baryons overantibaryons. The temperature was now no longer high enough to create new protonantiproton pairs

    (similarly for neutronsantineutrons), so a mass annihilation immediately followed, leaving just one in

    1010 of the original protons and neutrons, and none of their antiparticles. A similar process happened at

    about 1 second for electrons and positrons. After these annihilations, the remaining protons, neutrons and

    electrons were no longer moving relativistically and the energy density of the Universe was dominated

    byphotons (with a minor contribution from neutrinos).

    A few minutes into the expansion, when the temperature was about a billion (one thousand million; 109; SI

    prefix giga-) kelvinand the density was about that of air, neutrons combined with protons to form the

    Universe's deuterium and heliumnucleiin a process called Big Bang nucleosynthesis.[40] Most protons

    remained uncombined as hydrogen nuclei. As the Universe cooled, the rest mass energy density ofmatter came togravitationally dominate that of the photon radiation. After about 379,000 years the

    electrons and nuclei combined into atoms (mostly hydrogen); hence the radiation decoupled from matter

    and continued through space largely unimpeded. This relic radiation is known as thecosmic microwave

    background radiation.[41]

    The Hubble Ultra Deep Fieldshowcases galaxies from an ancient era when the Universe was younger, denser, and warmer

    according to the Big Bang theory.

    Over a long period of time, the slightly denser regions of the nearly uniformly distributed matter

    gravitationally attracted nearby matter and thus grew even denser, forming gas clouds, stars, galaxies,

    and the other astronomical structures observable today. The details of this process depend on the

    amount and type of matter in the Universe. The four possible types of matter are known as cold dark

    matter,warm dark matter,hot dark matterand baryonic matter. The best measurements available

    (from WMAP) show that the data is well-fit by aLambda-CDM model in which dark matter is assumed to

    be cold (warm dark matteris ruled out by earlyreionization[42] ), and is estimated to make up about 23% of

    the matter/energy of the universe, while baryonic matter makes up about 4.6%.[35] In an "extended model"

    http://en.wikipedia.org/wiki/Explicit_symmetry_breakinghttp://en.wikipedia.org/wiki/Explicit_symmetry_breakinghttp://en.wikipedia.org/wiki/Fundamental_forcehttp://en.wikipedia.org/wiki/Elementary_particleshttp://en.wikipedia.org/wiki/Elementary_particleshttp://en.wikipedia.org/wiki/Big_Bang#cite_note-kolb_c7-41http://en.wikipedia.org/wiki/Big_Bang#cite_note-kolb_c7-41http://en.wikipedia.org/wiki/Particle_physicshttp://en.wikipedia.org/wiki/Particle_physicshttp://en.wikipedia.org/wiki/Particle_physicshttp://en.wikipedia.org/wiki/Particle_physicshttp://en.wikipedia.org/wiki/Baryonhttp://en.wikipedia.org/wiki/Photonhttp://en.wikipedia.org/wiki/Photonhttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Giga-http://en.wikipedia.org/wiki/Kelvinhttp://en.wikipedia.org/wiki/Kelvinhttp://en.wikipedia.org/wiki/Deuteriumhttp://en.wikipedia.org/wiki/Heliumhttp://en.wikipedia.org/wiki/Heliumhttp://en.wikipedia.org/wiki/Atomic_nucleushttp://en.wikipedia.org/wiki/Atomic_nucleushttp://en.wikipedia.org/wiki/Big_Bang_nucleosynthesishttp://en.wikipedia.org/wiki/Big_Bang_nucleosynthesishttp://en.wikipedia.org/wiki/Big_Bang#cite_note-kolb_c4-42http://en.wikipedia.org/wiki/Hydrogenhttp://en.wikipedia.org/wiki/Rest_masshttp://en.wikipedia.org/wiki/Gravityhttp://en.wikipedia.org/wiki/Gravityhttp://en.wikipedia.org/wiki/Electromagnetic_radiationhttp://en.wikipedia.org/wiki/Electromagnetic_radiationhttp://en.wikipedia.org/wiki/Hydrogenhttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-peacock_c9-43http://en.wikipedia.org/wiki/Hubble_Ultra_Deep_Fieldhttp://en.wikipedia.org/wiki/Hubble_Ultra_Deep_Fieldhttp://en.wikipedia.org/wiki/Starhttp://en.wikipedia.org/wiki/Starhttp://en.wikipedia.org/wiki/Cold_dark_matterhttp://en.wikipedia.org/wiki/Cold_dark_matterhttp://en.wikipedia.org/wiki/Cold_dark_matterhttp://en.wikipedia.org/wiki/Warm_dark_matterhttp://en.wikipedia.org/wiki/Hot_dark_matterhttp://en.wikipedia.org/wiki/Hot_dark_matterhttp://en.wikipedia.org/wiki/Baryonic_matterhttp://en.wikipedia.org/wiki/WMAPhttp://en.wikipedia.org/wiki/Lambda-CDM_modelhttp://en.wikipedia.org/wiki/Lambda-CDM_modelhttp://en.wikipedia.org/wiki/Warm_dark_matterhttp://en.wikipedia.org/wiki/Warm_dark_matterhttp://en.wikipedia.org/wiki/Reionizationhttp://en.wikipedia.org/wiki/Reionizationhttp://en.wikipedia.org/wiki/Reionizationhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-44http://en.wikipedia.org/wiki/Reionizationhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-wmap7year-37http://en.wikipedia.org/wiki/File:Hubble_ultra_deep_field_high_rez_edit1.jpghttp://en.wikipedia.org/wiki/File:Hubble_ultra_deep_field_high_rez_edit1.jpghttp://en.wikipedia.org/wiki/Explicit_symmetry_breakinghttp://en.wikipedia.org/wiki/Fundamental_forcehttp://en.wikipedia.org/wiki/Elementary_particleshttp://en.wikipedia.org/wiki/Big_Bang#cite_note-kolb_c7-41http://en.wikipedia.org/wiki/Particle_physicshttp://en.wikipedia.org/wiki/Particle_physicshttp://en.wikipedia.org/wiki/Baryonhttp://en.wikipedia.org/wiki/Photonhttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Giga-http://en.wikipedia.org/wiki/Kelvinhttp://en.wikipedia.org/wiki/Deuteriumhttp://en.wikipedia.org/wiki/Heliumhttp://en.wikipedia.org/wiki/Atomic_nucleushttp://en.wikipedia.org/wiki/Big_Bang_nucleosynthesishttp://en.wikipedia.org/wiki/Big_Bang#cite_note-kolb_c4-42http://en.wikipedia.org/wiki/Hydrogenhttp://en.wikipedia.org/wiki/Rest_masshttp://en.wikipedia.org/wiki/Gravityhttp://en.wikipedia.org/wiki/Electromagnetic_radiationhttp://en.wikipedia.org/wiki/Hydrogenhttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-peacock_c9-43http://en.wikipedia.org/wiki/Hubble_Ultra_Deep_Fieldhttp://en.wikipedia.org/wiki/Starhttp://en.wikipedia.org/wiki/Cold_dark_matterhttp://en.wikipedia.org/wiki/Cold_dark_matterhttp://en.wikipedia.org/wiki/Warm_dark_matterhttp://en.wikipedia.org/wiki/Hot_dark_matterhttp://en.wikipedia.org/wiki/Baryonic_matterhttp://en.wikipedia.org/wiki/WMAPhttp://en.wikipedia.org/wiki/Lambda-CDM_modelhttp://en.wikipedia.org/wiki/Warm_dark_matterhttp://en.wikipedia.org/wiki/Reionizationhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-44http://en.wikipedia.org/wiki/Big_Bang#cite_note-wmap7year-37
  • 8/3/2019 The Origin of Universe 1

    6/18

    which includes hot dark matter in the form ofneutrinos, then if the "physical baryon density" bh2 is

    estimated at about 0.023 (this is different from the 'baryon density' bexpressed as a fraction of the total

    matter/energy density, which as noted above is about 0.046), and the corresponding cold dark matter

    density ch2 is about 0.11, the corresponding neutrino density vh

    2 is estimated to be less than 0.0062.[35]

    Independent lines of evidence fromType Ia supernovae and the CMB imply that the Universe today is

    dominated by a mysterious form of energy known asdark energy, which apparently permeates all of

    space. The observations suggest 73% of the total energy density of today's Universe is in this form. When

    the Universe was very young, it was likely infused with dark energy, but with less space and everything

    closer together, gravity had the upper hand, and it was slowly braking the expansion. But eventually, after

    numerous billion years of expansion, the growing abundance of dark energy caused the expansion of the

    Universeto slowly begin to accelerate. Dark energy in its simplest formulation takes the form of

    the cosmological constant term in Einstein's field equations of general relativity, but its composition and

    mechanism are unknown and, more generally, the details of its equation of state and relationship with

    the Standard Modelof particle physics continue to be investigated both observationally and theoretically.[21]

    All of this cosmic evolution after theinflationary epoch can be rigorously described and modeled bythe CDM modelof cosmology, which uses the independent frameworks of quantum mechanics and

    Einstein's General Relativity. As noted above, there is no well-supported model describing the action prior

    to 1015 seconds or so. Apparently a new unified theory ofquantum gravitation is needed to break this

    barrier. Understanding this earliest of eras in the history of the Universe is currently one of the

    greatest unsolved problems in physics.

    Underlying assumptions

    The Big Bang theory depends on two major assumptions: the universality ofphysical laws, and

    the cosmological principle.[citation needed] The cosmological principle states that on large scales the Universe

    is homogeneousand isotropic.

    These ideas were initially taken as postulates, but today there are efforts to test each of them. For

    example, the first assumption has been tested by observations showing that largest possible deviation of

    the fine structure constant over much of the age of the universe is of order 105.[43]Also, general

    relativity has passed stringenttests on the scale of the solar system and binary stars while extrapolation

    to cosmological scales has been validated by the empirical successes of various aspects of the Big Bang

    theory.[notes 4]

    If the large-scale Universe appears isotropic as viewed from Earth, the cosmological principle can be

    derived from the simplerCopernican principle, which states that there is no preferred (or special) observer

    or vantage point. To this end, the cosmological principle has been confirmed to a level of 105 via

    observations of the CMB.[notes 5]The Universe has been measured to be homogeneous on the largest

    scales at the 10% level.[44]

    FLRW metric

    Main articles: FriedmannLematreRobertsonWalker metricandMetric expansion of space

    General relativity describes spacetime by ametric, which determines the distances that separate nearby

    points. The points, which can be galaxies, stars, or other objects, themselves are specified using

    acoordinate chart or "grid" that is laid down over allspacetime. The cosmological principle implies that

    http://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Big_Bang#cite_note-wmap7year-37http://en.wikipedia.org/wiki/Big_Bang#cite_note-wmap7year-37http://en.wikipedia.org/wiki/Type_Ia_supernovahttp://en.wikipedia.org/wiki/Type_Ia_supernovahttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Dark_energyhttp://en.wikipedia.org/wiki/Dark_energyhttp://en.wikipedia.org/wiki/Dark_energyhttp://en.wikipedia.org/wiki/Hubble's_lawhttp://en.wikipedia.org/wiki/Hubble's_lawhttp://en.wikipedia.org/wiki/Hubble's_lawhttp://en.wikipedia.org/wiki/Cosmological_constanthttp://en.wikipedia.org/wiki/Einstein's_field_equationhttp://en.wikipedia.org/wiki/Equation_of_state_(cosmology)http://en.wikipedia.org/wiki/Standard_Modelhttp://en.wikipedia.org/wiki/Standard_Modelhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-peebles-20http://en.wikipedia.org/wiki/Inflationary_epochhttp://en.wikipedia.org/wiki/Inflationary_epochhttp://en.wikipedia.org/wiki/Lambda-CDM_modelhttp://en.wikipedia.org/wiki/Lambda-CDM_modelhttp://en.wikipedia.org/wiki/Quantum_gravityhttp://en.wikipedia.org/wiki/Unsolved_problems_in_physicshttp://en.wikipedia.org/wiki/Unsolved_problems_in_physicshttp://en.wikipedia.org/wiki/Physical_lawhttp://en.wikipedia.org/wiki/Physical_lawhttp://en.wikipedia.org/wiki/Cosmological_principlehttp://en.wikipedia.org/wiki/Cosmological_principlehttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Homogeneous_spacehttp://en.wikipedia.org/wiki/Homogeneous_spacehttp://en.wikipedia.org/wiki/Isotropyhttp://en.wikipedia.org/wiki/Fine_structure_constanthttp://en.wikipedia.org/wiki/Age_of_the_universehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-45http://en.wikipedia.org/wiki/Big_Bang#cite_note-45http://en.wikipedia.org/wiki/General_relativityhttp://en.wikipedia.org/wiki/General_relativityhttp://en.wikipedia.org/wiki/Tests_of_general_relativityhttp://en.wikipedia.org/wiki/Tests_of_general_relativityhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-46http://en.wikipedia.org/wiki/Big_Bang#cite_note-46http://en.wikipedia.org/wiki/Copernican_principlehttp://en.wikipedia.org/wiki/Copernican_principlehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-47http://en.wikipedia.org/wiki/Big_Bang#cite_note-47http://en.wikipedia.org/wiki/Big_Bang#cite_note-48http://en.wikipedia.org/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker_metrichttp://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Metric_tensorhttp://en.wikipedia.org/wiki/Metric_tensorhttp://en.wikipedia.org/wiki/Coordinate_charthttp://en.wikipedia.org/wiki/Coordinate_charthttp://en.wikipedia.org/wiki/Spacetimehttp://en.wikipedia.org/wiki/Spacetimehttp://en.wikipedia.org/wiki/Neutrinohttp://en.wikipedia.org/wiki/Big_Bang#cite_note-wmap7year-37http://en.wikipedia.org/wiki/Type_Ia_supernovahttp://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Dark_energyhttp://en.wikipedia.org/wiki/Hubble's_lawhttp://en.wikipedia.org/wiki/Hubble's_lawhttp://en.wikipedia.org/wiki/Cosmological_constanthttp://en.wikipedia.org/wiki/Einstein's_field_equationhttp://en.wikipedia.org/wiki/Equation_of_state_(cosmology)http://en.wikipedia.org/wiki/Standard_Modelhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-peebles-20http://en.wikipedia.org/wiki/Inflationary_epochhttp://en.wikipedia.org/wiki/Lambda-CDM_modelhttp://en.wikipedia.org/wiki/Quantum_gravityhttp://en.wikipedia.org/wiki/Unsolved_problems_in_physicshttp://en.wikipedia.org/wiki/Physical_lawhttp://en.wikipedia.org/wiki/Cosmological_principlehttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Homogeneous_spacehttp://en.wikipedia.org/wiki/Isotropyhttp://en.wikipedia.org/wiki/Fine_structure_constanthttp://en.wikipedia.org/wiki/Age_of_the_universehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-45http://en.wikipedia.org/wiki/General_relativityhttp://en.wikipedia.org/wiki/General_relativityhttp://en.wikipedia.org/wiki/Tests_of_general_relativityhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-46http://en.wikipedia.org/wiki/Copernican_principlehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-47http://en.wikipedia.org/wiki/Big_Bang#cite_note-48http://en.wikipedia.org/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker_metrichttp://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Metric_tensorhttp://en.wikipedia.org/wiki/Coordinate_charthttp://en.wikipedia.org/wiki/Spacetime
  • 8/3/2019 The Origin of Universe 1

    7/18

    the metric should be homogeneous andisotropic on large scales, which uniquely singles out

    the FriedmannLematreRobertsonWalker metric (FLRW metric). This metric contains a scale factor,

    which describes how the size of the Universe changes with time. This enables a convenient choice of

    acoordinate systemto be made, called comoving coordinates. In this coordinate system, the grid

    expands along with the Universe, and objects that are moving only due to the expansion of the Universe

    remain at fixed points on the grid. While theircoordinate distance (comoving distance) remains constant,thephysicaldistance between two such comoving points expands proportionally with the scale factorof

    the Universe.[45]

    The Big Bang is not an explosion of matter moving outward to fill an empty universe. Instead,space itself

    expands with time everywhere and increases the physical distance between two comoving points.

    Because the FLRW metric assumes a uniform distribution of mass and energy, it applies to our Universe

    only on large scaleslocal concentrations of matter such as our galaxy are gravitationally bound and as

    such do not experience the large-scale expansion of space.

    Horizons

    Main article: Cosmological horizon

    An important feature of the Big Bang spacetime is the presence ofhorizons. Since the Universe has a

    finite age, and light travels at a finite speed, there may be events in the past whose light has not had time

    to reach us. This places a limit or apast horizon on the most distant objects that can be observed.

    Conversely, because space is expanding, and more distant objects are receding ever more quickly, light

    emitted by us today may never "catch up" to very distant objects. This defines a future horizon, which

    limits the events in the future that we will be able to influence. The presence of either type of horizon

    depends on the details of the FLRW model that describes our Universe. Our understanding of the

    Universe back to very early times suggests that there is a past horizon, though in practice our view is also

    limited by the opacity of the Universe at early times. So our view cannot extend further backward in time,

    though the horizon recedes in space. If the expansion of the Universe continues to accelerate, there is a

    future horizon as well.[46]

    Observational evidence

    The earliest and most direct kinds of observational evidence are the Hubble-type expansion seen in

    the redshiftsof galaxies, the detailed measurements of the cosmic microwave background, the

    abundance of light elements (see Big Bang nucleosynthesis), and today also the large scale

    distributionand apparent evolution of galaxies[47] which are predicted to occur due to gravitational growth

    of structure in the standard theory. These are sometimes called "the four pillars of the Big Bang theory".[48]

    Hubble's law and the expansion of space

    Main articles: Hubble's lawandMetric expansion of space

    See also:Distance measures (cosmology)andScale factor (universe)

    Observations of distant galaxies and quasarsshow that these objects are redshiftedthelight emitted

    from them has been shifted to longer wavelengths. This can be seen by taking afrequency spectrum of an

    object and matching the spectroscopic pattern ofemission lines orabsorption linescorresponding

    to atomsof the chemical elements interacting with the light. These redshifts are uniformlyisotropic,

    distributed evenly among the observed objects in all directions. If the redshiftis interpreted as aDoppler

    shift, the recessional velocityof the object can be calculated. For some galaxies, it is possible to estimate

    http://en.wikipedia.org/wiki/Homogeneous_spacehttp://en.wikipedia.org/wiki/Isotropichttp://en.wikipedia.org/wiki/Isotropichttp://en.wikipedia.org/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker_metrichttp://en.wikipedia.org/wiki/Scale_factorhttp://en.wikipedia.org/wiki/Scale_factorhttp://en.wikipedia.org/wiki/Coordinate_systemhttp://en.wikipedia.org/wiki/Coordinate_systemhttp://en.wikipedia.org/wiki/Coordinate_systemhttp://en.wikipedia.org/wiki/Comoving_coordinateshttp://en.wikipedia.org/wiki/Comoving_distancehttp://en.wikipedia.org/wiki/Scale_factorhttp://en.wikipedia.org/wiki/Scale_factorhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-49http://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Cosmological_horizonhttp://en.wikipedia.org/wiki/Observable_universe#Cosmological_horizonhttp://en.wikipedia.org/wiki/Observable_universe#Cosmological_horizonhttp://en.wikipedia.org/wiki/Observable_universe#Cosmological_horizonhttp://en.wikipedia.org/wiki/Big_Bang#Horizon_problemhttp://en.wikipedia.org/wiki/Accelerating_universehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-kolb_c3-50http://en.wikipedia.org/wiki/Hubble's_lawhttp://en.wikipedia.org/wiki/Redshifthttp://en.wikipedia.org/wiki/Redshifthttp://en.wikipedia.org/wiki/Cosmic_microwave_backgroundhttp://en.wikipedia.org/wiki/Cosmic_microwave_backgroundhttp://en.wikipedia.org/wiki/Big_Bang_nucleosynthesishttp://en.wikipedia.org/wiki/Large-scale_structure_of_the_cosmoshttp://en.wikipedia.org/wiki/Large-scale_structure_of_the_cosmoshttp://en.wikipedia.org/wiki/Large-scale_structure_of_the_cosmoshttp://en.wikipedia.org/wiki/Galaxy_formation_and_evolutionhttp://en.wikipedia.org/wiki/Galaxy_formation_and_evolutionhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-51http://en.wikipedia.org/wiki/Galaxy_formation_and_evolutionhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-52http://en.wikipedia.org/wiki/Hubble's_lawhttp://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Distance_measures_(cosmology)http://en.wikipedia.org/wiki/Distance_measures_(cosmology)http://en.wikipedia.org/wiki/Distance_measures_(cosmology)http://en.wikipedia.org/wiki/Scale_factor_(universe)http://en.wikipedia.org/wiki/Scale_factor_(universe)http://en.wikipedia.org/wiki/Quasarhttp://en.wikipedia.org/wiki/Quasarhttp://en.wikipedia.org/wiki/Redshifthttp://en.wikipedia.org/wiki/Lighthttp://en.wikipedia.org/wiki/Lighthttp://en.wikipedia.org/wiki/Frequency_spectrumhttp://en.wikipedia.org/wiki/Spectroscopyhttp://en.wikipedia.org/wiki/Emission_linehttp://en.wikipedia.org/wiki/Absorption_linehttp://en.wikipedia.org/wiki/Absorption_linehttp://en.wikipedia.org/wiki/Atomhttp://en.wikipedia.org/wiki/Atomhttp://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Homogeneity_(physics)http://en.wikipedia.org/wiki/Isotropyhttp://en.wikipedia.org/wiki/Isotropyhttp://en.wikipedia.org/wiki/Redshifthttp://en.wikipedia.org/wiki/Redshifthttp://en.wikipedia.org/wiki/Doppler_shifthttp://en.wikipedia.org/wiki/Doppler_shifthttp://en.wikipedia.org/wiki/Doppler_shifthttp://en.wikipedia.org/wiki/Doppler_shifthttp://en.wikipedia.org/wiki/Velocityhttp://en.wikipedia.org/wiki/Velocityhttp://en.wikipedia.org/wiki/Homogeneous_spacehttp://en.wikipedia.org/wiki/Isotropichttp://en.wikipedia.org/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker_metrichttp://en.wikipedia.org/wiki/Scale_factorhttp://en.wikipedia.org/wiki/Coordinate_systemhttp://en.wikipedia.org/wiki/Comoving_coordinateshttp://en.wikipedia.org/wiki/Comoving_distancehttp://en.wikipedia.org/wiki/Scale_factorhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-49http://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Cosmological_horizonhttp://en.wikipedia.org/wiki/Observable_universe#Cosmological_horizonhttp://en.wikipedia.org/wiki/Big_Bang#Horizon_problemhttp://en.wikipedia.org/wiki/Accelerating_universehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-kolb_c3-50http://en.wikipedia.org/wiki/Hubble's_lawhttp://en.wikipedia.org/wiki/Redshifthttp://en.wikipedia.org/wiki/Cosmic_microwave_backgroundhttp://en.wikipedia.org/wiki/Big_Bang_nucleosynthesishttp://en.wikipedia.org/wiki/Large-scale_structure_of_the_cosmoshttp://en.wikipedia.org/wiki/Large-scale_structure_of_the_cosmoshttp://en.wikipedia.org/wiki/Galaxy_formation_and_evolutionhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-51http://en.wikipedia.org/wiki/Big_Bang#cite_note-52http://en.wikipedia.org/wiki/Hubble's_lawhttp://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Distance_measures_(cosmology)http://en.wikipedia.org/wiki/Scale_factor_(universe)http://en.wikipedia.org/wiki/Quasarhttp://en.wikipedia.org/wiki/Redshifthttp://en.wikipedia.org/wiki/Lighthttp://en.wikipedia.org/wiki/Frequency_spectrumhttp://en.wikipedia.org/wiki/Spectroscopyhttp://en.wikipedia.org/wiki/Emission_linehttp://en.wikipedia.org/wiki/Absorption_linehttp://en.wikipedia.org/wiki/Atomhttp://en.wikipedia.org/wiki/Chemical_elementhttp://en.wikipedia.org/wiki/Homogeneity_(physics)http://en.wikipedia.org/wiki/Isotropyhttp://en.wikipedia.org/wiki/Redshifthttp://en.wikipedia.org/wiki/Doppler_shifthttp://en.wikipedia.org/wiki/Doppler_shifthttp://en.wikipedia.org/wiki/Velocity
  • 8/3/2019 The Origin of Universe 1

    8/18

    distances via the cosmic distance ladder. When the recessional velocities are plotted against these

    distances, a linear relationship known as Hubble's law is observed:[8]

    v= H0D,

    where

    vis the recessional velocityof the galaxy or other distant object,

    D is the comoving distance to the object, and

    H0 isHubble's constant, measured to be 70.4 +1.3

    1.4km/s/Mpc by theWMAP probe.[35]

    Hubble's law has two possible explanations. Either we are at the center of an explosion of galaxies

    which is untenable given theCopernican Principleor the Universe isuniformly

    expandingeverywhere. This universal expansion was predicted fromgeneral relativitybyAlexander

    Friedmann in 1922[17]andGeorges Lematre in 1927,[18] well before Hubble made his 1929 analysis

    and observations, and it remains the cornerstone of the Big Bang theory as developed by Friedmann,

    Lematre, Robertson and Walker.

    The theory requires the relation v= HD to hold at all times, where D is thecomoving distance,vis

    the recessional velocity, and v, H, and D vary as the Universe expands (hence we writeH0 to denote

    the present-day Hubble "constant"). For distances much smaller than the size of the observable

    Universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession

    velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of

    the Universe between the time the light was emitted and the time that it was detected.[49]

    That space is undergoing metric expansion is shown by direct observational evidence of

    the Cosmological Principle and the Copernican Principle, which together with Hubble's law have no

    other explanation. Astronomical redshifts are extremely isotropicandhomogenous,[8] supporting the

    Cosmological Principle that the Universe looks the same in all directions, along with much other

    evidence. If the redshifts were the result of an explosion from a center distant from us, they would not

    be so similar in different directions.

    Measurements of the effects of the cosmic microwave background radiation on the dynamics of

    distant astrophysical systems in 2000 proved theCopernican Principle, that the Earth is not in a

    central position, on a cosmological scale.[50] Radiation from the Big Bang was demonstrably warmer

    at earlier times throughout the Universe. Uniform cooling of the cosmic microwave background over

    billions of years is explainable only if the Universe is experiencing a metric expansion, and excludes

    the possibility that we are near the unique center of an explosion.

    Cosmic microwave background radiationMain article: Cosmic microwave background radiation

    http://en.wikipedia.org/wiki/Cosmic_distance_ladderhttp://en.wikipedia.org/wiki/Hubble's_lawhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-hubble-7http://en.wikipedia.org/wiki/Big_Bang#cite_note-hubble-7http://en.wikipedia.org/wiki/Velocityhttp://en.wikipedia.org/wiki/Velocityhttp://en.wikipedia.org/wiki/Galaxyhttp://en.wikipedia.org/wiki/Comoving_distancehttp://en.wikipedia.org/wiki/Hubble's_constanthttp://en.wikipedia.org/wiki/Hubble's_constanthttp://en.wikipedia.org/wiki/Hubble's_constanthttp://en.wikipedia.org/wiki/Kilometershttp://en.wikipedia.org/wiki/Secondhttp://en.wikipedia.org/wiki/Megaparsechttp://en.wikipedia.org/wiki/WMAPhttp://en.wikipedia.org/wiki/WMAPhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-wmap7year-37http://en.wikipedia.org/wiki/Hubble's_lawhttp://en.wikipedia.org/wiki/Copernican_Principlehttp://en.wikipedia.org/wiki/Copernican_Principlehttp://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/General_relativityhttp://en.wikipedia.org/wiki/General_relativityhttp://en.wikipedia.org/wiki/General_relativityhttp://en.wikipedia.org/wiki/Alexander_Friedmannhttp://en.wikipedia.org/wiki/Alexander_Friedmannhttp://en.wikipedia.org/wiki/Alexander_Friedmannhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-af1922-16http://en.wikipedia.org/wiki/Big_Bang#cite_note-af1922-16http://en.wikipedia.org/wiki/Georges_Lema%C3%AEtrehttp://en.wikipedia.org/wiki/Georges_Lema%C3%AEtrehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-gl1927-17http://en.wikipedia.org/wiki/Big_Bang#cite_note-gl1927-17http://en.wikipedia.org/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker_metrichttp://en.wikipedia.org/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker_metrichttp://en.wikipedia.org/wiki/Comoving_distancehttp://en.wikipedia.org/wiki/Comoving_distancehttp://en.wikipedia.org/wiki/Comoving_distancehttp://en.wikipedia.org/wiki/Recessional_velocityhttp://en.wikipedia.org/wiki/Observable_Universehttp://en.wikipedia.org/wiki/Observable_Universehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-peacock_c3-53http://en.wikipedia.org/wiki/Big_Bang#cite_note-peacock_c3-53http://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Cosmological_Principlehttp://en.wikipedia.org/wiki/Redshifthttp://en.wikipedia.org/wiki/Isotropichttp://en.wikipedia.org/wiki/Isotropichttp://en.wikipedia.org/wiki/Homogeneity_(physics)#Translation_invariancehttp://en.wikipedia.org/wiki/Homogeneity_(physics)#Translation_invariancehttp://en.wikipedia.org/wiki/Homogeneity_(physics)#Translation_invariancehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-hubble-7http://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Copernican_Principlehttp://en.wikipedia.org/wiki/Copernican_Principlehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-54http://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/File:WMAP_2010.pnghttp://en.wikipedia.org/wiki/Cosmic_distance_ladderhttp://en.wikipedia.org/wiki/Hubble's_lawhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-hubble-7http://en.wikipedia.org/wiki/Velocityhttp://en.wikipedia.org/wiki/Galaxyhttp://en.wikipedia.org/wiki/Comoving_distancehttp://en.wikipedia.org/wiki/Hubble's_constanthttp://en.wikipedia.org/wiki/Kilometershttp://en.wikipedia.org/wiki/Secondhttp://en.wikipedia.org/wiki/Megaparsechttp://en.wikipedia.org/wiki/WMAPhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-wmap7year-37http://en.wikipedia.org/wiki/Hubble's_lawhttp://en.wikipedia.org/wiki/Copernican_Principlehttp://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/General_relativityhttp://en.wikipedia.org/wiki/Alexander_Friedmannhttp://en.wikipedia.org/wiki/Alexander_Friedmannhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-af1922-16http://en.wikipedia.org/wiki/Georges_Lema%C3%AEtrehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-gl1927-17http://en.wikipedia.org/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker_metrichttp://en.wikipedia.org/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker_metrichttp://en.wikipedia.org/wiki/Comoving_distancehttp://en.wikipedia.org/wiki/Recessional_velocityhttp://en.wikipedia.org/wiki/Observable_Universehttp://en.wikipedia.org/wiki/Observable_Universehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-peacock_c3-53http://en.wikipedia.org/wiki/Metric_expansion_of_spacehttp://en.wikipedia.org/wiki/Cosmological_Principlehttp://en.wikipedia.org/wiki/Redshifthttp://en.wikipedia.org/wiki/Isotropichttp://en.wikipedia.org/wiki/Homogeneity_(physics)#Translation_invariancehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-hubble-7http://en.wikipedia.org/wiki/Cosmic_microwave_background_radiationhttp://en.wikipedia.org/wiki/Copernican_Principlehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-54http://en.wikipedia.org/wiki/Cosmic_microwave_background_radiation
  • 8/3/2019 The Origin of Universe 1

    9/18

    WMAPimage of the cosmic microwave background radiation

    During the first few days of the Universe, the Universe was in fullthermal equilibrium, with photons

    being continually emitted and absorbed, giving the radiation a blackbody spectrum. As the Universe

    expanded, it cooled to a temperature at which photons could no longer be created or destroyed. Thetemperature was still high enough for electrons and nuclei to remain unbound, however, and photons

    were constantly "reflected" from these free electrons through a process called Thomson scattering.

    Because of this repeated scattering, the early Universe was opaque to light.

    When the temperature fell to a few thousand Kelvin, electrons and nuclei began to combine to form

    atoms, a process known as recombination. Since photons scatter infrequently from neutral atoms,

    radiation decoupled from matter when nearly all the electrons had recombined, at theepoch of last

    scattering, 379,000 years after the Big Bang. These photons make up the CMB that is observed

    today, and the observed pattern of fluctuations in the CMB is a direct picture of the Universe at this

    early epoch. The energy of photons was subsequently redshifted by the expansion of the Universe,

    which preserved the blackbody spectrum but caused its temperature to fall, meaning that the photonsnow fall into themicrowaveregion of theelectromagnetic spectrum. The radiation is thought to be

    observable at every point in the Universe, and comes from all directions with (almost) the same

    intensity.

    In 1964, Arno Penzias and Robert Wilson accidentally discovered the cosmic background radiation

    while conducting diagnostic observations using a new microwave receiver owned byBell

    Laboratories.[29]Their discovery provided substantial confirmation of the general CMB predictions

    the radiation was found to be isotropic and consistent with a blackbody spectrum of about 3 Kand it

    pitched the balance of opinion in favor of the Big Bang hypothesis. Penzias and Wilson were

    awarded a Nobel Prizefor their discovery.

    The cosmic microwave background spectrum measured by the FIRAS instrument on theCOBE satelliteis the most-

    precisely measuredblack body spectrum in nature.[51]Thedata pointsanderror barson this graph are obscured by the

    theoretical curve.

    In 1989, NASAlaunched the Cosmic Background Explorer satellite(COBE), and the initial findings,

    released in 1990, were consistent with the Big Bang's predictions regarding the CMB. COBE found a

    residual temperature of 2.726 K and in 1992 detected for the first time the fluctuations (anisotropies)

    in the CMB, at a level of about one part in 105.[30]John C. Matherand George Smootwere awarded

    http://en.wikipedia.org/wiki/WMAPhttp://en.wikipedia.org/wiki/WMAPhttp://en.wikipedia.org/wiki/Thermodynamic_equilibriumhttp://en.wikipedia.org/wiki/Thermodynamic_equilibriumhttp://en.wikipedia.org/wiki/Blackbodyhttp://en.wikipedia.org/wiki/Thomson_scatteringhttp://en.wikipedia.org/wiki/Thomson_scatteringhttp://en.wikipedia.org/wiki/Kelvinhttp://en.wikipedia.org/wiki/Recombination_(cosmology)http://en.wikipedia.org/wiki/Microwavehttp://en.wikipedia.org/wiki/Microwavehttp://en.wikipedia.org/wiki/Microwavehttp://en.wikipedia.org/wiki/Electromagnetic_spectrumhttp://en.wikipedia.org/wiki/Electromagnetic_spectrumhttp://en.wikipedia.org/wiki/Arno_Penziashttp://en.wikipedia.org/wiki/Robert_Woodrow_Wilsonhttp://en.wikipedia.org/wiki/Microwavehttp://en.wikipedia.org/wiki/Bell_Laboratorieshttp://en.wikipedia.org/wiki/Bell_Laboratorieshttp://en.wikipedia.org/wiki/Big_Bang#cite_note-penzias-30http://en.wikipedia.org/wiki/Big_Bang#cite_note-penzias-30http://en.wikipedia.org/wiki/Big_Bang#cite_note-penzias-30http://en.wikipedia.org/wiki/Nobel_Prizehttp://en.wikipedia.org/wiki/Nobel_Prizehttp://en.wikipedia.org/wiki/COBEhttp://en.wikipedia.org/wiki/COBEhttp://en.wikipedia.org/wiki/COBEhttp://en.wikipedia.org/wiki/Black_bodyhttp://en.wikipedia.org/wiki/Black_bodyhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-dpf99-55http://en.wikipedia.org/wiki/Data_pointhttp://en.wikipedia.org/wiki/Data_pointhttp://en.wikipedia.org/wiki/Data_pointhttp://en.wikipedia.org/wiki/Standard_error_of_estimationhttp://en.wikipedia.org/wiki/Standard_error_of_estimationhttp://en.wikipedia.org/wiki/Standard_error_of_estimationhttp://en.wikipedia.org/wiki/National_Aeronautics_and_Space_Administrationhttp://en.wikipedia.org/wiki/National_Aeronautics_and_Space_Administrationhttp://en.wikipedia.org/wiki/Cosmic_Background_Explorer_satellitehttp://en.wikipedia.org/wiki/Cosmic_Background_Explorer_satellitehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-cobe-31http://en.wikipedia.org/wiki/John_C._Matherhttp://en.wikipedia.org/wiki/John_C._Matherhttp://en.wikipedia.org/wiki/George_Smoothttp://en.wikipedia.org/wiki/George_Smoothttp://en.wikipedia.org/wiki/File:Firas_spectrum.jpghttp://en.wikipedia.org/wiki/File:Firas_spectrum.jpghttp://en.wikipedia.org/wiki/File:WMAP_2010.pnghttp://en.wikipedia.org/wiki/WMAPhttp://en.wikipedia.org/wiki/Thermodynamic_equilibriumhttp://en.wikipedia.org/wiki/Blackbodyhttp://en.wikipedia.org/wiki/Thomson_scatteringhttp://en.wikipedia.org/wiki/Kelvinhttp://en.wikipedia.org/wiki/Recombination_(cosmology)http://en.wikipedia.org/wiki/Microwavehttp://en.wikipedia.org/wiki/Electromagnetic_spectrumhttp://en.wikipedia.org/wiki/Arno_Penziashttp://en.wikipedia.org/wiki/Robert_Woodrow_Wilsonhttp://en.wikipedia.org/wiki/Microwavehttp://en.wikipedia.org/wiki/Bell_Laboratorieshttp://en.wikipedia.org/wiki/Bell_Laboratorieshttp://en.wikipedia.org/wiki/Big_Bang#cite_note-penzias-30http://en.wikipedia.org/wiki/Nobel_Prizehttp://en.wikipedia.org/wiki/COBEhttp://en.wikipedia.org/wiki/Black_bodyhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-dpf99-55http://en.wikipedia.org/wiki/Data_pointhttp://en.wikipedia.org/wiki/Standard_error_of_estimationhttp://en.wikipedia.org/wiki/National_Aeronautics_and_Space_Administrationhttp://en.wikipedia.org/wiki/Cosmic_Background_Explorer_satellitehttp://en.wikipedia.org/wiki/Big_Bang#cite_note-cobe-31http://en.wikipedia.org/wiki/John_C._Matherhttp://en.wikipedia.org/wiki/George_Smoot
  • 8/3/2019 The Origin of Universe 1

    10/18

    the Nobel Prize for their leadership in this work. During the following decade, CMB anisotropies were

    further investigated by a large number of ground-based and balloon experiments. In 20002001,

    several experiments, most notably BOOMERanG, found the Universe to be almost spatially flat by

    measuring the typical angular size (the size on the sky) of the anisotropies. (Seeshape of the

    Universe.)

    In early 2003, the first results of the Wilkinson Microwave Anisotropy Probe (WMAP) were released,

    yielding what were at the time the most accurate values for some of the cosmological parameters.

    This spacecraft also disproved several specific cosmic inflationmodels, but the results were

    consistent with the inflation theory in general,[31]it confirms too that a sea ofcosmic

    neutrinospermeates the Universe, a clear evidence that the first stars took more than a half-billion

    years to create a cosmic fog. A new space probe namedPlanck, with goals similar to WMAP, was

    launched in May 2009. It is anticipated to soon provide even more accurate measurements of the

    CMB anisotropies. Many other ground- and balloon-based experiments are also currently running;

    see Cosmic microwave background experiments.

    The background radiation is exceptionally smooth, which presented a problem in that conventional

    expansion would mean that photons coming from opposite directions in the sky were coming fromregions that had never been in contact with each other. The leading explanation for this far reaching

    equilibrium is that the Universe had a brief period of rapid exponential expansion, calledinflation.

    This would have the effect of driving apart regions that had been in equilibrium, so that all the

    observable Universe was from the same equilibrated region.

    Abundance of primordial elements

    Main article: Big Bang nucleosynthesis

    Using the Big Bang model it is possible to calculate the concentration ofhelium-4, helium-

    3,deuterium and lithium-7 in the Universe as ratios to the amount of ordinary hydrogen, H.[40]All the

    abundances depend on a single parameter, the ratio ofphotonstobaryons, which itself can be

    calculated independently from the detailed structure of CMB fluctuations. The ratios predicted (by

    mass, not by number) are about 0.25 for4

    He/H, about 103 for2

    H/H, about 104 for3

    He/H and about 109 for7

    Li/H.[40]

    The measured abundances all agree at least roughly with those predicted from a single value of the

    baryon-to-photon ratio. The agreement is excellent for deuterium, close but formally discrepant for4

    He, and a factor of two off for7

    Li; in the latter two cases there are substantialsystematic uncertainties. Nonetheless, the general

    consistency with abundances predicted by BBN is strong evidence for the Big Bang, as the theory isthe only known explanation for the relative abundances of light elements, and it is virtually impossible

    to "tune" the Big Bang to produce much more or less than 2030% helium.[52]Indeed there is no

    obvious reason outside of the Big Bang that, for example, the young Universe (i.e., before star

    formation, as determined by studying matter supposedly free ofstellar nucleosynthesis products)

    should have more helium than deuterium or more deuterium than 3

    He, and in constant ratios, too.

    Galactic evolution and distribution

    http://en.wikipedia.org/wiki/BOOMERanG_experimenthttp://en.wikipedia.org/wiki/Shape_of_the_Universehttp://en.wikipedia.org/wiki/Shape_of_the_Universehttp://en.wikipedia.org/wiki/Shape_of_the_Universehttp://en.wikipedia.org/wiki/WMAPhttp://en.wikipedia.org/wiki/Cosmic_inflationhttp://en.wikipedia.org/wiki/Cosmic_inflationhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-wmap1year-32http://en.wikipedia.org/wiki/Big_Bang#cite_note-wmap1year-32http://en.wikipedia.org/wiki/Cosmic_neutrino_backgroundhttp://en.wikipedia.org/wiki/Cosmic_neutrino_backgroundhttp://en.wikipedia.org/wiki/Cosmic_neutrino_backgroundhttp://en.wikipedia.org/wiki/Planck_(spacecraft)http://en.wikipedia.org/wiki/Planck_(spacecraft)http://en.wikipedia.org/wiki/Planck_(spacecraft)http://en.wikipedia.org/wiki/Cosmic_microwave_background_experimentshttp://en.wikipedia.org/wiki/Cosmic_microwave_background_experimentshttp://en.wikipedia.org/wiki/Cosmic_inflationhttp://en.wikipedia.org/wiki/Cosmic_inflationhttp://en.wikipedia.org/wiki/Thermodynamic_equilibriumhttp://en.wikipedia.org/wiki/Thermodynamic_equilibriumhttp://en.wikipedia.org/wiki/Big_Bang_nucleosynthesishttp://en.wikipedia.org/wiki/Helium-4http://en.wikipedia.org/wiki/Helium-3http://en.wikipedia.org/wiki/Helium-3http://en.wikipedia.org/wiki/Deuteriumhttp://en.wikipedia.org/wiki/Deuteriumhttp://en.wikipedia.org/wiki/Lithium-7http://en.wikipedia.org/wiki/Big_Bang#cite_note-kolb_c4-42http://en.wikipedia.org/wiki/Photonhttp://en.wikipedia.org/wiki/Photonhttp://en.wikipedia.org/wiki/Baryonhttp://en.wikipedia.org/wiki/Baryonhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-kolb_c4-42http://en.wikipedia.org/wiki/Systematic_errorhttp://en.wikipedia.org/wiki/Systematic_errorhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-56http://en.wikipedia.org/wiki/Big_Bang#cite_note-56http://en.wikipedia.org/wiki/Big_Bang#cite_note-56http://en.wikipedia.org/wiki/Stellar_nucleosynthesishttp://en.wikipedia.org/wiki/Stellar_nucleosynthesishttp://en.wikipedia.org/wiki/BOOMERanG_experimenthttp://en.wikipedia.org/wiki/Shape_of_the_Universehttp://en.wikipedia.org/wiki/Shape_of_the_Universehttp://en.wikipedia.org/wiki/WMAPhttp://en.wikipedia.org/wiki/Cosmic_inflationhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-wmap1year-32http://en.wikipedia.org/wiki/Cosmic_neutrino_backgroundhttp://en.wikipedia.org/wiki/Cosmic_neutrino_backgroundhttp://en.wikipedia.org/wiki/Planck_(spacecraft)http://en.wikipedia.org/wiki/Cosmic_microwave_background_experimentshttp://en.wikipedia.org/wiki/Cosmic_inflationhttp://en.wikipedia.org/wiki/Thermodynamic_equilibriumhttp://en.wikipedia.org/wiki/Big_Bang_nucleosynthesishttp://en.wikipedia.org/wiki/Helium-4http://en.wikipedia.org/wiki/Helium-3http://en.wikipedia.org/wiki/Helium-3http://en.wikipedia.org/wiki/Deuteriumhttp://en.wikipedia.org/wiki/Lithium-7http://en.wikipedia.org/wiki/Big_Bang#cite_note-kolb_c4-42http://en.wikipedia.org/wiki/Photonhttp://en.wikipedia.org/wiki/Baryonhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-kolb_c4-42http://en.wikipedia.org/wiki/Systematic_errorhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-56http://en.wikipedia.org/wiki/Stellar_nucleosynthesis
  • 8/3/2019 The Origin of Universe 1

    11/18

    Main articles: Large-scale structure of the cosmos,Structure formation, andGalaxy formation and

    evolution

    This panoramic view of the entire near-infraredsky reveals the distribution of galaxies beyond the Milky Way. The

    galaxies are color coded by redshift.

    Detailed observations of the morphology anddistribution of galaxies and quasarsprovide strong

    evidence for the Big Bang. A combination of observations and theory suggest that the first quasars

    and galaxies formed about a billion years after the Big Bang, and since then larger structures have

    been forming, such asgalaxy clustersand superclusters. Populations of stars have been aging andevolving, so that distant galaxies (which are observed as they were in the early Universe) appear

    very different from nearby galaxies (observed in a more recent state). Moreover, galaxies that formed

    relatively recently appear markedly different from galaxies formed at similar distances but shortly

    after the Big Bang. These observations are strong arguments against the steady-state model.

    Observations ofstar formation, galaxy and quasar distributions and larger structures agree well with

    Big Bang simulations of the formation of structure in the Universe and are helping to complete details

    of the theory.[53][54]

    Other lines of evidence

    After some controversy, the age of Universe as estimated from the Hubble expansion and the CMB is

    now in good agreement with (i.e., slightly larger than) the ages of the oldest stars, both as measuredby applying the theory ofstellar evolutionto globular clusters and through radiometric datingof

    individual Population IIstars.[citation needed]

    The prediction that the CMB temperature was higher in the past has been experimentally supported

    by observations of temperature-sensitive emission lines in gas clouds at high redshift. This prediction

    also implies that the amplitude of the SunyaevZel'dovich effect in clusters of galaxies does not

    depend directly on redshift; this seems to be roughly true, but unfortunately the amplitude does

    depend on cluster properties which do change substantially over cosmic time, so a precise test is

    impossible.[citation needed]

    Features, issues and problems

    While scientists now prefer the Big Bang model over other cosmological models, the scientific

    community was once divided between supporters of the Big Bang and those ofalternative

    cosmological models. Throughout the historical development of the subject, problems with the Big

    Bang theory were posed in the context of a scientific controversy regarding which model could best

    describe thecosmological observations. With the overwhelming consensus in the community today

    supporting the Big Bang model, many of these problems are remembered as being mainly of

    http://en.wikipedia.org/wiki/Large-scale_structure_of_the_cosmoshttp://en.wikipedia.org/wiki/Structure_formationhttp://en.wikipedia.org/wiki/Structure_formationhttp://en.wikipedia.org/wiki/Structure_formationhttp://en.wikipedia.org/wiki/Galaxy_formation_and_evolutionhttp://en.wikipedia.org/wiki/Galaxy_formation_and_evolutionhttp://en.wikipedia.org/wiki/Galaxy_formation_and_evolutionhttp://en.wikipedia.org/wiki/Near-infraredhttp://en.wikipedia.org/wiki/Near-infraredhttp://en.wikipedia.org/wiki/Milky_Wayhttp://en.wikipedia.org/wiki/Milky_Wayhttp://en.wikipedia.org/wiki/Redshifthttp://en.wikipedia.org/wiki/Redshifthttp://en.wikipedia.org/wiki/Galaxy_morphological_classificationhttp://en.wikipedia.org/wiki/Large-scale_structure_of_the_cosmoshttp://en.wikipedia.org/wiki/Large-scale_structure_of_the_cosmoshttp://en.wikipedia.org/wiki/Quasarshttp://en.wikipedia.org/wiki/Quasarshttp://en.wikipedia.org/wiki/Galaxy_groups_and_clustershttp://en.wikipedia.org/wiki/Galaxy_groups_and_clustershttp://en.wikipedia.org/wiki/Galaxy_groups_and_clustershttp://en.wikipedia.org/wiki/Superclusterhttp://en.wikipedia.org/wiki/Superclusterhttp://en.wikipedia.org/wiki/Star_formationhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-57http://en.wikipedia.org/wiki/Big_Bang#cite_note-57http://en.wikipedia.org/wiki/Big_Bang#cite_note-58http://en.wikipedia.org/wiki/Stellar_evolutionhttp://en.wikipedia.org/wiki/Stellar_evolutionhttp://en.wikipedia.org/wiki/Globular_clustershttp://en.wikipedia.org/wiki/Radiometric_datinghttp://en.wikipedia.org/wiki/Radiometric_datinghttp://en.wikipedia.org/wiki/Population_IIhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Sunyaev%E2%80%93Zel'dovich_effecthttp://en.wikipedia.org/wiki/Clusters_of_galaxieshttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Non-standard_cosmologieshttp://en.wikipedia.org/wiki/Non-standard_cosmologieshttp://en.wikipedia.org/wiki/Observational_cosmologyhttp://en.wikipedia.org/wiki/Observational_cosmologyhttp://en.wikipedia.org/wiki/Scientific_consensushttp://en.wikipedia.org/wiki/File:2MASS_LSS_chart-NEW_Nasa.jpghttp://en.wikipedia.org/wiki/File:2MASS_LSS_chart-NEW_Nasa.jpghttp://en.wikipedia.org/wiki/Large-scale_structure_of_the_cosmoshttp://en.wikipedia.org/wiki/Structure_formationhttp://en.wikipedia.org/wiki/Galaxy_formation_and_evolutionhttp://en.wikipedia.org/wiki/Galaxy_formation_and_evolutionhttp://en.wikipedia.org/wiki/Near-infraredhttp://en.wikipedia.org/wiki/Milky_Wayhttp://en.wikipedia.org/wiki/Redshifthttp://en.wikipedia.org/wiki/Galaxy_morphological_classificationhttp://en.wikipedia.org/wiki/Large-scale_structure_of_the_cosmoshttp://en.wikipedia.org/wiki/Quasarshttp://en.wikipedia.org/wiki/Galaxy_groups_and_clustershttp://en.wikipedia.org/wiki/Superclusterhttp://en.wikipedia.org/wiki/Star_formationhttp://en.wikipedia.org/wiki/Big_Bang#cite_note-57http://en.wikipedia.org/wiki/Big_Bang#cite_note-58http://en.wikipedia.org/wiki/Stellar_evolutionhttp://en.wikipedia.org/wiki/Globular_clustershttp://en.wikipedia.org/wiki/Radiometric_datinghttp://en.wikipedia.org/wiki/Population_IIhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Sunyaev%E2%80%93Zel'dovich_effecthttp://en.wikipedia.org/wiki/Clusters_of_galaxieshttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Non-standard_cosmologieshttp://en.wikipedia.org/wiki/Non-standard_cosmologieshttp://en.wikipedia.org/wiki/Observational_cosmologyhttp://en.wikipedia.org/wiki/Scientific_consensus
  • 8/3/2019 The Origin of Universe 1

    12/18

    historical interest; the solutions to them have been obtained either through modifications to the theory

    or as the result of better observations.

    The core ideas of the Big Bangthe expansion, the early hot state, the formation of helium, the

    formation of galaxiesare derived from many observations that are independent from any

    cosmological model; these include the abundance of light elements, the cosmic microwave

    background,large scale structure, and the Hubble diagramforType Ia supernovae.

    Precise modern models of the Big Bang appeal to various exotic physical phenomena that have not

    been observed in terrestrial laboratory experiments or incorporated into the Standard

    Modelofparticle physics. Of these features,dark matteris currently the subject to the most active

    laboratory investigations.[55]Remaining issues, such as the cuspy halo problemand the dwarf galaxy

    problemofcold dark matter, are not fatal to the dark matter explanation as solutions to such

    problems exist which involve only further refinements of the theory.Dark energy is also an area of

    intense interest for scientists, but it is not clear whether direct detection of dark energy