The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria...

33
The gDFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational Material Science, Universitat Bremen Alessandro Pecchia 1 L. Latessa 1 , Th. Frauenheim 2 , A. Di Carlo 1

Transcript of The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria...

Page 1: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

The gDFTB method applied to transport in Si nanowires and

carbon nanotubes

1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata2 Computational Material Science, Universitat Bremen

Alessandro Pecchia1 L. Latessa1, Th. Frauenheim2, A. Di Carlo1

Page 2: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

RRD

DRDDR

LDL

H

H

H

0

0

H

,r aE i S H G I

Retarded (r) and advanced (a) Green functions are defined as follow

Let us write H and G in a block form

RRDRL

DRDDL

LRLDL

GGG

GGG

GGG

G

NEGF + DFTB = gDFTB

1 RLDD HEG

LDLDLL g

RDRDRR g Self-energies

Device region

Lead Lead

HDHL HR

LD RD

- +

Page 3: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Non equilibrium density

In order to compute V(r) we need the local (r)

1

( )2

dE G Ei

Density Matrix

( ) ( ) ( ) ( ) ( )L RL RG E i E f E i E f E

We can build the n.e. density matrix

L R

( ) ( ) ( ) ( )r aG E G E E G E

Page 4: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Self-consistent loop0μνH

<G

Density matrix

ρ

Multigrid Poisson solver

Self-consistent

solutions iq eR RG Σ

Evaluation of<G

Green’s function

1μνH

External potential

Hartree term

Exchange-correlation (LDA)+ +

Page 5: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Implementation details

<G Is performed by countour integration and has been parallelized (MPI)

1 RLDD HEG

• All matrices stored in dense format

• Green’s functions computed by direct inversions

• Sparse storage

• Implementation of a block-iterative construction

Old gDFTB (2003-2005)New gDFTB (2006-)

Page 6: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Block-iterative algorithm

The device G.F. are computed with an iterative algorithm

1, , , , 1 1, 1 1,[ ]L L L L L L L L L L L Lg ES H T g T

1) Computation of partial Green’s

2) Computation of equilibrium Green’s

, , , , 1 1, 1 1, ,L L L L L L L L L L L L L LG g g T G T g

3) Additional blocks needed for non-equilibrium

, , , 1 1,L n L L L L L LG g T G

HPLHPLHPLHPLHPL

L

L

L

L

H

H

H

H

H

Page 7: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Profiling

SWCNT(20,0): 2880 atoms, 36 Principal Layers

2,5 nm

14,7 nm

60,2

5,40

20

40

60

80

Tempo (s)

OldgDFTB

NewgDFTB

1743

1860

500

1000

1500

2000

Peak Memory(MB)

OldgDFTB

NewgDFTB

Single node (P4 - 3.2 GHz), Single energy point

Page 8: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Self-consistent potential

eV

Page 9: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Poisson Equation

The Poisson’s equation is solved with a 3D Multi-grid algorithm.

( ) ( )n r q n r

2 4V n

Discretize in real space

This allows to solve complex boundary conditions (bias, gate)

2-terminals gated

coaxially-gated

4-terminals

Page 10: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

projection back in AO

3 ( ) ( )V d rV r n r

0 1( )

2H H S V V

Now we need to project the solution into the local basis set

Can be viewed as an approximation of the rigorous matrix elements of V(r).

This is consistent with standard DFTB

Page 11: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Summary gDFTB implementation

Construction of H and S directly in sparse format

Solution of Green’s functions via block-iterative methods

Current Bottle-neck: Poisson equation

- Very efficient for 1D type systems- Memory scales linearly (depends on PL size)- Can be used for O(N) calculations even in equilibrium- Considerable speed-up and memory save

- Dense matrices never allocated

- Multigrid with uniform grid, dense storage!- Need to implement more efficient methods (finite elements with adaptive grids)

Page 12: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Applications of gDFTB

symmetric moleculesymmetric molecule

Molecular Electronics.

Incoherent Transport andInelastic Tunneling Spectroscopy

A. Pecchia et al., Nano Lett. 4, 2109 (2004)

G. Solomon et al., J. Chem Phys 124, 094704 (2006)

A. Pecchia, A. Di Carlo, Introducing molecular electronics, Springer Series, (2005)

A. Pecchia, A. Di Carlo, Molecular Electronics: Analysis design and simulations, Elsevier (2006)

Page 13: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Applications to CNT and SiNW

Page 14: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Coaxially gated CNT

VD VS

=0

VG

Semiconducting CNT

Insulator (εr=3.9)

10 nm

1.5 nm

x

yz

CNT contact

(INFINEON - Düsberg)

Page 15: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Atomic Forces VGATE = 5 V

Ang.

An

g.

GATE

GATE

Forces

[Ang]

Application of VG changesCNT diameter

Page 16: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Screening problem

QinsG CCC

111

insC

QC

GV

CNTVQuantum correction to the induced charge

Vext

Distance

V

G

CNT electron gas

CNT is not able to accumulate the electronic charge to completely screen the gate bias (λ > electron gas extension)

λ CNTgate

rins RR

LC

/log

2 0

CNT completely screens the external field.

Classical electrostatics: charge induced on the CNT is

λ

Page 17: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

HOWEVER: In a CNT the DOS is not the only contribution. Many body correction should be considered (XC)

Screening in CNT: DOS limit

Why charge induction is limited?

DO

S

[Latessa et al., Phys. Rev. B 72, 035455 (2005)]Pauli exclusion principle limits the induced electrons to the number allowed by filling the DOS

FCNTQ EDOSeVQC 2/

Page 18: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Many-body corrections

0

22

K

KEDOSe

neC FQ

Compressibilityof an interacting

electron gas

Compressibilityof an non-interact

electron gas

1 2K nn

1

QCQ

Compressibility Capacity

Page 19: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Evidence of Negative K

Eisenstein, Pfeiffer and West, PRL 68, 674 (1992)Eisenstein, Pfeiffer and West, PRB 50, 1760 (1994)

N (1011 cm-2)

0.0

0.1

-0.1

-0.20.0 0.2 0.4 0.6 0.8 1.0 1.2

Nc

Compressibility of 2D electron gas

1/ 220 1 ce d N

N N

Thomas-Fermi screening

In 1D systems things can be more complicated because of D(E)

Including exchange

Page 20: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Negative CQ in CNTs

CNT ox

G Q ox

V C

V C C

ox QG

g Q ox

C CdQC

dV C C

Overscreening, CQ<0

[Latessa et al., Phys. Rev. B 72, 035455 (2005)]

Page 21: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Negative CQ in CNTs

Critical charge density nTS

TOTAL SCREENING

High density limit:PARTIAL SCREENING

CQ approaches e2DOS(EF)

gDFTB calculation

CQ proportional to DOS

Low density limit: OVER-SCREENING

Fit to analytic modelChalmers, PRB 52, 10841 (‘95)

Fogler, PRL 94, 056405 (2005)

Page 22: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

XC in DFTB

Hubbard and e-e repulsion integrals

0

( )[ ] [ ] ( ) ( ') '

( ')

xcxc xc i

k k

k

v rv n v n n r n r drdr

n r

T.A. Niehaus, PRA 71, 022508 (2004)

Page 23: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Diameter Dependence

CNT (13,0) CNT (10,0) CNT (7,0)

Page 24: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Output characteristics

dEEEfEEfETh

eI SFDF ,,

2h

VDS < 0

p pi

EF,SEF,D

Drain Source

“Electrostatic saturation”

L. Latessaet al.: IEEE Trans. Nanotechnol., in press

Page 25: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

• Small sub-threshold swing

(theoretical limit for silicon MOSFET: 60 mV/dec)• Ion/Ioff ~ 108

• Unipolar behavior

Trans-characteristics

DS

G

Id

dVS

log

Page 26: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Band-to-well tunneling

Generation of confined states in a quantum well

Page 27: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

SiNW FET

SiO2 shells has been removed and silicon is terminated with H

D. D. D. Ma. et al., Science, vol. 299, pp. 1874-1877, 2003

L. J. Lauhon, et al., Nature, vol. 420, pp. 57-61, 2002.

Coaxially gated Si nanowire FET

Page 28: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Geometry relaxations

d<10 nm

10<d<20 nm

d>30 nm

1.22 nm

0.87 nm

Page 29: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Device geometry

P doped region P doped regionIntrinsic regionoxide

oxide

1.2 nm (2.4 nm)

7.7 nm

3.6 nm

6 nm

Drain Source

Page 30: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

CNT vs SiNW

CNT-FET

FQ EDOSeC 2

SiNW-FET

FQ EDOSeC 2

6 nm6 nm

Page 31: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Differences in S

Coax. gated (7,0) CNTFET SiNW – FET

|VGS| (V)

C

urre

nt,

I DS (

A)

S = 180 mV/decS = 75 mV/dec

Page 32: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Conclusions of part II

Atomistic Density Functional approach can be extended to account for current transport in molecular devicesby using self-consistent non-equilibrium Green function.

We use gDFTB is a good compromise between simplicity and reliability but there is room for improvement.

The use of a Multigrid Poisson solver allows for study very complicated device geometries

CNT and Silicon Nanowire FET has been studied with gDFTB

Quantum capacitance in CNT is governed by XC

Gate control in SiNW FETs is more delicate

Page 33: The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.

ACS - San Francisco 2006

Surface Green’s function

The surface G.F. is computed by iteration (decimation technique)

HPLHPLHPLHPLHPL

g

L

L

L

L

H

H

H

H

H

12345 -> Converged surface Green’s function

Lopez Sancho et al., J. Phys. F: Met. Phys. 14 1205 (1984); ibid., 15 851 (1985)