The integrated modelling perspective - iew2018.org · O.Y. Edelenbosch, D.P. van Vuuren, K. Blok,...

16
Mitigating energy demand emissions The integrated modelling perspective POLITECNICO DI MILANO O.Y. Edelenbosch, D.P. van Vuuren, K. Blok, K. Calvin, S. Fujimori

Transcript of The integrated modelling perspective - iew2018.org · O.Y. Edelenbosch, D.P. van Vuuren, K. Blok,...

Energy demand

POLITECNICO DI MILANOO. Edelenbosch 21-6-2019, IEW

● Energy demand sectors: Buildings, Industry and Transport

● Energy demand sector directly and indirectly contribute to global CO2

emissions

● More focus on energy supply

CO2 CO2Supply Demand

(IEA 2016)

Demand sector complexity

POLITECNICO DI MILANOO. Edelenbosch 21-6-2019, IEW

Demand Sectors

• Many subsectors

• Many technologies

• Different users

• High capital stock turnover

• Less defined decision-making criteria

Effect: Demand side changes not so well understood

In IAMs

• More detail comes at a costs

• Data intensive

• Uncertain assumptions

• Transparent

• Aggregated trends

Integrated Assessment Models

POLITECNICO DI MILANOO. Edelenbosch 21-6-2019, IEW

• Interaction of human development, earth system and environmental system

• Integration across different issues and disciplines

• Focused on decisions processes (assessment)

Sugiyama et al. (2014),

Marangoni et al. (2017) show energy intensity projections, important determinant of future carbon emissions

This research

POLITECNICO DI MILANOO. Edelenbosch 21-6-2019, IEW

• Assess the role of the energy demand sectors in global stringent mitigation pathways

• Making use of the newly developed Shared Socio-Economic scenarios

• Compare to recent technology assessment of the demand sectors for 2030

Methods

POLITECNICO DI MILANOO. Edelenbosch 21-6-2019, IEW

● Cross model

● Cross demand sector

● Cross scenario

● Decomposition

• AIM/CGE

• IMAGE

• GCAM

• MESSAGE

Buildings

Industry

Transport

• SSP1: green growth

• SSP2: middle of the road

• SSP3:regional rivalry

• Efficiency

• Electrification

• Fuel content

𝐷𝑖𝑟𝑒𝑐𝑡 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 𝑃𝑜𝑝 ∗𝐹𝐸

𝑃𝑜𝑝∗1 − 𝐸𝑙𝑒𝑐

𝐹𝐸∗𝐷𝑖𝑟𝑒𝑐𝑡 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

1 − 𝐸𝑙𝑒𝑐

𝑤𝑖𝑡ℎ𝐹𝐸

𝑃𝑜𝑝=

𝐸𝑛𝑒𝑟𝑔𝑦 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑑𝑒𝑚𝑎𝑛𝑑

𝑃𝑜𝑝∗

𝐹𝐸

𝐸𝑛𝑒𝑟𝑔𝑦 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑑𝑒𝑚𝑎𝑛𝑑

Riahi et al., 2017, van Vuuren et al., 2017, O’Neill et al., 2014

Model AIM/CGE GCAM IMAGE 3.0 MESSAGE-GLOBOIM

Solution method Recursive dynamic Recursive dynamic Recursive dynamic Intertemporal optimization

Model category General

equilibrium (GE)

Partial equilibrium

(PE)

Hybrid Hybrid

Hosting institute NIES PNNL PBL IIASA

Baseline emissions

POLITECNICO DI MILANOO. Edelenbosch 21-6-2019, IEW

Baseline - components

POLITECNICO DI MILANOO. Edelenbosch 21-6-2019, IEW

Stringent mitigation

POLITECNICO DI MILANOO. Edelenbosch 21-6-2019, IEW

Mitigation - componets

POLITECNICO DI MILANOO. Edelenbosch 21-6-2019, IEW

Technology Assessment (Gap report)

● UNEP GAP: Technology-oriented study

assessing sectoral reduction potentials

● Bottom-up approach

● Per sector for a cut-off cost-level of 100

US$/tCO2e (UNEP, 2017) based on literature

review

● Compared to a reference level: energy related

emissions based on the WEO current policy

scenario (IEA, 2016)

POLITECNICO DI MILANOO. Edelenbosch 21-6-2019, IEW

Technology assessment

POLITECNICO DI MILANOO. Edelenbosch 21-6-2019, IEW

● Comparison with bottom up technology assessment for 2030:○ More potential for efficiency!

(UNEP GAP, 2017)

Conclusions

POLITECNICO DI MILANOO. Edelenbosch 21-6-2019, IEW

● Baseline emissions can grow rapidly in industrial and transport sectors

● Key uncertainty is saturation of final energy

● The SSP scenarios show that the growth of the demand sector and the technology development largely affects the sectors mitigation challenge

● Demand side mitigation is dependent on energy efficiency and fuel switching in the short term but fuel switching becomes dominant

● More potential for energy efficiency improvement

● Need to better understand demand side dynamics

Questions?

POLITECNICO DI MILANOO. Edelenbosch 21-6-2019, IEW

References

IEA 2016. World Energy Outlook 2016. International Energy Agency, Paris, France.

O’NEILL, B. C., KRIEGLER, E., RIAHI, K., EBI, K. L., HALLEGATTE, S., CARTER, T. R., MATHUR,

R. & VAN VUUREN, D. P. 2014. A new scenario framework for climate change research: the concept

of shared socioeconomic pathways. Climatic Change, 122, 387-400.

RIAHI, K., VAN VUUREN, D. P., KRIEGLER, E., EDMONDS, J., O’NEILL, B. C., FUJIMORI, S.,

BAUER, N., CALVIN, K., DELLINK, R., FRICKO, O., LUTZ, W., POPP, A., CUARESMA, J. C., KC,

S., LEIMBACH, M., JIANG, L., KRAM, T., RAO, S., EMMERLING, J., EBI, K., HASEGAWA, T.,

HAVLIK, P., HUMPENÖDER, F., DA SILVA, L. A., SMITH, S., STEHFEST, E., BOSETTI, V., EOM,

J., GERNAAT, D., MASUI, T., ROGELJ, J., STREFLER, J., DROUET, L., KREY, V., LUDERER, G.,

HARMSEN, M., TAKAHASHI, K., BAUMSTARK, L., DOELMAN, J. C., KAINUMA, M., KLIMONT, Z.,

MARANGONI, G., LOTZE-CAMPEN, H., OBERSTEINER, M., TABEAU, A. & TAVONI, M. 2017. The

Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions

implications: An overview. Global Environmental Change, 42, 153-168.

UNEP 2017. The Emissions Gap Report 2017. Nairobi, Kenya: United Nations Environment

Programme (UNEP)

VAN VUUREN, D. P., RIAHI, K., CALVIN, K., DELLINK, R., EMMERLING, J., FUJIMORI, S., KC,

S.,KRIEGLER, E. & O’NEILL, B. 2017a. The Shared Socio-economic Pathways: Trajectories for

human development and global environmental change. Global Environmental Change, 42,148-152.

POLITECNICO DI MILANOO. Edelenbosch 21-6-2019, IEW

Technology Assessment (baseline)

Questions?

POLITECNICO DI MILANOO. Edelenbosch 21-6-2019, IEW