The Cleanest Ship Report

76
Final Report – The Cleanest Ship Project Date: 11/02/2009 Page 1 of 26 FINAL REPORT THE CLEANEST SHIP PROJECT Date: February 11 th , 2009 Authors: Juha Schweighofer, via donau - Österreichische Wasserstraßen GmbH Henk Blaauw, Marin - Maritime Research Institute Netherlands

Transcript of The Cleanest Ship Report

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 1 of 26

FINAL REPORT

THE CLEANEST SHIP PROJECT

Date: February 11th, 2009

Authors: Juha Schweighofer, via donau - Österreichische Wasserstraßen GmbH

Henk Blaauw, Marin - Maritime Research Institute Netherlands

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 2 of 26

Abstract

Inland navigation is known as a safe and environmentally friendly transport mode. Compared with

maritime navigation and short sea shipping, it has to fulfill much stricter emission regulations. Inland

navigation faces strong competition with road and rail transport, demanding superiority in

environmental friendliness as competitive advantage. Therefore, inland navigation has to deal with the

challenge of introducing highly efficient technologies for the improvement of its environmental

performance being applicable to small spaces, in contrast to seagoing vessels where generally enough

space is available.

Focussed on emissions to the air, the environmental performance of inland navigation and means for

its improvement were investigated in the EU project CREATING (www.creating.nu), carried out

within the Sixth Framework Programme. The application of advising Tempomaat, low sulphur fuel

equal to road standard EN 590, selective catalytic reduction and particulate matter filter was found to

be the most suitable solution to improve the environmental performance of inland navigation. These

systems are utilized in the demonstration project The Cleanest Ship, being a part of CREATING.

The project is carried out on the motor tank vessel “Victoria”, owned by BP and managed by

Verenigde Tankrederij (VT). The vessel, now on long term charter to BP Marine Lubricants, is

operating in the Port of Rotterdam and Antwerp areas. Lasting one year till the end of 2008, the

demonstration was launched in November 2007. Fuel consumption, energy output of the main engine

in kWh, distance sailed in km and NOX emissions are directly measured; CO2 and SOX emissions are

calculated from fuel consumption and energy output in kWh, whereas particulate matter emissions are

evaluated using the emission reduction potential estimated on the test stand. The latter is done because

accurate measurement of particulate matter emissions at service conditions is difficult.

During the pilot phase the emission reduction results, the amount of trucks replaced by the vessel and

the transport performance are monitored and presented on a regular basis on the project website:

www.cleanestship.eu.

This final report gives a short overview of the project, whereby results with respect to pollutant

exhaust emissions, fuel consumption, CO2 emissions, amount of trucks replaced, transport

performance and public relation are presented.

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 3 of 26

Table of Contents

1. Introduction ..................................................................................................................................... 5

2. The Cleanest Ship Demonstrator..................................................................................................... 6

3. Emission Reduction Techniques ..................................................................................................... 9

3.1. The Advising Tempomaat ....................................................................................................... 9

3.2. Low Sulphur Fuel.................................................................................................................... 9

3.3. The Nauticlean S System......................................................................................................... 9

3.4. Installations ........................................................................................................................... 10

3.5. Emission Reduction Expected............................................................................................... 11

4. Results ........................................................................................................................................... 12

4.1. Emissions............................................................................................................................... 12

4.1.1. SOX Emissions............................................................................................................... 12

4.1.2. NOX Emissions .............................................................................................................. 13

4.1.3. Particulate Matter Emissions......................................................................................... 15

4.1.4. Fuel Consumption ......................................................................................................... 17

4.1.5. CO2 Emissions .............................................................................................................. 18

4.1.6. Trucks Removed from Road ......................................................................................... 18

4.1.7. Transport Performance .................................................................................................. 19

4.1.8. Summary of Results ...................................................................................................... 20

4.2. Public Relation ...................................................................................................................... 20

4.2.1. Cleanest Ship Rotterdam ............................................................................................... 20

4.2.2. Clean Waterborne Transport ......................................................................................... 21

4.2.3. Consultation of the Project Website .............................................................................. 22

4.2.4. Publications ................................................................................................................... 22

5. Summary ....................................................................................................................................... 25

6. Appendix – Selected Publications ................................................................................................. 26

Creating News, Special Edition, 2007...............................................................................................

Posters presented at the 29th Duisburger Kolloquium in Duisburg, Germany, 2008 .......................

30th Motorship Propulsion and Emissions Conference, Gothenburg, Sweden, 2008.......................

Zeitschrift für Binnenschifffahrt 9/2008 ...........................................................................................

Submission to the Green Ship Technology Award 2008 ..................................................................

Marine Fuels and Emissions Conference, Rotterdam, The Netherlands, 2007.................................

The Flag – Newsletter of BP, September, 2007 ................................................................................

Press Book – Press Briefing Clean Waterborne Transport, Brussels, February, 2008......................

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 4 of 26

List of Tables

Table 2.1: Main particulars of the M/V Victoria.................................................................................... 8

Table 3.1: Emission reduction expected related to a CCR I engine ..................................................... 11

Table 4.1: Results of reference measurements for exhaust emissions.................................................. 12

Table 4.2: Emission reduction achieved............................................................................................... 20

List of Figures

Figure 2.1: Emission reduction techniques applied to the Cleanest Ship............................................... 7

Figure 2.2: The Cleanest Ship M/V Victoria ......................................................................................... 7

Figure 2.3: General arrangement of the M/V Victoria without installed SCR and PM filters ............... 8

Figure 3.1: Working principle of selective catalytic reduction for NOX reduction.............................. 10

Figure 3.2: Main engine with complete installation............................................................................. 10

Figure 3.3: Exhaust output section....................................................................................................... 10

Figure 3.4: Urea injection and PM filter burner ................................................................................... 10

Figure 3.5: Urea tank in the aft ship..................................................................................................... 10

Figure 3.6: PM filter in the aft ship ...................................................................................................... 11

Figure 3.7: Screenshot of Tempomaat installed on board a vessel with three engines ........................ 11

Figure 4.1: SOX emissions per week .................................................................................................... 12

Figure 4.2: Total SOX emissions .......................................................................................................... 13

Figure 4.3: NOX emissions per week measured ................................................................................... 14

Figure 4.4: NOX emissions per week measured in g/kWh ................................................................... 14

Figure 4.5: Total NOX emissions.......................................................................................................... 15

Figure 4.6: PM emissions per week calculated .................................................................................... 15

Figure 4.7: PM emissions per week in g/kWh calculated .................................................................... 16

Figure 4.8: Total PM emissions ........................................................................................................... 16

Figure 4.9: Fuel consumption per week measured............................................................................... 17

Figure 4.10: CO2 emissions per week .................................................................................................. 18

Figure 4.11: Trucks removed from road per week............................................................................... 19

Figure 4.12: Transport performance in tkm per week.......................................................................... 19

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 5 of 26

1. Introduction

Inland navigation is known as a safe and environmentally friendly transport mode. Compared with

maritime navigation and short sea shipping, it has to fulfill much stricter emission regulations. Inland

navigation faces strong competition with road and rail transport, demanding superiority in

environmental friendliness as competitive advantage. Therefore, inland navigation has to deal with the

challenge of introducing highly efficient technologies for the improvement of its environmental

performance being applicable to small spaces, in contrast to seagoing vessels where enough space is

available.

Regarding emissions to the air, especially with respect to emissions of the greenhouse gas CO2

(carbon-dioxide), the performance of inland vessels is outstanding compared with road transport. On

average, the CO2 emissions of an inland vessel are only about 1/3 of the ones a truck emits per ton-

kilometre (tkm) or even less due to a much higher energy efficiency. Also with respect to CO (carbon

monoxide) and HC (hydro carbon) emissions per tkm, inland navigation is significantly superior to

road transport. However, SOX (sulphur oxide) emissions associated with inland navigation are actually

much higher than the ones resulting from road transport, even when related to tkm (today, these

emissions are up to 60 times higher) due to the much higher sulphur content of fuel used.

The introduction of stricter emission limits for road transport since the early 1990s has led to a

significant reduction of the pollutant emissions of NOX (nitrogen oxide) and PM (particulate matter)

on road. For inland navigation, such strict emission limits are still missing. Consequently, the

superiority in the environmental performance of inland vessels compared with trucks has become

smaller in this regard, and with the introduction of EURO V and EURO VI limits for road transport in

2009 and 2012 (proposed by the European Commission), respectively, these new trucks may emit

even significantly less NOX and PM per tkm than inland vessels.

Within the EU project CREATING (www.creating.nu), carried out within the Sixth Framework

Programme, the application of advising Tempomaat, low sulphur fuel equal to road standard EN 590,

selective catalytic reduction and PM filter was found to be the most suitable solution to improve the

environmental performance of inland navigation. These systems are utilized in the demonstration

project The Cleanest Ship (www.cleanestship.eu).

This report gives a short review of the project, whereby results with respect to pollutant exhaust

emissions, fuel consumption, CO2 emissions, amount of trucks replaced, transport performance and

public relation are presented.

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 6 of 26

2. The Cleanest Ship Demonstrator

The demonstration project is carried out on the motor tank vessel “Victoria”, owned by BP shipping,

managed by the Verenigde Tankrederij (VT) and operating in the Port of Rotterdam and Antwerp

areas. The demonstration, lasting one year till the end of 2008, was launched officially in Rotterdam

on November 20th, 2007. On February 28

th, 2008, the vessel was presented in the Port of Brussels for a

one-day press event illustrating how clean shipping technology is revolutionising the way goods are

transported in Europe. The emission reduction techniques applied to the Cleanest Ship are the advising

Tempomaat, low sulphur fuel equal to road standard EN 590, selective catalytic reduction and

particulate matter filters, Fig. 2.1.

Fuel consumption, energy output of the main engine in kWh, distance sailed in km and NOX emissions

are directly measured; CO2 and SOX emissions are calculated from the fuel consumption and the

energy output in kWh, whereas PM emissions are evaluated using the emission reduction potential

estimated on the test stand, due to difficult accurate measurement of PM emissions at service

conditions.

During the pilot phase the results with respect to SOX, NOX and PM emissions, fuel consumption, CO2

emissions, the amount of trucks replaced and transport performance are monitored and presented to the

public on a regular basis at www.cleanestship.eu.

The Cleanest Ship Project was set up and became operational within the EU Project CREATING,

funded by the Sixth Framework Programme for Sustainable Surface Transport. The partners of The

Cleanest Ship Project are:

1. BP, being owner of the ship, director of the project and provider of clean fuel

2. VT, as manager of the ship

3. Technofysica for the delivery of the Tempomaat and related measurements

4. Hug Engineering for the delivery of the SCR and PM filter for the main engine

5. Hanwel (also referred to as Codinox as Soottech) for the PM filters on the generator sets and

NOX and PM measurements

6. Breko for all constructional aspects

7. MTU for engine aspects

8. Lloyds register for classification

9. DLD for project coordination

10. Yara for the delivery of the Ureum

11. Bit Factory, for the realization of the website

12. via donau for techniques and public relation (PR)

13. VNSI and SPB for PR

14. SPB as co-ordinator of the project CREATING

Moreover there is a cooperation with

15. the Port of Rotterdam Authority on operational aspects and PR.

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 7 of 26

Figure 2.1: Emission reduction techniques applied to the Cleanest Ship.

Figure 2.2: The Cleanest Ship M/V Victoria.

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 8 of 26

Figure 2.3: General arrangement of the M/V Victoria without installed SCR and PM filters.

Source: http://www.breko.com/Breko/pdf/victoria.pdf

Table 2.1: Main particulars of the M/V Victoria.

Europe number 2327269

Ship owner BP

Management Verenigde Tankrederij VT (NL)

Year of construction 2005

Shipyard / builder Breko Nieuwbouw B.V., Papendrecht, NL

Classification Lloyd's Register EMEA

Execution ADNR, type N closed

Length o.a. 69,96 m

Breadth o.a. 11,44 m

Draught max. 2,96 m

Depth 4,25 m

Loading capacity 1377 tons

Tank capacity 1509 m3

Main engine MTU 8V 4000 M60, 880 kW/1197 hp, 1800 rpm

Fuel Low sulphur fuel, diesel EN 590

1 Propeller Diameter = 1.7 m; 5 blades

Auxiliary engines Cummins N14 G2 425 kVA 60 Hz

Cummins BT5,9 G6 112 kVA 50 Hz

Cummins 4 BT3,9 G4 67 kVA 60 Hz

1 Bow thruster Veth-Jet 265 kW, electric drive

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 9 of 26

3. Emission Reduction Techniques

The emission reduction techniques utilized are the advising Tempomaat, low sulphur fuel equal to

road standard EN 590, selective catalytic reduction and PM filters. As advising Tempomaat a system

developed by Techno Fysica bv (NL) is used. The selective-catalytic-reduction catalyst and diesel

particulate matter filters are implemented in the Nauticlean S system comprising a single reactor for

NOX and PM removal, developed and built by Hug Engineering (D). Further, the auxiliary engines are

equipped with particulate matter filters.

3.1. The Advising Tempomaat

The advising Tempomaat (ATM) is a system enabling an economically optimised operation of a

vessel.

The core of the ATM is formed by a computer programme advising the skipper on the most

economical combination of route and speed, enabling the vessel to arrive on time with a most efficient

use of fuel leading to a reduction of fuel consumption and emissions. The ATM, where the advised

fuel settings are realised manually, is the successor of the Tempomaat which did automatically adjust

the speed of the vessel, without giving advice.

Further, the Tempomaat is used for monitoring of fuel consumption, energy output in kWh and sailed

distance in km.

3.2. Low Sulphur Fuel

The motor vessel “Victoria” is operated with low sulphur fuel equal to road standard (diesel fuel EN

590). Usage of low sulphur fuel is a precondition for the application of PM filters and efficient

reduction of PM and SOX emissions as these emissions are related to the sulphur content of the fuel

used.

3.3. The Nauticlean S System

The Nauticlean S system of Hug Engineering consists of two reactors with a selective-catalytic-

reduction catalyst and a PM filter, whereby the PM filter is equipped with a diesel full-flow

regenerative burner.

Selective catalytic reduction (SCR) is a technique for efficient removal of NOX emissions by means of

injecting a reducing agent into the exhaust gas. The Nauticlean S system uses ammonia to reduce

nitrogen monoxide and nitrogen dioxide to nitrogen and water, which is injected as urea (33 %

solution), Fig. 3.1.

For efficient PM removal catalytically coated silicon carbide (SiC) PM filters are used. These filters

consist of several honeycombs made of micro fibres. During operation, the soot particles are retained

in the filter. As soon as the regeneration temperature is reached, the soot in the filters is burned off

without residue. Due to the catalytic coating, the regenerating temperature is around 450 °C and the

filter burns itself clean without requiring auxiliary energy.

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 10 of 26

Figure 3.1: Working principle of selective catalytic reduction for NOX reduction.

3.4. Installations

Figure 3.2: Main engine with complete installation. Figure 3.3: Exhaust output section.

Figure 3.4: Urea injection and PM filter burner. Figure 3.5: Urea tank in the aft ship.

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 11 of 26

Figure 3.6: PM filter in the aft ship. Figure 3.7: Screenshot of Tempomaat installed

on board a vessel with three engines.

3.5. Emission Reduction Expected

Table 3.1: Emission reduction expected related to a CCR1 I engine. The emission reduction potential

of low sulphur fuel with respect to PM emissions is based on the assumption that

the sulphur content is reduced from 2000 ppm to 10 ppm.

NOx PM FC CO2 SOx

ATM (advising Tempomaat) -7% -7% -7% -7% -7%

LSF (low sulphur fuel, EN 590, 10 ppm)

none -17% none none -99.5%

SCR (selective catalytic reduction) -85% none none none none

PMF (particulate matter filter) none -95%2 +2% +2% +2%

Total emission reduction -86% -96% -5% -5% -99.5%

For the advising Tempomaat, the fuel consumption (FC) may be reduced by 5 up to 10%. For the

demonstrator a moderate value is assumed due to the limited effect resulting from the operational area

of the vessel. The value for the particulate matter filter includes also the effect of SCR on PM

reduction.

1 Central Commission for Navigation on the Rhine

2 The technical information of Hug Engineering gives an emission reduction potential of 95 up to 99 %.

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 12 of 26

4. Results

4.1. Emissions

In the following the results with respect to pollutant SOX emissions, NOX emissions, particulate matter

emissions, fuel consumption and CO2 emissions are presented, as well as an estimate of trucks

replaced and the transport performance in ton kilometre (tkm) is given. Due to lack of space the

numbers representing weeks of measurement are presented in vertical order. The savings presented are

based on reference measurements carried out prior to the operation of the vessel with the emission

reduction techniques applied. The reference measurements give the following values for the exhaust

emissions of the vessel without application of emission reduction techniques:

Table 4.1: Results of reference measurements for exhaust emissions.

NOX

[g/kWh]

8

9

15

100 % engine loading, direct measurement

70% engine loading, direct measurement

40 % engine loading, direct measurement

PM [g/kWh]

0.15 Taken from engine specification of MTU

CH [g/kWh]

3 Taken from engine specification of MTU

SOX

[g/kWh] 0.81

Calculated on basis of fuel report analysis

for 2000 ppm sulphur content and a specific

fuel consumption of 203 g/kWh (70 %

engine loading)

4.1.1. SOX Emissions

Figure 4.1: SOX emissions per week.

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 13 of 26

Figure 4.2: Total SOX emissions.

SOX emissions inhaled in high concentrations may cause breathing difficulties and provoke attacks of

asthma. In association with their subsequent chemical reactions and deposition, they are one main

cause of acidification of soil and water. SOX emissions are directly related to the sulphur content of the

fuel. Reducing the sulphur content of the fuel, being a precondition for the application of several

emission reduction techniques, will lead to an aliquot reduction of SOX emissions. The motor tank

vessel "Victoria" uses low sulphur fuel, diesel fuel in accordance with EN 590, leading to a reduction

of SOX emissions by almost 100 % compared with diesel fuel with 2000 ppm sulphur content.

4.1.2. NOX Emissions

NOX emissions may cause pulmonary damage in healthy humans, changes in lung function as well as

increased respiratory symptoms, and they contribute to the formation of ground level ozone. Further,

NOX emissions play a role in acidification and eutrophication. NOX emissions may be reduced

effectively by selective catalytic reduction, being applied to the motor tank vessel "Victoria".

For the first weeks the NOX emissions account for approximately 2g/kWh, Fig. 4.4. Starting from

week 12, they account for approximately 1g/kWh, which is achieved by reducing idle states of the

engine leading to higher average exhaust temperatures and a more efficient performance of the SCR.

Compliance with CCR III (Central Commission for Navigation on the Rhine) and EURO V standards

is achieved. Compliance with EURO VI standard is partially achieved. The reduction of total NOX

emissions accounts for approximately 82 %, which is considered as lower limit as the emissions

without SCR are calculated with an emission factor of 8 g/kWh at 100 % engine loading. In reality the

engine loading is less than 100 % and the reference NOX emissions will be increased leading to an

emission reduction of more than 82 %.

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 14 of 26

Figure 4.3: NOX emissions per week measured.

Figure 4.4: NOX emissions per week measured in g/kWh.

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 15 of 26

Figure 4.5: Total NOX emissions.

4.1.3. Particulate Matter Emissions

Figure 4.6: PM emissions per week calculated.

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 16 of 26

Figure 4.7: PM emissions per week in g/kWh calculated.

Figure 4.8: Total PM emissions.

Particulate matter, particularly the one being fine enough to remain within the lung, may cause

respiratory and cardiovascular diseases as well as cancer. Particulate matter may be effectively

reduced by particulate matter filters, which, however, require the usage of low sulphur fuel (sulphur

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 17 of 26

content not more than 10 ppm). The motor tank vessel "Victoria" uses diesel fuel in accordance with

EN 590 and particulate matter filters for the main and auxiliary engines.

For all weeks the particulate matter emissions account for approximately 0.004 g/kWh being

calculated from the reference value 0.15 g/kWh by assuming an emission reduction potential of 97 %.

This leads to compliance of the engine with strictest emission standards of road transport (EURO VI).

4.1.4. Fuel Consumption

Figure 4.9: Fuel consumption per week measured.

Reducing the fuel consumption of a vessel will result in decreased operational costs and emissions to

the air. To the motor tank vessel "Victoria" it was initially planned to apply the advising Tempomaat,

giving information with respect to the most economical speed of the vessel and leading thereby to

reduced fuel consumption.

All results show no savings, since the Tempomaat is not advising. The Tempomaat is used mainly for

monitoring of fuel consumption, energy output in kWh and sailed distance in km. During the pilot

phase it turned out that the Tempomaat system does not provide immediate benefits when applied to

the repeated, short and time sensitive arrival journeys being the daily activity of a lube oil barge.

Alternative options related to the application of the Tempomaat to more suitable operational cases are

under consideration.

The measurements of fuel consumption have to be taken with caution as they seem to be influenced by

electromagnetic waves resulting in slightly increased values. The possible error is estimated at

approximately 15 %.

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 18 of 26

4.1.5. CO2 Emissions

Figure 4.10: CO2 emissions per week.

CO2 emissions are greenhouse gas emissions and contribute to the global warming of the earth. CO2

emissions are directly related to the fuel consumption of the vessel. Reducing the fuel consumption of

the vessel will lead to reduced CO2 emissions. Due to its high energy efficiency, inland navigation is

outstanding with respect to CO2 emissions related to tkm, compared with the ones emitted by other

transport modes e.g. road transport.

All results show no savings, since the Tempomaat is not advising, similarly to the results related to the

fuel consumption.

4.1.6. Trucks Removed from Road

Shifting cargo from road to water contributes to the decongestion of roads, the reduction of emissions

to the air and improved safety of transport. In the figure below, the number of trucks removed from

road since the start of the demonstration by the motor tank vessel "Victoria" is given.

The average amount of cargo transported accounts for 16 tons per truck, which operates 40 hours a

week with an average speed of 30 km/hour resulting in a transport performance of 19200 tkm per

week. The number of trucks replaced is obtained by dividing the transport performance of the vessel

with 19200. The transport performance of the vessel is given in the following section.

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 19 of 26

Figure 4.11: Trucks removed from road per week.

4.1.7. Transport Performance

Figure 4.12: Transport performance in tkm per week.

The figure above gives the evolution of the transport performance of the motor tank vessel "Victoria"

in ton km (tkm). Referring fuel consumption, emissions and costs to tkm, a proper comparison

between different transport solutions may be carried out (e.g. comparison of emissions in g/tkm

between inland vessel and truck).

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 20 of 26

4.1.8. Summary of Results

Generally, the overall objectives are achieved. It is demonstrated that the emission reduction

techniques under consideration can be applied to inland navigation without major difficulties, leading

to a significant reduction of emissions. The advising Tempomaat is used mainly for monitoring of fuel

consumption, energy output in kWh and sailed distance in km as it turned out that the Tempomaat

system does not provide immediate benefits when applied to the repeated, short and time sensitive

arrival journeys being the daily activity of a lube oil barge. Therefore, no results are presented with

respect to reduction of fuel consumption and CO2 emissions.

Based on the measurements performed, the average reduction of NOX emissions accounts for

approximately 82 % and even more, depending on the engine loading and respective reference value.

Compliance with EURO V and partly even with EURO VI standard is achieved.

Based on reference measurements and an emission reduction potential of 97 %, compliance with

EURO VI standard is achieved for particulate matter emissions.

By using low sulphur fuel according to EN 590, the SOX emissions are reduced by almost 100 %

compared with the ones associated with diesel fuel with 2000 ppm sulphur content. No problems

related to engine operation were encountered when using low sulphur fuel EN 590.

Table 4.2: Emission reduction achieved.

NOx PM FC CO2 SOx

Emissions without emission reduction techniques

[g/kWh] 8 0.15 203 644 0.81

Emissions with emission reduction techniques

[g/kWh] 2.2 – 0.8 0.004 203 644 0.004

Total emission reduction [g/kWh]

5.8 – 7.2 0.146 0.806

Total emission reduction [%]

72.5 –

90.0 97 99.5

Total emission reduction expected [%]

86 96 5 5 99.5

4.2. Public Relation

Within The Cleanest Ship Project very intensive activities with respect to public relation have been

performed with great success and acknowledgement. These comprise the establishment of the project

webpage (www.cleanestship.eu), the organisation of two major events in the Port of Rotterdam and

the Port of Brussels as well as numerous publications and presentations in radio, press, internet and

internal websites.

4.2.1. Cleanest Ship Rotterdam

The Cleanest Ship Rotterdam event took place in the Port of Rotterdam on November 20th , 2007,

where the demonstration was officially launched. The presentations are available at

http://www.creating.nu/event/view/129?pool=top. The programme is given in the following:

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 21 of 26

15.00 Welcome reception

15.30 Word of welcome by the chairman

Mr. A. Toet, Director Infrastructure and Maritime Affairs Port of Rotterdam

Mr. A.N. Roos, Project co-ordinator CREATING / Director Central Bureau for Inland Barging

Mr. M.J. van der Wal, Chairman of The Netherlands Shipbuilding Industry Association

Mr. D. Baldry, Group Vice President & CEO – BP Shipping Ltd

Mr. R.F.M. Lubbers, Chairman of Rotterdam Climate Initiative (no speech available)

16.00 Guided tours of the Cleanest Ship followed by refreshments

17.30 End

4.2.2. Clean Waterborne Transport

The Clean Waterborne Transport event took place in the Port of Brussels on February 28th, 2008.

The European Commission, the Port of Brussels, energy company BP and the EU research projects

CREATING, HERCULES and METHAPU presented their project results, including a tour to the

Cleanest Ship demonstration vessel, BP’s motor tank vessel “Victoria”. The presentations are

available at http://www.creating.nu/event/view/128?pool=top. The programme is given in the

following:

MORNING SESSION Chair: Bert de Vries, Netherlands’ Shipbuilding Industry Association (CREATING partner)

• Welcome of participants

Laurence Bovy, Chairwoman, Port of Brussels

• European research: supporting cleaner, safer, more competitive shipping

Janez Poto�nik, European Commissioner for Science and Research

• CREATING project: Towards sustainable, safe and efficient inland water transport

Theresia Hacksteiner, Secretary General European Barge Union (CREATING partner)

• BP’s Commitment to clean waterborne transport

Simon Lisiecki, Vice President Government & Industry, BP Shipping (Cleanest Ship partner)

• Q&A session with the press

Moderator: Antonia Mochan, EU Spokeswoman for Science and Research

• Coffee break and networking opportunities

(Commissioner and TV press visit of ship)

SESSION II: European Research Powering Clean Shipping Chair:Luisa Prista, Head of Unit, Surface Transport Research, European Commission

• European Parliament’s view on clean shipping

Dorette Corbey, Member EP Committee on the Environment, Public Health and Food Safety, and of the Temporary Committee on Climate Chang

• METHAPU project: Fuel cell power on board ships

Carl-Erik Sandström, Wärtsila Corporation (METHAPU partner)www.methapu.eu

• HERCULES project: The next generation of large marine diesel engines

Nikolaos Kyrtatos, ULEME (HERCULES coordinator)

• Q&A session with the press

Moderator: Patrick Vittet-Philippe, Press and Information Officer, DG Research, European Commission

• Lunch, networking and visit of the “Victoria”

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 22 of 26

SESSION III: Technical Briefings Chair:Bert de Vries, Netherlands’ Shipbuilding Industry Association (CREATING partner)

• Combustion with ultra low emissions for ships

Nikolaos Kyrtatos, ULEME (HERCULES coordinator)

• Methanol and SOFC fuel cells for auxiliary power on board of vessels

Carl-Erik Sandström, Wärtsila Corporation (METHAPU partner)

• Research goals and results of CREATING

Henk Blaauw, Technical coordinator CREATING

• Exhaust gas treatment on board the “Victoria“Hans Thomas Hug, CEO Hug Engineering (Cleanest Ship partner)

• Environmental solutions for NOX treatment

Thorleif Hals, Managing Director Yarwil (Cleanest Ship partner)

• Optimizing fuel efficiency by speed advising device

Piet Kloppenburg, Managing Director Techno Fysica (Cleanest Ship partner)

4.2.3. Consultation of the Project Website

The site has been visited 5898 times with a small peak at the start of the project in November, 2007,

and a huge peak in the second half of February, 2008. There were 4346 so called unique visitors

(about 75 %).

The visitors are from 99 countries - most of them from the Netherlands (1293).

About 35 % of visitors got to the site directly, 46 % via other sites which refer to the Cleanest Ship

website and 19 % via search machines like google.

Apart from the homepage, the main interest of the visitors lies in the project information and the

charts.

Using google Victoria “cleanest ship” gives 934 hits.

4.2.4. Publications

In the following selected publications issued by The Cleanest Ship team are presented. The list is not

claimed to be complete.

Publications and written contributions relevant to The Cleanest Ship

Date Author Topic Means of Publications Remark

September,

2008

Pauli, G. and

Schweighofer

The Development of

Exhaust Emissions

in Inland Navigation

Magazine Zeitschrift für

Binnenschifffahrt 9/2008

Most significant journal

for inland navigation in

German speaking area

June, 2008

Schweighofer,

J. and Blaauw,

H. G.

Virtual Guided Tour

of the Cleanest Ship

Danube Summit 2008,

Constantza, Romania,

presentation.

Most significant

conference related to the

development of Danube

navigation

May, 2008

Schweighofer,

J., Blaauw, H.

G. and Smyth,

M. D.

How to Improve the

Environmental

Performance of

Inland Navigation

30th

Motorship Propulsion

and Emissions Conference,

Gothenburg, Sweden.

Significant international

conference related to

engine aspects

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 23 of 26

Numerous articles were published in the international press being collected in

http://www.cleanestship.eu/fileupload/Press_Book.pdf. In the following a list of selected publications

by others than the Cleanest Ship team is presented. The list is not claimed to be complete.

2008

Blaauw, H. G,

Schweighofer,

Smyth, M.D.

Green Ship

Technology Award

2008

The Cleanest Ship Submitted for award

November,

2007

Blaauw, H. G.,

Schweighofer,

J. and Smyth,

M. D.

The Cleanest Ship

Marine Fuels and Emissions

Conference, Rotterdam, The

Netherlands.

November,

2007

Schweighofer,

J. and Seiwerth,

P.

Inland

Environmental

Performance

The Naval Architect of The

Royal Institution of Naval

Architects

Significant international

journal for developments

in shipping and

shipbuilding

November,

2007 Creating News Special Edition

September,

2007

The environmental

performance of

inland navigation

The flag – Newsletter of BP Magazine of BP

July/August,

2008

Creating world´s

cleanest ship The Motorship

Significant international

journal for shipping and

shipbuilding with focus

on engine issues

March/April,

2008

Lubes barge goes

green Bunkerworld

Magazine of

Bunkerworld

February

28th,

2008

European

Fundings

(source:Press

Room –

European

Commission)

World’s cleanest

ship demonstrates

how research is

developing the

waterborne transport

of the future

http://www.welcomeurope.c

om/default.asp?id=1300&id

news=4505

March 10th

,

2008 Envitofuel

The Cleanest Ship

Project shows

shipping emissions

can be drastically

reduced

http://envirofuel.com.au/20

08/03/10/the-cleanest-ship-

project-shows-shipping-

emissions-can-be-

drastically-reduced/

February

28th

,

2008

Commissioner

Janez

POTOCNIK

The World's

'Cleanest Ship'

Visits Brussels -

European Research

for Clean

Waterborne

Transport Event

http://www.cbrb.nl/docume

nten/creating/Speech_Potoc

nik.pdf

Speech

August 25th

,

2008

Creating

Project Bureau

CREATING

DEMONSTRATES

HOW RESEARCH

IS DEVELOPING

GREEN INLAND

WATERWAY

TRANSPORT OF

THE FUTURE

www.inlandports.be/downlo

ad/Press%20message%20C

WT.doc

February

28th

,

2008

Ir. Piet

Kloppenburg,

Techno Fysica

B.V.

Optimizing fuel

efficiency by speed

advising device

http://www.cbrb.nl/docume

nten/creating/Presentation_t

ext_Kloppenburg.pdf

Presentation

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 24 of 26

February

28th

,

2008

Thorleif Hals,

Managing

Director Yarwil

Cleanest Ship

Partner

Environmental

solutions for NOX

treatment

http://www.cbrb.nl/docume

nten/creating/Presentation_

Hals.pdf

Presentation

March,

2008

Europe

Environment

RESEARCH:

POTOCNIK

UNVEILS

WORLD’S

CLEANES SHIP

http://findarticles.com/p/arti

cles/mi_hb6637/is_200803/

ai_n26520538

Februar 28th

,

2008

Infrasite

Worldwide

Cleanest ship

demonstration

http://www.infrasite.net/ne

ws/news_article.php?ID_nie

uwsberichten=9407&langua

ge=en

November

20th

, 2007 BP

Ruud Lubbers geeft

startsein voor

Cleanest Ship

http://www.bp.com/generic

article.do?categoryId=1600

2516&contentId=7038525

February

29th

,

2008

IHS

Engineering

World's Cleanest

Ship Demonstrates

Future Waterborne

Transport

http://engineers.ihs.com/ne

ws/2008/eu-en-clean-ships-

2-08.htm

February

28th

,

2008

European

Comission

Research

From the Lab to

Europe’s

Waterways: The

World's Cleanest

Ship ‘Victoria’

Visits Brussels

http://ec.europa.eu/research/

index.cfm?pg=newsalert&lg

=en&year=2008&na=na-

080208

February

28th

,

2008

European

Comission

From the Lab to

Europe's

Waterways:

Low Emissions

Clean Ship 'Victoria'

Visits Brussels

http://www.webstar.be/Proj

ects/Ogilvy/ECCR/eMailing

/13E0/EN1.php

January /

February

2008

DPC- Danube

Project Centre

The world’s cleanest

ship visits the port

of Brussels

http://www.dpc-

belgrade.co.yu/archive_200

8.htm

www.dpc-

belgrade.co.yu/download/T

he_Danube_Web_News_11

.doc

February

28th

,

2008

EUmonitor

World's cleanest

ship demonstrates

how research is

developing the

waterborne transport

of the future

http://www.eumonitor.net/

modules.php?op=modload&

name=News&file=article&s

id=95419

March 11th

,

2008

European

Commission-

Transport

Research

Key EU projects

demonstrate clean

waterborne transport

http://ec.europa.eu/research/

transport/news/article_6861

_en.html

DLD

Demonstrator on the

first inland ship

using clean fuel and

equiped with PM

filter and SCR

http://www.dld.nl/projects/e

nvironment/cleanestship.ht

ml

Wikipedia Cleanest ship http://de.wikipedia.org/wiki

/Cleanest_Ship

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 25 of 26

5. Summary

Focussed on emissions to the air, the environmental performance of inland navigation and means for

its improvement were investigated in the EU project CREATING (www.creating.nu), carried out

within the Sixth Framework Programme. The application of advising Tempomaat, low sulphur fuel

equal to road standard EN 590, selective catalytic reduction and particulate matter filter was found to

be the most suitable solution to improve the environmental performance of inland navigation. These

systems are utilized in the demonstration project The Cleanest Ship, being a part of CREATING.

With respect to the achievement of the overall objectives the project constitutes a great success. It is

demonstrated that the emission reduction techniques under consideration can be applied to inland

navigation without major difficulties, leading to a significant reduction of emissions and superiority of

inland navigation compared with road transport complying with strictest emission standards.

By using low sulphur fuel according to EN 590, the SOX emissions are reduced by almost 100 %

compared with the ones associated with diesel fuel with 2000 ppm sulphur content. No problems

related to engine operation were encountered when using low sulphur fuel EN 590.

Based on the measurements performed, the average reduction of NOX emissions accounts for

approximately 82 % and even more, depending on the engine loading and respective reference value.

Compliance with EURO V and partly even with EURO VI road standard is achieved.

Based on reference measurements and an emission reduction potential of 97 %, compliance with

EURO VI road standard is achieved for particulate matter emissions.

The Cleanest Ship project contributes directly to the implementation of EC transport policy,

particularly, with respect to the implementation of the Action Programme NAIADES, COM(2006) 6

final, which requires the improvement of logistics efficiency, as well as environmental and safety

performance of inland waterway transport. The project contributes in a very impressive and practical

way to an even “greener” inland navigation fleet improving its competitiveness in the light of

environmental friendliness becoming a competitive factor of increasing significance.

For further information on the project and the measurements contact:

Henk Blaauw

Maritime Research Institute Netherlands (MARIN)

Tel: +31 317 493 502

Mail: [email protected], [email protected]

Final Report – The Cleanest Ship Project

Date: 11/02/2009 Page 26 of 26

6. Appendix – Selected Publications

Final Report – The Cleanest Ship Project

Creating News, Special Edition, 2007

SPECIAL EDITION

CREATING NEWS NOVEMBER 2007 INTRODUCTION CREATING NEWS is the periodical newsletter of CREATING, a European research project which aims at stimulating waterborne transport within logistic chains, paying attention to both economical, environmental and safety aspects. The research on environmental impact of inland navigation resulted in recommendations to both regulatory bodies, technique providers, oil companies and ship owners. (See CREATING NEWS of October 2006) Application of low sulphur fuel, advising speed control, selective catalytic reduction and particulate matter filter were found to be the most suitable solutions to improve the environmental performance of inland navigation. All solutions mentioned are applied in the Cleanest Ship project, a joint project of CREATING and energy company BP. Lasting one year from November 2007, this demonstration project will show how inland waterway vessels can optimise their fuel efficiency and reduce harmful emissions.

THE CLEANEST SHIP PROJECT The demonstration is carried out on the motor vessel ‘Victoria’, owned by BP Shipping. The vessel is managed by Verenigde Tankrederij (VT) and on long term charter to BP Marine Lubricants. She is operating in the Port of Rotterdam and Antwerp areas. The emission reduction results, including a comparison with road transport, will be monitored and presented on a regular basis on www.cleanestship.eu. Fuel consumption and NOX emissions are directly measured; CO2 and SOX emissions are calculated from fuel consumption, whereas PM emissions are evaluated using the emission reduction potential estimated on the test stand. The latter is done because accurate measurement of PM emissions at service conditions is very difficult.

Low sulphur fuel The m/v ‘Victoria’ uses low sulphur fuel equal to road standard diesel fuel (EN 590), supplied by energy company BP. Combustion of low sulphur fuel is a precondition for application of particulate matter filters (soot filters) and for efficient reduction of SOX emissions, which are directly related to the sulphur content of the fuel used.

During operation, soot particles are retained in the filter. As soon as the regeneration temperature is reached, the soot is burned off without residue. Due to the catalytic coating, the regenerating temperature is around 450 °C. The filter burns itself clean without requiring auxiliary energy. The full-flow regeneration burner system ensures independent and reliable regeneration of the filter even at low exhaust gas temperatures and in long low-load and idling phases.

PM filter and SCR Catalyst The Nauticlean S system, developed and built by Hug Engineering, encompasses a PM (soot) filter and selective catalytic reduction (SCR) catalyst in the same reactor. The filter is equipped with a diesel full-flow regenerative burner. Selective catalytic reduction is a technique for efficient removal of NOX emissions by means of injecting a reducing agent into the exhaust gas. The Nauticlean S system uses ammonia to reduce nitrogen monoxide and nitrogen dioxide to nitrogen and water, which is injected as urea (33 % solution). For PM removal catalytically coated silicon carbide (SiC) particulate matter filters are used, consisting of several honeycombs made of micro fibres.

Advising speed control The Advising Tempomaat (ATM), developed and supplied by Techno Fysica (NL), is a system enabling an economically optimised operation of a vessel. The core of the system is a computer programme advising the skipper on the most economical combination of route and speed, enabling the vessel to arrive on time with a most efficient use of fuel, leading to reduction of fuel consumption and emissions. The ATM, where the advised fuel settings are realised manually, is the successor of the Tempomaat which automatically adjusted the vessel speed, without giving advice.

Emission reduction expected

NOx PM FC CO2 SOx

Advising Tempomaat -7% -7% -7% -7% -7%

Low sulphur fuel (EN 590, max. 10 ppm S)

none -17% none none -99.5%

SCR (selective catalytic reduction)

-85% none none none none

PM filter (soot filter) none -95% +2% +2% +2%

Total emission reduction -86% -96% -5% -5% -99.5%

By using the Advising Tempomaat, fuel consumption (FC) may be reduced by up to 15 % for longer distances. For this demonstration project, however, a moderate reduction is assumed. This is due to the small operational area of the vessel and frequent manoeuvring in harbours. The value for the PM filter also includes the SCR effect on PM reduction.

GENERAL INFORMATION ON CREATING CREATING is a research project within the 6th Framework Programme (FP6) of the European Commission, comprising 23 partners from 9 European countries. Its objective is to stimulate waterborne transport in an economical way and improve its competitive position versus road transport.

LOGISTIC INNOVATION

Development of innovative logistic concepts is a key issue in the CREATING project. Analysis of a large number of cargo flows eventually has led to four new logistic concepts, described below.

Biomass Supplier Sailing area: Finnish Lakes A Finnish power plant is preparing to build a new installation which will be fuelled by biomass: wood chips and peat. CREATING designed an inland vessel with an advanced pneumatic loading and unloading installation. In view of the high energy demand in winter, the vessel has a special propulsion installation, enabling it also to navigate in ice conditions. The feasibility study turned out that using such inland barges will save at least � 400,000 a year.

Banana Carrier Sailing area: River Rhine Bananas are transported from seaport to hinterland by truck, despite the availability of the ‘water highway’ Rhine. CREATING considered three waterborne transport concepts:

• a dedicated inland reefer, suitable for pallet transport

• a pushing unit with two barges for pallet transport

• a vessel for transport of refrigerated containers Eventually a dedicated inland reefer was chosen as the best viable concept for the concrete case.

Roll on / Roll off Vessel Sailing area: River Danube

For the Danube a shallow draft very large Ro/Ro vessel has been developed, which can substantially improve the existing Ro/Ro services between various Danube terminals. To enable feasibility calculations for different Ro-Ro cargo mixtures a uniform “loading unit” was developed: Equivalent Semi Trailer or ESTR.

Chemical Carrier Sailing area: Dutch canals The challenge was to design a small tanker to transport special products, with waterway restrictions determining the main dimensions. The proposed concept completely satisfies the prescribed rules and indicates the highest standards with regard to active and passive safety aspects.

The CREATING study has led to a new conceptual design of inland tankers:

Conventional and optimized tank cross section

ENVIRONMENTAL IMPACT The CREATING research on environmental impact of inland navigation has been focused on the present performance of inland vessels regarding pollutant emissions to air and on solutions to improve this. The following main topics were subject to research:

• Impact of diesel engine emissions on human health and environment

• Current and future emission standards with relevance to inland navigation

• The state of the art of emission characteristics in inland navigation

• Short- and mid-term solutions for improving the emission characteristics in inland navigation

• Long-term solutions for improving the emission characteristics or eliminating emissions to air

For more information please contact:

CREATING Project Bureau Vasteland 12e NL-3011 BL Rotterdam Internet: www.creating.nu E-mail: [email protected]

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily represent the views expressed by the European Commission or its services. While the information contained in the documents is believed to be accurate, the authors(s) or any other participant in the CREATING consortium make no warranty of any kind with regard to this material including, but not limited to the implied warranties of merchantability and fitness for a particular purpose. Neither the CREATING Consortium nor any of its members, their officers, employees or agents shall be responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

PROJECT PARTNERS CLEANEST SHIP UK BP (owner of m/v ‘Victoria’ and supplier of low sulphur fuel during one year) A Via Donau CH Hug Engineering D MTU Detroit Diesel NL Bitfactory NL Breko shipyard NL DLD - Dutch Logistic Development NL Lloyd’s Register EMEA NL Soottech NL Techno Fysica NL Verenigde Tankrederij (VT) NL VNSI - Netherlands’ Shipbuilding Industry Association NL Yara Industrial

Bio

ma

ss

carr

ier

Ban

an

a C

arr

ier

VL

Ro

ro C

arr

ier

sm

all

Ch

em

ica

l C

arr

ier

ECDIS with AIS overlay

2nd VHF

Height indicator

windspeed & -direction indicator

Closed Circuit TV

Climate control

Motion indicator

2nd radar (fore mast)

twin azipods

triple propeller/rudder

tube-type bowthruster

4-channel bowthruster

additional crashworthiness

SAFETY All ship designs were evaluated on their potential to improve safety. The active safety level is assessed from the manoeuvring devices incorporated in the designs together with a proposed set of navigation equipment, best suited for the particular trade. A similar approach was chosen for the structural, passive safety. An estimate was made of the effectiveness of the proposed structure, relative to “normal” structural designs. Alternative solutions have been proposed as far as they are feasible within the design constraints.

PERFORMANCE ASSESSMENT The reasons for choosing or promoting a certain way of transporting goods depend on a multitude of factors. Shippers will be interested in reliable logistics and low cost, while authorities are in general more concerned with relieving congestion and minimizing the environmental impact of transport in general. CREATING developed a multi-criteria decision aiding methodology that can translate environmental, economical, logistic and safety data into a single performance indicator: the Sustainable Transport Performance Indicator or STPI.

Final Report – The Cleanest Ship Project

Posters presented at the 29th

Duisburger Kolloquium in Duisburg, Germany, 2008

_____________________________________________________________________________

____________________________________________________________________________

HOW TO IMPROVE THE ENVIRONMENTAL PERFORMANCE OF INLAND NAVIGATION

INTRODUCTIONInland navigation is known as a safe and environmentally friendly transport mode. Due to its low share (of about 2 %) of total traffic energy consumption (road, rail and inland navigation), its contribution to global total traffic emissions is regarded as almost insignificant. However, compared with maritime navigation, it has to fulfill much stricter emission regulations. Inland navigation faces strong competition with road and rail transport, demanding superiority in environmental friendliness as competitive advantage. Regarding emissions to the air related to tkm, especially with respect to emissions of the greenhouse gas CO2 (carbon-dioxide), the performan-ce of inland vessels is outstanding compared with road transport (approximately 3 up to 7 times better). The same holds for CO (carbon mono-xide) and HC (hydro carbon) emissions.

LEGISLATION – SULPHUR CONTENT OF FUEL, NOX AND PM EMISSIONS SOX (sulphur oxide) emissions are directly related to the sulphur content of the fuel. For inland navigation, the maximum sulphur content of gas oil is limited to 0.1 % since January 2008 (Directive 1999/32/EC). Starting from January 2010, this sulphur content limitation will be extended to all marine fuels used by inland vessels and ships at berth in community ports (Directive 2005/33/EC), yet still up to 100 times higher than the one of fuel used in road transport today. The introduction of emission limits for road transport since the early 1990s has led to a significant reduction of the pollutant emissions of NOX (nitrogen oxide) and PM (particulate matter) on road. For inland navigation, such strict emission limits are still missing. Consequently, the superiority in the environmental performance of inland vessels has become smaller in this regard, and with the introduction of EURO V and EURO VI limits, new trucks may

emit even significantly less NOX and PM per tkm than inland vessels.

EMISSION REDUCTION TECHNOLOGIESTaking into consideration the developments in the emission legislation described above, compliance with EU transport policy and environmental friendliness as a competitive factor of increasing significance, within the FP6 EU project CREATING (www.creating.nu) possible solutions for improvement of the environmental performance of inland vessels were examined comprising internal engine improvements (exhaust gas recirculation – EGR, advanced injection systems, inlet air humidification, in-cylinder water injection and homogeneous charge compression ignition - HCCI), exhaust gas after treatment (diesel oxidation catalyst, selective catalytic reduction – SCR, particulate matter filter - PMF, scrubbing of exhaust gas and electrostatic precipitation), higher diesel fuel quality (low sulphur fuel - LSF), alternative fuels (biodiesel - BD, biodiesel blend - BDB, diesel-water emulsion, natural gas and hydrogen), alternative combustion engines (natural gas engine – NGE), new propulsion and auxiliary systems (diesel-electric propulsion and fuel cells) as well as electronic drive management systems (advising tempomaat – ATM, River Information Services – RIS).

ENVIRONMENTAL PERFORMANCE COMPARED WITH ROAD TRANSPORT The comparison is performed for a DDSG -Steinklasse motor cargo vessel pushing a Europe II B barge, sailing from Passau (D) to Vidin (BG) and back (2884 km), and trucks in service complying with the respective EURO standards. For the basic case (M1) the vessel engine complies with CCNR I standard and no emission reduction techniques are applied. Application of SCR to the vessel will give already significant superiority of the vessel with respect to NOX emissions and equality with respect to PM emissions, compared with the EURO V truck. Application of SCR, low sulphur fuel (LSF), particulate matter filter (PMF) and advising tempomaat (ATM) will lead to clear superiority of inland navigation with respect to both, NOX and PM emissions, compared with the EURO V truck, and a slightly better environmental performance, compared with the EURO VI truck. The most significant reduction of PM results from the application of the particulate matter filter requiring low sulphur fuel (maximum sulphur content of 10 ppm).

Emission standards for road transport and inland navigation

Emission reduction potential of different emission reduction techniques

PM and NOX emissions of inland navigation and road transport

NOx PM FC CO2 SOx

After treatment

techniques

SCR (selective catalytic

reduction)-81% -35% -7.5% -7.5% -7.5%

PMF (particulate matter

filter)none -85% +2% +2% +2%

Drive management

systems

ATM (advising

tempomaat)-10% -10% -10% -10% -10%

Diesel fuel quality /

substitutes

BD (bio diesel) +10% -30% +15% -65% ~-100%

BDB (bio diesel blend, 20

% BD)+2% -6% +3% -13% ~-20%

LSF (low sulphur fuel) none -17% none none ~-100%

New engine technologies

NGE (natural gas engine) -98.5% -97.5% +4.5% -10% -100%

EURO III (2001)

EURO IV (2006)EURO V (2009)

EURO VI (~2012)

M1

M4M6

M7M8

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0 0,1 0,2 0,3 0,4 0,5 0,6

NOx emissions [g/tkm]

PM

em

iss

ion

s [

g/t

km

]

EURO III truck (2001)

EURO IV truck (2006)

EURO V truck (2009)

EURO VI truck (~2012, EC proposal)

basic case (M1) = CCNR I (2002)

SCR (M2)

SCR + ATM (M3)

SCR + ATM + BD (M4)

SCR + ATM + BDB (M5)

SCR + ATM + LSF (M6)

SCR + ATM + LSF + PMF (M7)

NGE (M8)

M2M3M5

MCV + barge: CCNR I (2002),

without em. red. techn.

MCV + barge: SCR

Truck EURO V (2009)

MCV + barge:

SCR + LSF + PMF + ATM

EURO VI

(EC proposal,

~2012, trucks)

EURO IV

(2006, trucks)

EURO V

(2009, trucks)

EU Stage IV

(~ 2012, vessels)

~US Tier IV

(2016, vessels)

US-EPA

(2010, trucks)

CCNR II

(2007, vessels)

EURO I

(1993, trucks)

EURO III

(2001, trucks)

EURO II

(1998, trucks)

CCNR III

( ~ 2012, vessels)

EU Stage III A

(2009, vessels)

CCNR IV

(~2016,

vessels)

CCNR I

(2002, vessels)

0

0,1

0,2

0,3

0,4

0,5

0,6

0 1 2 3 4 5 6 7 8 9 10

NOx emissions [g/kWh]

PM

em

iss

ion

s [

g/k

Wh

]

____________________________________________________________________________

____________________________________________________________________________

THE CLEANEST SHIP

INTRODUCTIONApplication of low sulphur fuel, advising speed control, selective catalytic reduction and particulate matter filter were found to be the most suitable solutions to improve the environmental performance of inland navigation. All solutions mentioned are applied in the Cleanest Ship project, a joint project of CREATING and energy company BP. Lasting one year from November 2007, this demonstration project will show how inland waterway vessels can optimise their fuel efficiency and reduce harmful emissions.

PROJECT PARTNERSBP (UK) via donau (A) Hug Engineering (CH) MTU Detroit Diesel (D)

The Cleanest Ship MV Victoria.

Emission reduction expected. For the advising tempomaat, the fuel consumption (FC) may be reduced by up to 15%. For the demonstrator a moderate value is assumed in accordance with the operational area. The value for the particulate matter filter includes also the effect of SCR on PM reduction.

THE CLEANEST SHIP PROJECTThe demonstration is carried out on the motor vessel ‘Victoria’, owned by BP Shipping. The vessel is managed by Verenigde Tankrederij (VT) and on long term charter to BP Marine Lubricants. She is operating in the Port of Rotterdam and Antwerp areas. The emission reduction results, including a comparison with road transport, are being monitored and presented on a regular basis at www.cleanestship.eu. Fuel consumption and NOX emissions are directly measured; CO2 and SOX emissions are calculated from fuel consumption, whereas PM emissions are evaluated using the emission reduction potential estimated on the test stand. The latter is done because accurate measurement of PM emissions at service conditions is very difficult.

EMISSION REDUCTION TECHNIQUES The emission reduction techniques utilized are the advising tempomaat, low sulphur fuel equal to road standard EN 590, selective catalytic reduction and PM filters.

Advising tempomaat As advising tempomaat a system developed by Techno Fysica bv (NL) is used. The core of the ATM is formed by a computer programme advising the skipper on the most economical combination of route and speed, enabling the vessel to arrive on time with a most efficient use of fuel leading to a reduction of fuel consumption and emissions.

The Nauticlean S system The Nauticlean S system of Hug engineering consists of two reactors with a selective-catalytic-reduction catalyst and a PM filter, whereby the PM filter is equipped with a diesel full-flow regenerative burner. The Nauticlean S system uses ammonia to reduce nitrogen monoxide and nitrogen dioxide to nitrogen and water, which is injected as urea (33 % solution). For efficient PM removal catalytically coated silicon carbide (SiC) PM filters are used. As soon as the regeneration temperature (450 °C) is reached, the soot in the filters is burned off without residue.

Techno Fysica (NL) Verenigde Tankrederij – VT (NL) VNSI - Netherlands’ Shipbuilding Industry Association (NL)Yara Industrial (NL)

Bitfactory (NL) Breko shipyard (NL) DLD - Dutch Logistic Development (NL) Lloyd’s Register EMEA (NL) Soottech (NL)

NOx PM FC CO2 SOx

ATM (advising tempomaat) -7% -7% -7% -7% -7%

LSF (low sulphur fuel, EN 590, 10 ppm)

none -17% none none -99.5%

SCR (selective catalytic reduction)

-85% none none none none

PMF (particulate matter filter) none -95% +2% +2% +2%

Total emission reduction -86% -96% -5% -5% -99.5%

____________________________________________________________________________

____________________________________________________________________________

CREATING

INTRODUCTIONA major part of maritime cargo, for instance maritime containers, is nowadays transported to the hinterland via inland waterways. Continental cargo, however, is mainly transported by trucks. The ever increasing transport flows, road congestions and air pollution require the exploration of other transport solutions. Waterborne transport is safe, reliable and has by far the lowest fuel consumption per ton/kilometre. Even more important: the main European waterways could easily absorb a multiple of the present waterborne transport volume. CREATING – Concepts to Reduce Environmental impact and Attain optimal Transport performance by Inland NaviGation (www.creating.nu) - is a research project within the 6th Framework Programme (FP6) of the European Commission, comprising 23 partners from 9 European countries. Its objective is to stimulate waterborne transport in an economical way and improve its competitive position versus road transport.

LOGISTIC INNOVATIONDevelopment of innovative logistic concepts was a key issue in the CREATING project. Analysis of a large number of cargo flows led to four new logistic concepts: Biomass Supplier for the Finnish Lakes A Finnish power plant located at the Finnish lakes is preparing to build a new installation which will be fuelled by biomass: wood chips and peat. An inland vessel being able to operate also in ice conditions was designed. Banana Carrier for the Rhine With respect to banana transport on the Rhine, three waterborne transport concepts were considered:

• a dedicated inland reefer, suitable for pallet transport

• a pushing unit with two barges for pallet transport

• a vessel for transport of refrigerated containers A dedicated inland reefer was chosen as the best viable concept for the concrete case. RoRo Vessel for the Danube For the Danube a shallow draft very large RoRo vessel was developed, which can substantially improve the existing RoRo services between various Danube terminals. To enable feasibility calculations for different RoRo cargo mixtures a uniform “loading unit” was established: Equivalent Semi Trailer or ESTR. Chemical Carrier for the Dutch canals The challenge was to design a small tanker to transport special products, with waterway restrictions determining the main dimensions. The proposed concept completely satisfies the prescribed rules and indicates the highest standards with regard to active and passive safety aspects. The CREATING study led to a new conceptual design of inland tankers.

ENVIRONMENTAL IMPACT The research has been focused on the present performance of inland vessels regarding pollutant emissions to air and on solutions to improve this. The following main topics were subject to research:

• Impact of diesel engine emissions on human health and environment

• Current and future emission standards with relevance to inland navigation

• The state of the art of emission characteristics in inland navigation

• Short- mid- and long term solutions for improving the emission characteristics in inland navigation or eliminating emissions to air

SAFETY All ship designs were evaluated on their potential to improve safety. The active safety level was assessed from the manoeuvring devices incorporated in the designs together with a proposed set of navigation equipment, best suited for the particular trade. A similar approach was chosen for the structural, passive safety. An estimate was made of the effectiveness of the proposed structure, relative to “normal” structural designs. Alternative solutions were proposed as far as they were considered feasible within the design constraints.

• WP 3

Innovative

Vessel

Concepts

• WP 3

Innovative

Vessel

Concepts

I/OI/O

� WP 8

Safety

Analysis

• WP 9

Safety

Measures

Dangerous

cargoes

� WP 8

Safety

Analysis

• WP 9

Safety

Measures

Dangerous

cargoes

• WP 5

Ship

Hydro-

dynamics

• WP 6

Environ-

mental

Impact

Economics/

environment

• WP 5

Ship

Hydro-

dynamics

• WP 6

Environ-

mental

Impact

Economics/

environment

• WP 2 Innovative Logistic Concepts, efficiency,

economics

• WP 7 Demonstrators• WP 7 Demonstrators

• WP 10 Dissemination• WP 10 Dissemination

• WP 4 Performance Assessment• WP 4 Performance Assessment

Societal Demands

Mobility: Less road congestion

Dangerous substances: Safe transport with minimized risk for people and environment

More Transport Via Water

Strengthening the position of Inland Ship Owners

Improving the competitive edge of the inland ship owner by developing chain optimized vessel concepts with an optimised environmental performance

Environment: Reduction of harmful exhausts like NOX and particulate matter (soot)

Project backround

Main topics of the various work packages

PERFORMANCE ASSESSMENTThe reasons for choosing or promoting a certain way of transporting goods depend on a multitude of factors. Shippers will be interested in reliable logistics and low cost, while authorities are in general more concerned with relieving congestion and minimizing the environmental impact of transport in general. CREATING developed a multi-criteria decision aiding methodology that can translate environmental, economical, logistics and safety data into a single performance indicator: the Sustainable Transport Performance Indicator or STPI.

Acknowledgement: The majority of the text has been provided by Bert de Vries from VNSI (Netherlands’ Shipbuilding). His contributions are gratefully acknowledged.

Final Report – The Cleanest Ship Project

30th

Motorship Propulsion and Emissions Conference, Gothenburg, Sweden, 2008

The 30th Motorship Propulsion and Emissions Conference 2008Gothenburg, 20th – 22nd May, 2008.

HOW TO IMPROVE THE ENVIRONMENTAL PERFORMANCE OF INLAND NAVIGATION

Schweighofer, J. via donau, Austria

[email protected]

Blaauw, H. G. Shipping Projects Bureau/Dutch Logistic Development bv, the Netherlands

[email protected]

Smyth, M.D. BP Shipping Ltd, UK [email protected]

ABSTRACT

Inland navigation is known as a safe and environmentally friendly transport mode. Compared with maritime navigation and short sea shipping, it has to fulfill much stricter emission regulations. Inland navigation faces strong competition with road and rail transport, demanding superiority in environmental friendliness as competitive advantage. Therefore, inland navigation has to deal with the challenge of introducing highly efficient technologies for the improvement of its environmental performance being applicable to small spaces, in contrast to seagoing vessels where generally enough space is available. Focussed on emissions to the air, the environmental performance of inland navigation and means for its improvement are discussed in the light of results of the EU project CREATING (www.creating.nu) and the Cleanest Ship project (www.cleanestship.eu). The legislation with respect to exhaust emissions in waterborne and road transport is outlined briefly. Different emission reduction techniques and alternative fuels are discussed with respect to their emission reduction potential and applicability to inland navigation. The environmental performance of inland navigation with respect to emissions to the air is compared with road transport and the achievable compliance with emission standards is discussed. The application of advising tempomaat, low sulphur fuel equal to road standard EN 590, selective catalytic reduction and particulate matter filter is found to be the most suitable solution to improve the environmental performance of inland navigation. These systems are utilized in the demonstrator the Cleanest Ship, being briefly outlined in this paper.

INTRODUCTION

Inland navigation is known as a safe and environmentally friendly transport mode. Compared with maritime navigation and short sea shipping, it has to fulfill much stricter emission regulations. Inland navigation faces strong competition with road and rail transport, demanding superiority in environmental friendliness as competitive advantage. Therefore, inland navigation has to deal with the challenge of introducing highly efficient technologies for the improvement of its environmental performance being applicable to small spaces, in contrast to seagoing vessels where generally enough space is available.

The 30th Motorship Propulsion and Emissions Conference 2008Gothenburg, 20th – 22nd May, 2008.

Regarding emissions to the air, especially with respect to emissions of the greenhouse gas CO2 (carbon-dioxide), the performance of inland vessels is outstanding compared with road transport. On average, the CO2 emissions of an inland vessel are only about 1/3 of the ones a truck emits per ton-kilometre (tkm) due to a higher energy efficiency. Also with respect to CO (carbon monoxide) and HC (hydro carbon) emissions per tkm, inland navigation is significantly superior to road transport. However, SOX emissions associated with inland navigation are actually much higher than the ones resulting from road transport, even when related to tkm (today, these emissions are up to 60 times higher) due to the much higher sulphur content of fuel used. The introduction of stricter emission limits for road transport since the early 1990s has led to a significant reduction of the pollutant emissions of NOX (nitrogen oxide) and PM (particulate matter) on road. For inland navigation, such strict emission limits are still missing. Consequently, the superiority in the environmental performance of inland vessels compared with trucks has become smaller in this regard, and with the introduction of EURO V and EURO VI limits for road transport in 2009 and 2010 (proposed by the German Federal Environmental Agency, UBA), respectively, these new trucks may emit even significantly less NOX and PM per tkm than inland vessels. Within the EU project CREATING (www.creating.nu), means for the improvement of the environmental performance of inland navigation were investigated [1,2], and the practical implementation of advising tempomaat, low sulphur fuel equal to road standard EN 590, selective catalytic reduction and PM filter for emission reduction is being demonstrated in the project the Cleanest Ship (www.cleanestship.eu).

LEGISLATION REGARDING SULPHUR CONTENT OF FUEL, NOX AND PM EMISSIONS

SOX (sulphur oxide) emissions are directly related to the sulphur content of the fuel. For inland navigation, in accordance with Directive 1999/32/EC, the maximum sulphur content of fuel is limited to 0.2 %. Starting from January 2010, this sulphur content limitation will be reduced to 0.1 % in accordance with Directive 2005/33/EC, yet still up to 100 times higher than the sulphur content of fuel used in road transport today. Therefore, the SOX emissions associated with inland navigation are actually much higher than the ones resulting from road transport, even when related to tkm (today, these emissions are up to 60 times higher). The introduction of emission limits for road transport since the early 1990s has led to a significant reduction of the pollutant emissions of NOX (nitrogen oxide) and PM (particulate matter) on road. For inland navigation, such strict emission limits are still missing, Fig. 1. Consequently, the superiority in the environmental performance of inland vessels compared with trucks has become smaller in this regard, and with the introduction of EURO V and EURO VI limits for road transport in 2009 and 2010 (proposed by the German Federal Environmental Agency, UBA), respectively, these new trucks may emit even significantly less NOX and PM per tkm than inland vessels, Fig. 2. The dates denote when the regulations are considered to be fully in force. Additionally, truck engines are replaced on average after 5 years of operation. This implies that only five years after the introduction of a new emission limit, the average truck fleet complies with this limit. When a vessel engine is replaced, its average age accounts for approximately 20 years or even more, thus, it will also take much longer in order to achieve compliance with new emission standards compared with trucks, e.g. the majority of inland vessels will comply with CCNR II (Central Commission for Navigation on the Rhine) and EU Stage IIIA only by approximately 2025 if no stricter standards are introduced in the very near future and engines already in service stay exempt from the new regulations.

The 30th Motorship Propulsion and Emissions Conference 2008Gothenburg, 20th – 22nd May, 2008.

Figure 1. Emission standards for inland waterway and road transport.

EMISSION REDUCTION TECHNOLOGIES

Taking into consideration the developments in the emission legislation described above, compliance with EU transport policy and environmental friendliness as a competitive factor of increasing significance, within CREATING possible solutions for improvement of the environmental performance of inland vessels were examined. These solutions comprise internal engine improvements (exhaust gas recirculation – EGR, advanced injection systems, inlet air humidification, in-cylinder water injection and homogeneous charge compression ignition - HCCI), exhaust gas after treatment (diesel oxidation catalyst, selective catalytic reduction – SCR, particulate matter filter - PMF, scrubbing of exhaust gas and electrostatic precipitation), higher diesel fuel quality (low sulphur fuel - LSF), alternative fuels (biodiesel - BD, biodiesel blend - BDB, diesel-water emulsion, natural gas and hydrogen), alternative combustion engines (natural gas engine – NGE), new propulsion and auxiliary systems (diesel-electric propulsion and fuel cells) as well as electronic drive management systems (advising tempomaat – ATM, River Information Services – RIS). The emission reduction potential associated with the application of most significant emission reduction techniques for the reduction of NOX, PM, CO2 and SOX emissions to engines complying with CCNR I standard is presented in Table 1. The application of selective catalytic reduction and particulate matter filter will have the most significant impact on the reduction of NOX as well as PM emissions. For the proper application of particulate matter filters, the usage of low sulphur fuel (10 ppm) is imperative. Fuel consumption may be effectively reduced by the application of drive management systems, e.g. the advising tempomaat, giving information about the most economical speed of the vessel, thus leading to reduced emissions. Using biodiesel will lead to a significant reduction of CO2 and SOX emissions. However, this will be associated with increased NOX emissions and fuel

EURO VI

(UBA proposal,

2010, trucks)

EURO IV

(2006, trucks)

EURO V

(2009, trucks)

~ CCNR III /

EU Stage IV

(~ 2012, vessels)US-EPA

(2010, trucks)

CCNR I

(2002, vessels)

CCNR II /

EU-Stage IIIA

(2008/2007, vessels)

EURO I

(1993, trucks)

EURO III

(2001, trucks)

EURO II

(1996, trucks)

0

0,1

0,2

0,3

0,4

0,5

0,6

0 2 4 6 8 10

NOx emissions [g/kWh]

PM

em

iss

ion

s [

g/k

Wh

]

The 30th Motorship Propulsion and Emissions Conference 2008Gothenburg, 20th – 22nd May, 2008.

consumption making it necessary to apply additional techniques for NOX and PM reduction. Engines already in service may be damaged when run on pure biodiesel, and the availability of biodiesel will not be sufficient in order to satisfy the energy demand of the total traffic sector. The SOX emissions are directly related to the sulphur content of the fuel, and reducing the sulphur content of fuel will lead to reduced SOX and PM emissions. Usage of low sulphur fuel is the precondition for the application of several emission reduction techniques e.g. particulate matter filter, exhaust gas recirculation, NOX adsorber, and, conditionally, diesel oxidation catalyst.

Table 1. Changes in mass emissions with respect to the application of different emission-reduction techniques compared with the basic case complying with CCNR I where no

emission-reduction technique is used. FC means changes in fuel consumption.

NOx PM FC CO2 SOx

After treatment

techniques

SCR (selective catalytic

reduction)-81% -35% -7.5% -7.5% -7.5%

PMF (particulate matter

filter)none -85% +2% +2% +2%

Drive management

systems

ATM (advising

tempomaat)-10% -10% -10% -10% -10%

Diesel fuel quality /

substitutes

BD (bio diesel) +10% -30% +15% -65% ~-100%

BDB (bio diesel blend, 20

% BD)+2% -6% +3% -13% ~-20%

LSF (low sulphur fuel) none -17% none none ~-100%

New engine technologies

NGE (natural gas engine) -98.5% -97.5% +4.5% -10% -100%

According to a TNO (NL) study [3], 98 % of current engines may be run on low sulphur fuel (EN 590) and new engines require a fuel with a sulphur content of 50 ppm or less. Using natural gas as fuel will significantly reduce NOX, PM and SOX emissions. However, application of natural gas engines to inland navigation is associated with very large storage spaces for tanks, possibly resulting in insufficient cruising ranges, non-existing rules for technical certification, and lack of adapted tax regulations and infrastructure on inland waterways, demanding sorrowful feasibility studies for adequate application of natural gas as fuel to inland navigation. For reduction of CO and HC emissions, the application of a diesel oxidation catalyst is recommended. Techniques with very high emission reduction potential are homogeneous charge compression ignition and usage of fuel cells. However, these techniques require still major efforts in development and will not be available for general application to inland navigation in the near future. Furthermore, wet scrubbers and electro-static percipators require too much space for meaningful application to inland navigation.

The 30th Motorship Propulsion and Emissions Conference 2008Gothenburg, 20th – 22nd May, 2008.

ENVIRONMENTAL PERFORMANCE OF INLAND NAVIGATION COMPARED WITH ROAD TRANSPORT AND ACHIEVABLE COMPLIANCE WITH EMISSION

STANDARDS

The comparison is performed for a DDSG -Steinklasse motor cargo vessel pushing a Europe II B barge, sailing from Passau (D) to Vidin (BG) and back (2884 km), and trucks in service complying with the respective EURO standards. For the basic case (M1, BC) the vessel engine complies with CCNR I standard and no emission reduction techniques are applied. The PM and NOX emissions in g/tkm associated with the basic case (M1) are significantly higher than the ones of a truck complying with EURO V, Fig. 2. Application of selective catalytic reduction (SCR) to the vessel will give already significant superiority of the vessel with respect to NOX emissions and equality with respect to PM emissions, compared with the EURO V truck. Application of selective catalytic reduction, low sulphur fuel (LSF), particulate matter filter (PMF) and advising tempomaat (ATM) will lead to clear superiority of inland navigation with respect to both, NOX and PM emissions, compared with the EURO V truck, and equal environmental performance, compared with the EURO VI truck. The most significant reduction of PM results from the application of the particulate matter filter requiring low sulphur fuel.

Figure 2. Emission comparison in g/tkm between motor cargo vessel pushing a barge and trucks in service, considering different emission reduction techniques.

Application of selective catalytic reduction, particulate matter filter and low sulphur fuel to a CCNR I – vessel engine will lead to compliance with EURO V and CCNR III standard, Fig. 3. Compliance with EURO VI standard may be achieved by either the application of similar technology as it is used in road transport, including respective fuels, or the introduction of new engine technologies like homogeneous charge compression ignition (HCCI) and natural gas engines (NGE) to inland navigation. In Fig. 3, Euro truck and CCNR vessel denote the emission limits in g/kWh prescribed by the respective emission standards for road and inland waterway transport (IWT). Generally, vessel engines complying with CCNR I (BC) show much better performance than required by the standard with respect to PM emissions.

EURO III (2001)

EURO IV (2006)EURO V (2009)

EURO VI

(2010)

M1

M4M6

M7M8

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0 0,1 0,2 0,3 0,4 0,5 0,6

NOx emissions [g/tkm]

PM

em

issio

ns [

g/t

km

]

EURO III truck (2001)

EURO IV truck (2006)

EURO V truck (2009)

EURO VI truck (2010, UBA proposal)

basic case (M1) = CCNR I (2002)

SCR (M2)

SCR + ATM (M3)

SCR + ATM + BD (M4)

SCR + ATM + BDB (M5)

SCR + ATM + LSF (M6)

SCR + ATM + LSF + PMF (M7)

NGE (M8)M2

M3

M5

Truck EURO VI (2010, UBA proposal)

MCV + barge: CCNR I (2002),

without em. red. techn.

MCV + barge: SCR

Truck EURO V (2009)

MCV + barge: SCR + LSF +

PMF + ATM

MCV + barge: CCNR I (2002),

without em. red. techn.

MCV + barge: SCR

Truck EURO V (2009)

MCV + barge: SCR + LSF +

PMF + ATM

The 30th Motorship Propulsion and Emissions Conference 2008Gothenburg, 20th – 22nd May, 2008.

Inland navigation is in danger to loose its position as more environmentally friendly transport mode than road transport in terms of NOX and PM emissions in g/tkm. For emissions in g/kWh, inland navigation performs already worse than road transport. In order to achieve superior environmental performance of inland navigation to road transport with respect to all emissions (NOX, PM, CO2, SOX, CO, HC), the very first step to be taken has to be the introduction of LSF (EN 590) to inland navigation.

Figure 3. Comparison of vessel-engine emissions with emissions corresponding to limit values of standards for road transport (EURO) and inland navigation (CCNR).

THE CLEANEST SHIP

Figure 4. The Cleanest Ship MV Victoria.

The 30th Motorship Propulsion and Emissions Conference 2008Gothenburg, 20th – 22nd May, 2008.

Application of selective catalytic reduction, particulate matter filters, low sulphur fuel and advising tempomaat was found to be the most effective and practicable solution to improve the environmental performance of inland navigation. These systems will be implemented in a demonstrator, The Cleanest Ship, confirming the general applicability of these systems to inland navigation and the emission reduction potential evaluated. The demonstration project is carried out on the motor vessel ‘Victoria’, owned by BP shipping, managed by the Verenigde Tankrederij (VT) and operating in the Port of Rotterdam area. The demonstration was launched officially in Rotterdam on November 20th, 2007, and it will last one year. Fuel consumption and NOX emissions are directly measured; CO2 and SOX emissions are calculated from the fuel consumption, whereas PM emissions are evaluated using the emission reduction potential estimated on the test stand, due to difficult accurate measurement of PM emissions at service conditions. The results with respect to the reduction of CO2, SOX, NOX and PM emissions, including a comparison with road transport, are monitored and presented to the public on a regular basis at www.cleanestship.eu.

Emission reduction techniques

The emission reduction techniques utilized are the advising tempomaat, low sulphur fuel equal to road standard EN 590, selective catalytic reduction and PM filters. As advising tempomaat a system developed by Techno Fysica bv (NL) is used. The selective-catalytic-reduction catalyst and diesel particulate filters are implemented in the Nauticlean S system comprising a single reactor for NOX and PM removal, developed and built by Hug Engineering (D).

The advising tempomaat

The advising tempomaat (ATM) is a system enabling an economically optimised operation of a vessel. The core of the ATM is formed by a computer programme advising the skipper on the most economical combination of route and speed, enabling the vessel to arrive on time with a most efficient use of fuel leading to a reduction of fuel consumption and emissions. The ATM, where the advised fuel settings are realised manually, is the successor of the tempomaat which did automatically adjust the speed of the vessel, without giving advice.

Low sulphur fuel

The motor vessel ‘Victoria’ is operated with low sulphur fuel equal to road standard (diesel fuel EN 590). Usage of low sulphur fuel is a precondition for the application of PM filters and efficient reduction of PM and SOX emissions as these emissions are related to the sulphur content of the fuel used.

The Nauticlean S system

The Nauticlean S system of Hug engineering consists of two reactors with a selective-catalytic-reduction catalyst and a PM filter, whereby the PM filter is equipped with a diesel full-flow regenerative burner. Selective catalytic reduction (SCR) is a technique for efficient removal of NOX emissions by means of injecting a reducing agent into the exhaust gas. The Nauticlean S system uses ammonia to reduce nitrogen monoxide and nitrogen dioxide to nitrogen and water, which is injected as urea (33 % solution). For efficient PM removal catalytically coated silicon carbide (SiC) PM filters are used. These filters consist of several honeycombs made of micro fibres. During operation, the soot

The 30th Motorship Propulsion and Emissions Conference 2008Gothenburg, 20th – 22nd May, 2008.

particles are retained in the filter. As soon as the regeneration temperature is reached, the soot in the filters is burned off without residue. Due to the catalytic coating, the regenerating temperature is around 450 °C and the filter burns i tself clean without requiring auxiliary energy.

Reduction of emissions expected

NOx PM FC CO2 SOx

ATM (advising tempomaat) -7% -7% -7% -7% -7%

LSF (low sulphur fuel, EN 590, 10 ppm)

none -17% none none -99.5%

SCR (selective catalytic reduction)

-85% none none none none

PMF (particulate matter filter) none -95% +2% +2% +2%

Total emission reduction -86% -96% -5% -5% -99.5%

For the advising tempomaat, the fuel consumption (FC) may be reduced by 5 up to 10%. For the demonstrator a moderate value is assumed due to the limited effect resulting from the operational area of the vessel. The value for the particulate matter filter includes also the

effect of SCR on PM reduction.

Impact of CREATING and the Cleanest Ship project

The Cleanest Ship project contributes directly to the implementation of EC transport policy, particularly, with respect to the implementation of the Action Programme NAIADES, COM(2006) 6 final, which requires the improvement of logistics efficiency, as well as environmental and safety performance of inland waterway transport. As outcome of CREATING and a TNO study on the applicability of low sulphur fuel with a maximum sulphur content of 10 ppm to existing inland vessel engines [3], at the Round Table of the CCNR (Central Commission for the Navigation on the Rhine), consensus was achieved about introducing fuel of equal or similar quality to road standard for inland navigation and lowering the sulphur content of fuel to 10 ppm in one step as soon as possible, and the European Commission is considering the introduction of this fuel already in 2009 [4]. Considering the European inland navigation fleet, already the Rhine and Danube fleets comprise more than 8500 motorized units. Using the example of the motor vessel ‘Victoria’, within the Cleanest Ship project, it is shown how highly efficient emission reduction technologies and better fuel quality can be applied to these units, leading to compliance of the inland navigation sector with even strictest regulations of road transport, Figs. 2 and 3.

The 30th Motorship Propulsion and Emissions Conference 2008Gothenburg, 20th – 22nd May, 2008.

Partners involved in the demonstration project

The team of the Cleanest Ship project consists of:

1. BP, being owner of the ship, director of the project and provider of clean fuel 2. VT, as manager of the ship 3. Technofysica for the delivery of the Tempomaat and related measurements 4. Hug engineering for the delivery of the SCR and PM filter for the main engine 5. Hanwel (also referred to as Codinox as Soottech) for the PM filters on the generator

sets and NOX and PM measurements 6. Breko for all constructional aspects 7. MTU for engine aspects 8. Lloyds register for classification 9. DLD for project coordination 10. Yara for the delivery of the Ureum 11. Bit factory, for the realization of the website 12. via donau for techniques and public relation (PR) 13. VNSI and SPB for PR 14. SPB as co-ordinator of the project CREATING

Moreover there is a cooperation with 15. the Port of Rotterdam Authority on operational aspects and PR.

REFERENCES

1. Schweighofer J. and Seiwerth P.: Environmental performance of inland navigation. Proceedings of the European Inland Waterway Navigation Conference, Visegrád, Hungary, June 27th-29th,2007.

2. Kampfer A. and Schweighofer J. et al.: Environmental impact of inland navigation, CREATING Work Package 6, final report, 2006, to be released 2008.

3. Kattenwinkel H., Verbeek R. and Eijk A.: Review of potential issues for inland ship engines when reducing gasoil sulphur level to maximum 10 ppmm. TNO Report MON-RPT-033-DTS-2007-01813, June 2007.

4. European Parliament: Press release November 26, 2007, http://www.europarl.europa.eu/news/expert/infopress_page/064-13598-330-11-48-911-20071126IPR13591-26-11-2007-2007-false/default_en.htm

Final Report – The Cleanest Ship Project

Zeitschrift für Binnenschifffahrt 9/2008

41

Schiffstechnik

Binnenschifffahrt – ZfB – Nr. 9 – 2008

Zusammenfassung

Die Binnenschifffahrt ist bekannt als um-weltfreundlicher Verkehrsträger. Auf Grund des sehr geringen Anteils der Binnenschiff-fahrt am Gesamtenergieverbrauch des Ver-kehrs sind die Abgasemissionen, welche der Binnenschifffahrt zugeordnet werden kön-nen, relativ unbedeutend. Aufgrund ihrer Umweltfreundlichkeit findet die Binnen-schifffahrt zunehmende politische Anerken-nung und Unterstützung. Die Umwelt-freundlichkeit eines Verkehrsträgers stellt aber auch einen Wettbewerbsvorteil von zu-nehmender Bedeutung dar, da das Umwelt-bewusstsein der Bevölkerung stetig steigt. Mit der Einführung von immer strengeren Abgasvorschriften für den Straßenverkehr sind die entsprechenden Abgasemissionen im Straßengüterverkehr drastisch gesunken, was für die Binnenschifffahrt nicht zutrifft, da hier die meisten Motoren noch keinen Emissionsstandards genügen. In Bezug auf wichtige Emissionen wie Stickoxide und Rußpartikel läuft die Binnenschifffahrt Ge-fahr, ihre ökologische Überlegenheit gegen-über dem Straßengüterverkehr einzubüßen. In diesem Artikel wird die Situation der Ab-gasemissionen auf den Binnenwasserstraßen hinterfragt. Es werden zunächst die Vor-schriften hinsichtlich der Kraftstoffe und Schadstoffemissionen von Binnenschiffen betrachtet, gefolgt von einer Darstellung technischer Möglichkeiten zur Verringerung der Abgasemissionen in der Binnenschiff-fahrt. Weiter wird untersucht, welche Emis-sionsgrenzwerte mit den jeweiligen tech-nischen Möglichkeiten erfüllt werden können, und die Schadstoffemissionen des Straßengüterverkehrs werden mit jenen der Binnenschifffahrt verglichen. Abschließend wird das »Cleanest Ship« – ein praktisches Beispiel für die Erfüllung strikter Emissions-grenzwerte in der Binnenschifffahrt – vorge-stellt.

Einleitung

Die Binnenschifffahrt wirbt gerne für sich mit der Feststellung, dass sie ein um-weltfreundlicher oder sogar der umwelt-freundlichste Verkehrsträger ist. Auch die Politik begründet ihre Unterstützung der Binnenschifffahrt mit deren Umwelt-freundlichkeit. Derzeit sind aus Sicht der Politik bestimmender Aspekt für die Um-weltfreundlichkeit die von den an Bord der Fahrzeuge installierten Motoren emittierten Schadstoffe. Gerade hier scheint die Bin-nenschifffahrt jedoch ins Hintertreffen ge-

raten zu sein. Beispielsweise gehen in Deutschland anteilsmäßig die Stickoxyd- und Partikelemissionen des Straßengüter-verkehrs zurück, während die der Binnen-schifffahrt weiter ansteigen. Dies kann darauf zurückgeführt werden, dass • im Straßenverkehr schon vor mehr als

zehn Jahren verordnungsrechtliche Maß-nahmen getroffen wurden, die der Redu-zierung der Schadstoffemissionen die-nen,

• die derzeit auf Binnenschiffen installier-ten Motoren hingegen in der Mehrzahl keinerlei Schadstoffemissionsstandards genügen.

Eine ähnliche Situation ergibt sich beim Schwefelgehalt der Treibstoffe. Auch hier hat der Straßenverkehr seine Hausaufgaben schon durch die Einführung schwefelfreier Kraftstoffe gemacht – die Binnenschifffahrt ist davon aber noch einige Jahre entfernt.

Die Binnenschifffahrt profitiert sicher-lich von ihrer hohen Energieeffizienz, wes-halb sie dem Straßentransport beim Kraft-stoffverbrauch als auch bei den CO

2-,

CO- und HC-Emissionen pro Tonnenkilo-meter (tkm) weit überlegen ist. Diese Über-legenheit ist aber nur von eingeschränkter Bedeutung, da die Emissionen der brisan-testen Schadstoffe, nämlich Stickoxyde und Partikel, aufgrund der im Straßenverkehr ergriffenen technischen Maßnahmen nicht diesen Gesetzmäßigkeiten folgen.

Von daher scheint es angebracht, die Si-tuation der Abgasemissionen auf den Bin-nenwasserstraßen zu hinterfragen. Dies versucht der vorliegende Artikel, wobei er • zunächst die Vorschriften hinsichtlich

der Kraftstoffe und Schadstoffemissionen von Binnenschiffen betrachtet,

• technische Möglichkeiten zur Verringe-rung der Schadstoffemissionen der Bin-nenschifffahrt darstellt,

• dann die mit den technischen Möglich-keiten erfüllbaren Emissionsgrenzwerte untersucht,

• die Schadstoffemissionen anschließend mit jenen des Straßenverkehrs vergleicht, und

• abschließend das »Cleanest Ship« – ein praktisches Beispiel für die Erfüllung strikter Emissionsgrenzwerte in der Bin-nenschifffahrt vorstellt.

Interessant wäre sicherlich auch ein Ver-gleich der Schadstoffemissionen der Binnen-schifffahrt mit denen der Eisenbahnen. Die-ser Vergleich ist jedoch ungleich schwerer als der mit dem Straßenverkehr, da die von den Eisenbahnen genutzten Energieträger sehr heterogen sind. Zumindest scheint jedoch für Deutschland feststellbar, dass das Ange-bot an »sauberer« elektrischer Energie aus Wasser- und Kernkraftanlagen für die Bah-nen begrenzt ist und der Verkehrszuwachs bei den Bahnen mit elektrischer Energie aus den wesentlich umweltschädlicheren Kohle-

Die Entwicklung der Abgasemissionen in der Binnenschifffahrt

42

Schiffstechnik

Binnenschifffahrt – ZfB – Nr. 9 – 2008

kraftwerken bedient werden muss. Ein der-artiger Vergleich würde jedoch den Umfang dieser Arbeit sprengen.

Rechtsvorschriften hinsichtlich der

Kraftstoffe von Binnenschiffen

In der EU sind Kraftstoffe für Binnen-schiffe durch die Richtlinie 1999/32/EG1 reglementiert. Sie gestattet für die in der europäischen Binnenschifffahrt gebräuch-lichen Gasöle einen maximalen Schwefel-gehalt von • 0,20 Massenhundertteile (oder 2000 ppm)

ab dem 1. Juli 2000 und• 0,10 Massenhundertteile (oder 1000 ppm)

ab dem 1. Januar 2008.Mit der Richtlinie 2005/33/EG2 wurde erst-genannte Richtlinie geändert, insbesondere im Hinblick auf Kraftstoffe für Seeschiffe. Für Binnenschiffe hat die Änderungsricht-linie zur Folge, dass mit Wirkung vom 1. Januar 2010 diese keine Schiffskraftstoffe mehr verwenden dürfen, deren Schwefelge-halt 0,1 Massenhundertteile überschreitet. Wenn ein Binnenschiff Kraftstoffe der See-schifffahrt, wie etwa Schweröle, verwenden würde, müssten diese spätestens ab 2010 den gleichen Vorgaben hinsichtlich des Schwefelgehalts genügen wie Gasöle.

Ziel der beiden vorgenannten Richtlinien war die Reduzierung der Versauerung der Umwelt. Folgerichtig regelten sie auch allein den Schwefelgehalt der Kraftstoffe. Mit der Erkenntnis, dass • Partikelemissionen von Dieselmotoren

wahrscheinlich die Lebenserwartung eines beträchtlichen Teils der Bevölke-rung verkürzen,

• die im Verkehrsektor verbrannten Mine-ralölprodukte maßgeblich zu den Treib-hausgasemissionen beitragen,

• für anspruchsvolle technische Emissionsre-duzierungsmaßnahmen an Verbrennungs-motoren Kraftstoffe nicht nur annähernd frei von Schwefel sein müssen, sondern

1 Richtlinie 1999/32/EG des Rates vom 26. April 1999 über eine Verringerung des Schwefelgehalts bestimmter flüssiger Kraft- oder Brennstoffe und zur Änderung der Richtlinie 93/12/EWG; (ABl. L 121 vom 11.5.1999, S. 13). Geändert durch die Verordnung (EG) Nr. 1882/2003 des Europä-ischen Parlaments und des Rates (ABl. L 284 vom 31.10.2003, S. 1).

2 Richtlinie 2005/33/EG des Europäischen Parlaments und des Rates vom 6. Juli 2005 zur Änderung der Richtlinie 1999/32/EG hinsichtlich des Schwefelgehalts von Schiffs-kraftstoffen; (ABl. L 191 vom 22.7.2005, S. 59).

auch in anderer Hinsicht bestimmten Qua-litätskriterien genügen sollten,

wurde die Diskussion um die Anforderungen an Kraftstoffe zunehmend komplexer. Dies spiegelt sich deutlich in dem Vorschlag der Europäischen Kommission aus dem Jahr 2007 zur abermaligen Überarbeitung der europäischen Kraftstoffricht linien3 wieder.

Dieser Richtlinienvorschlag war im Hin-blick auf die Anforderungen an die Kraft-stoffe für die Binnenschifffahrt auch Ge-genstand eines Runden Tisches der ZKR im Mai 20074. Dieser Runde Tisch vereinte die europäischen Verbände aller betroffenen Wirtschaftszweige von den Mineralölpro-duzenten bis hin zum Schifffahrtsgewerbe. Die wichtigsten Schlussfolgerungen, auf die sich die Teilnehmer weitgehend verständi-gen konnten, waren • Absenkung des Schwefelgehalts in einer

Stufe auf 10 ppm5 statt wie von der Kom-mission vorgeschlagen mit einer Zwi-schenstufe von 300 ppm,

• europaweite Einführung möglichst im Jahre 2010 und nicht wie von der Kom-mission vorgeschlagen erst Ende 2011,

• Beschränkung der Beimischung biogener Stoffe auf deutlich niedrigere Werte als der-zeit im Rahmen europäischer Aktionspro-gramme für den Klimaschutz vorgesehen,

• Qualitätsanforderungen gleich oder ähn-lich der EN 590 für Diesel im Straßenver-kehr.

Zusammengefasst kann festgestellt wer-den, dass fast alle »Stakeholder« die Ver-wendung eines schwefelfreien Kraftstoffes befürworten, der dem des Straßenverkehrs entspricht oder zumindest sehr nahe kommt und dass dieser möglichst rasch gesetzlich vorgeschrieben werden sollte.

3 Vorschlag für eine Richtlinie des Europäischen Parla-ments und des Rates xx/xx/2006 zur Änderung der Richt-linie 98/70/EG im Hinblick auf die Spezifikationen für Otto-, Diesel- und Gasölkraftstoffe und die Einführung eines Systems zur Überwachung und Verringerung der Treibhausgasemissionen bei der Verwendung von für den Straßenverkehr bestimmten Kraftstoffen, zur Änderung der Richtlinie 99/32/EG des Rates betreffend die Festset-zung der Spezifikationen für von Binnenschiffen gebrauchte Kraftstoffe, und zur Aufhebung der Richtlinie 93/12/EWG (KOM(2007)18).

4 Preliminary Summary and Conclusions: Low Sulphur Fuel for Inland Waterway Transport in Europe – Round Table of the Central Commission for Navigation on the Rhine (CCNR); 3 May 2007, Strasbourg; www.ccr-zkr.org.

5 Kraftstoffe mit einem maximalen Schwefelgehalt von 10 ppm werden auch als schwefelfrei bezeichnet.

Offensichtlich möchte das Schifffahrtsge-werbe deutlich machen, dass es einen subs-tantiellen Beitrag zur Reduzierung der Schadstoffemissionen der Binnenschiff-fahrt leisten möchte, auch wenn dies zu Mehrkosten von etwa 2 bis 5 Eurocent pro Liter Kraftstoff6 führen wird.

Seit gut einem Jahr liegt dieser Vorschlag beim Europäischen Parlament und beim Ministerrat. Während sich das Parlament relativ zügig über das Dossier verständigen konnte, kommen die Diskussionen im Rat nicht zum Abschluss, was eine fristgerechte Verabschiedung in Frage stellt. Die größte Hürde scheint dabei in den Vorgaben für die angestrebte Reduzierung der Treibhaus-gasemissionen zu bestehen. Dass sich das Parlament der Forderung des Schifffahrts-sektors nach Absenkung des Schwefelge-halts von Binnenschiffskraftstoffen in einem Schritt auf 10 ppm angeschlossen hat, ist in der Gesamtschau der Diskussi-onen um den Richtlinienvorschlag nicht mehr als eine Marginalie. Sollte sich die Verabschiedung der Richtlinie noch sehr viel länger hinziehen, könnten interessierte Staaten verabreden, die Absenkung des Schwefelgehalts vorzuziehen. Die Richtli-nien der EU lassen dies ausdrücklich zu. In einem solchen Fall müsste jedoch sicherge-stellt werden, dass eine möglichst große Zahl von Staaten diesen Schritt gleichzeitig durchführt, um Wettbewerbsverzerrungen und Tanktourismus zu vermeiden.

Es scheint also so, dass die Binnenschiff-fahrt einen Kraftstoff bekommen wird, der genauso »sauber« sein wird wie der des Stra-ßenverkehrs, nur das letzterer bereits jetzt über schwefelfreie Kraftstoffe verfügt und dass die jetzt noch verfügbaren Kraftstoffe mit einem Schwefelgehalt von 50 ppm bis Ende 2008 voraussichtlich nicht mehr angeboten werden dürfen. In den USA erfolgte die Rechtssetzung für Binnenschiffskraftstoffe spät, aber zügig: Ab Juni 2007 ist dort ein ma-ximaler Schwefelgehalt von 500 ppm und ab Juni 2012 von 15 ppm vorgeschrieben.

Rechtsvorschriften hinsichtlich

der Schadstoffemissionen von

Binnenschiffen

6 Centraal Bureau voor de Rijn- en Binnenvaart et al; Zwavelvrije brandstof – EN 590 voor de binnenvaart. Rot-terdam, 2008.

Emissionen Entstehung Auswirkungen

Kohlendioxid (CO2) Verbrennung fossiler Brennstoffe Treibhausgas

Kohlenmonoxid (CO) Unvollständige Verbrennung Gesundheitsgefährdung

Flüchtige organische Verbindungen (VOCs); Kohlenwasserstoffe (HC))

Unvollständige Verbrennung, besonders in Autos; Emissionen von Chemikalien, z.B. Benzin

Gesundheitsgefährdung; Smog

Stickoxide (NOx)

Verbrennung in Motoren; Oxidation von Stickstoff in Brennstoffen / Luft

Gesundheitsgefährdung; Versäuerung; N2O

sehr potentes Treibhausgas; Ozon; Smog

Partikel (PT) Dieselmotoren Gesundheitsgefährdung; Smog

Tabelle 1. Entstehung und Auswirkungen von Abgasemissionen im Verkehrssektor.

43

Schiffstechnik

Binnenschifffahrt – ZfB – Nr. 9 – 2008

Wesentlich komplexer als die Reglementierung der Kraftstoffe ist die der Abgas- und Partikelemissionen. Dass aber auch dabei die Rechtssetzung relativ rasch und pragmatisch erfolgen kann, belegen die Arbeiten der ZKR zur Reduzierung von Abgas emissionen in der Binnenschifffahrt, die in einem Bericht der PIANC7 ausführlich beschrieben werden. (Diesem Bericht sind auch einige der nach-stehenden Ausführungen entnommen.)

Vor einer Hinwendung zu den Vorschriften zunächst aber ein Blick auf die Abgasemissionen im Verkehrssektor im Allgemeinen. Tabelle 1 fasst die wichtigsten Emissionen, ihr Entstehen und ihre Auswirkungen zusammen.

Die Vorschriften der ZKR über die Abgas emissionen von Bin-nenschiffsmotoren8 sind keine vollständig neuen Vorschriften,

7 Gernot Pauli, Ökologisch nachhaltiger Verkehr – Reduzierung von Abgasemissionen in der Binnenschifffahrt; PIANC, Bonn, 2002.

8 Rheinschiffsuntersuchungsordnung, Kapitel 8a »Emission von gasförmigen Schadstof-

sondern wurden aus existierenden Vor-schriften entwickelt, die lediglich den spe-zifischen Bedingungen der Binnenschiff-fahrt angepasst wurden. Dabei handelt es sich um den NO

X Technical Code9 der IMO

und die Richtlinie 97/68/EG10 über mobile Arbeitsmaschinen. Wie die Vorschriften der IMO gelten auch die der ZKR gleicher-maßen für Haupt- und Hilfsmotoren.

Die ZKR verabschiedete ihre Emissions-vorschriften mit der Stufe I im Frühjahr 2000 und bereits ein Jahr später die Eckpunkte für eine Überarbeitung der Vorschriften mit wesentlich strengeren Grenzwerten der Stu-fe II nach sechs bis acht Jahren. Die Stufe I gilt für alle Dieselmotoren, die ab Beginn des Jahres 2003 auf Schiffen, die eine Zulassung nach den Rheinschifffahrtsregelungen besit-zen, installiert sind und die Stufe II ab dem 1. Juli 2007. Die Emissionsgrenzwerte der Vorschriften der ZKR sind in den Tabellen 2 und 3 wiedergegeben.

Die Europäische Kommission war ein-geladen, sich an den Arbeiten der ZKR zu beteiligen. Sie befand zunächst, dass es nicht notwendig ist, die Abgasemissionen der Binnenschifffahrt zu reglementieren, da deren Beitrag zur Luftverschmutzung sehr gering sei. Später änderte sie jedoch ihre Ansicht, auch aufgrund des Insistie-rens der Mitgliedsstaaten der ZKR, und schlug vor, in die Richtlinie 97/68/EG über die mobilen Maschinen auch Emissions-anforderungen für Binnenschiffsmotoren aufzunehmen. Dies erfolgte dann mit der

fen und luftverunreinigenden Partikel von Dieselmotoren«; ZKR.

9 International Convention for the Prevention of Polluti-on from Ships, 1973, as modified by the Protocol of 1978 (MARPOL 73/78), Annex VI on the Prevention of Air Pol-lution from Ships, IMO.

10 Richtlinie 97/68/EG des Europäischen Parlaments und des Rates vom 16. Dezember 1997 zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über Maßnahmen zur Bekämpfung der Emission von gasförmigen Schadstof-fen und luftverunreinigenden Partikeln aus Verbrennungs-motoren für mobile Maschinen und Geräte; (ABl. L 59 vom 27.02.1998, S. 1).

PN

[kW]CO

[g/kWh]HC

[g/kWh]NO

x

[g/kWh]PT

[g/kWh]

37 ≤£ PN < 75 6,5 1,3 9,2 0,85

75 ≤£ PN < 130 5,0 1,3 9,2 0,70

N ≥³ 130 5,0 1,3n ≥³ 2800 min-1 = 9,2

500 ≤£ n < 2800 min-1 = 45 . n(-0,2)0,54

PN

[kW]CO

[g/kWh]HC

[g/kWh]NO

x

[g/kWh]PT

[g/kWh]

18 ≤£ PN < 37 5,5 1,5 8,0 0,8

37 ≤£ PN < 75 5,0 1,3 7,0 0,4

75 ≤£ PN < 130 5,0 1,0 6,0 0,3

130 ≤£ PN < 560 3,5 1,0 6,0 0,2

PN ≥³ 560 3,5 1,0n ≥³ 3150 min-1 = 6,0

343 ≤£ n < 3150 min-1 = 45 . n(-0,2) – 3n < 343 min-1 = 11,0

0,2

SV/P

[Liter pro Zylinder/kW]CO

[g/kWh]HC + NO

x

[g/kWh]PT

[g/kWh]

V1:1 SV < 0,9 & P ≥ 37 kW 5,0 7,5 0,40

V1:2 0,9 ≤ SV < 1,2 5,0 7,2 0,30

V1:3 1,2 ≤ SV < 2,5 5,0 7,2 0,20

V1:4 2,5 ≤ SV < 5 5,0 7,2 0,20

V2:1 5 ≤ SV < 15 5,0 7,8 0,27

V2:2 15 ≤ SV < 20 & P < 3300 kW 5,0 8,7 0,50

V2:3 15 ≤ SV < 20 & P ≥ 3300kW 5,0 9,8 0,50

V2:4 20 ≤ SV < 25 5,0 9,8 0,50

V2:5 25 ≤ SV < 30 5,0 11,0 0,50

Tabelle 2. Die Emissionsgrenzwerte der Stufe I der ZKR.

Tabelle 3. Die Emissionsgrenzwerte der Stufe II der ZKR.

Tabelle 4. Die Emissionsgrenzwerte für Motoren zum Antrieb von Binnenschiffen der EU.

SV/P

[Liter pro Zylinder/kW]CO

[g/kWh]HC

[g/kWh]NO

x

[g/kWh]PT

[g/kWh]Erläuterung

V1:1: SV < 0.9 & P ≥ 37 W 3.51.0

4.0 0.14 2012

V1:2: 0.9 ≤ SV < 1.2

2.5

4.0 0.12 ggf. 1.1.2013

V1:3: 1.2 ≤ SV < 2.5

0.8

4.2 0.11 ggf. 1.1.2013

V1:4: 2.5 ≤ SV < 5 4.8 0.11 2012

V2:1: 5 ≤ SV < 15 5.0 0.14 2012

V2:2: 15 ≤ SV < 20 & P < 3300 kW 5.2 0.20 ggf. 1.1.2013

V2:3, V2:4, V2:5 5.9/6.6 0.20ggf.

durch IMO reguliert

Tabelle 5. Die Emissionsgrenzwerte der vorgeschlagenen Stufe III der ZKR.

44

Schiffstechnik

Binnenschifffahrt – ZfB – Nr. 9 – 2008

Richtlinie 2004/26/EG11. Die so geänderte Richtlinie 97/68/EG unterscheidet im Hin-blick auf Binnenschiffe zwischen Antriebs-motoren, Hilfsmotoren mit konstanter Drehzahl und Hilfsmotoren mit variabler Drehzahl und setzt jeweils unterschied-liche Emissionsgrenzwerte fest. Die Emis-sionsgrenzwerte für Antriebsmotoren von Binnenschiffen nach dieser Richtlinie sind in der Tabelle 4 wiedergegeben.

Die Motorkategorien V1:1 bis V1:3 müs-sen ab dem 1.1.2007 die Grenzwerte erfül-len, die anderen Motorkategorien ab dem 1.1.2009. Ein direkter Vergleich der Emis-

11 Richtlinie 2004/26/EG des Europäischen Parlaments und des Rates vom ...

sionsgrenzwerte von ZKR und EU ist nicht möglich, da die Kategorisierung der Mo-toren (ZKR: Leistung (Drehzahl); EU: Hub-volumen (Leistung)) zu große Unterschiede aufweist. Der Vergleich muss also anhand des individuellen Motors und dessen Ein-satzgebietes erfolgen. Grundsätzlich sind die Unterschiede bei den Stickstoffoxiden gering und die Grenzwerte für die Partikel-emissionen sind bei der Stufe II der ZKR bei kleineren Motoren höher, aber bei größeren Motoren niedriger.

Artikel 2 der Richtlinie 2004/26/EG beauf-tragt die Europäische Kommission bis zum 31.12.2007 zu prüfen, ob eine zweite Grenz-wertstufe für Binnenschiffe eingeführt wer-

den soll und dem Europäischen Parlament und dem Rat gegebenenfalls entsprechende Vorschläge zu unterbreiten. Die ZKR nahm diesen Auftrag zum Anlass, von der Weiter-entwicklung ihrer eigenen Vorschriften abzu-sehen und statt dessen zu versuchen, mit der Europäischen Kommission einen gemein-samen Vorschlag zu entwickeln, der zu einer Vereinheitlichung der Abgasemissionsvor-schriften für Binnenschiffe in Europa führt.

Die ZKR initiierte dazu eine Experten-gruppe, die schnell von der EU für die Be-lange der Binnenschifffahrt in die Mecha-nismen zur Überarbeitung der Richtlinie 96/87/EG integriert wurde. Die Vertreter der Mitgliedsstaaten der ZKR, insbeson-dere Deutschlands und der Niederlande, und auch Österreichs, schlugen frühzeitig ambitionierte Emissionsgrenzwerte für die Stufe III (nach dem Zählschema der ZKR), die etwa 2012 in Kraft treten sollte, und der Stufe IV für 2016 vor. Die Grenzwertvor-schläge sind in den Tabellen 5 und 6 wie-dergegeben.

Der Stufe IV ist eine wesentlich größere Bedeutung beizumessen, da die Stufe III einen temporären Charakter aufweist, wäh-rend – zumindest nach Ansicht der Regie-rungsvertreter – die Stufe IV längerfristig Bestand haben soll.

Die Vertreter der Motorenhersteller, ne-ben den vorgenannten Behördenvertretern die maßgebende Kraft in der Expertengrup-pe, brachten sehr spät einen abweichenden Vorschlag ein. Dieser Vorschlag umfasste zunächst nur eine weitere Stufe, die in Ta-belle 7 wiedergegeben ist.

Der Vorschlag der Motorenhersteller ist deutlich »angebotsorientiert«:

Emissionsgrenzwerte für Motoren von Binnenschiffen

Stufe DatumCO

[g/kWh]HC

[g/kWh]NO

X

[g/kWh]PT

[g/kWh]

ZKR I 2003 5.0-6.5 1.3 8.0-9.2 0.54-0.85

ZKR II 2007 3.5-5.5 1.0-1.5 6.0-11.0 0.2-0.8

ZKR III 2012? 2.5-3.5 0.8-1.0 4.0-6.6 0.11-0.2

ZKR IV 2016? 2.5 0.19 0.4 0.025

Emissionsgrenzwerte für Motoren schwerer Lastkraftwagen

Stufe DatumCO

[g/kWh]HC

[g/kWh]NO

X

[g/kWh]PT

[g/kWh]

Euro I 1992 4.5 1.1 8.0 0.36-0.612

Euro II1996 4.0 1.1 7.0 0.25

1998 4.0 1.1 7.0 0.15

Euro III 2000 2.1 0.66 5.0 0.10-0.13

Euro IV 2005 1.5 0.46 3.5 0.02

Euro V 2008 1.5 0.46 2.0 0.02

Euro VI1 2012? 4.0 0.16-0.55 0.2-1.0 0.01-0.02

Tabelle 9. Gegenüberstellung der Emissionsgrenzwerte der Motoren von Binnenschifffahrt und von schweren LKW.

Tabelle 10. Reduktion von Schadstoffemissionen in Verbindung mit der Anwendung von verschieden Techniken bezogen auf Schadstoff-emissionen eines Motors, welcher dem Emissionsstandard ZKR Stufe I entspricht. (FC steht für Änderung im Kraftstoffverbrauch.)

45

Schiffstechnik

Binnenschifffahrt – ZfB – Nr. 9 – 2008

• weitestgehende Übereinstimmung mit den entsprechenden Vorschriften der USA, um den ohnehin schon kleinen Markt für Binnenschiffsmotoren nicht noch weiter zu zersplittern, was die Ent-wicklungs- und Zertifizierungskosten für die Hersteller begrenzen hilft;

• möglichst weit aufgefächerter Zeitraum für die Einführung der Vorschriften, um den Herstellern Zeit zu geben, die Vor-schriften für verschiedene Motorkatego-rien nacheinander – und nicht gleichzei-tig – zu erfüllen, was die Entwicklungs- und Zertifizierungsabteilungen der Hersteller entlastet;

• umfangreiche Flexibilitätsklauseln, wie

etwa die Zulassung des Inverkehrbrin-gens von Motoren der niedrigeren Emis-sionsstufe noch bis zu zwei Jahre nach Inkrafttreten der neuen Stufen, sofern der Motor vor Inkrafttreten der neuen Stufen produziert wurde. Diese Klausel ist auch in den Gemeinschaftsvorschriften ent-halten, nicht jedoch in denen der ZKR.

Der Vorschlag der Mitgliedsstaaten der ZKR stellt andere Entscheidungskriterien in den Vordergrund:• deutliche Entlastung der Umwelt, einer-

seits zum Erreichen der umweltpoli-tischen Ziele der Staaten und der EU, andererseits um den »ökologischen Wett-bewerb« mit konkurrierenden Verkehrs-

trägern nicht zu verlieren;• Einfachheit der Vorschriften mit mög-

lichst wenig Motorenkategorien und nur ein Einführungsdatum, was Hersteller, Anwender und Behörden die Arbeit er-leichtert; allerdings sind die Mitglieds-staaten diesem Grundsatz untreu gewor-den bei ihren Bemühungen, mit ihren Vorschlägen sich auf die Motorenherstel-ler zuzubewegen;

• Vermeidung von Schlupflöchern, die die umweltpolitische Zielsetzung gefährden;

• Vermeidung von Wettbewerbsverzer-rungen, hervorgerufen durch unter-schiedliche Einführungsdaten für ver-schiedene Motorenkategorien.

Bild 1. Vergleich von Motorenemissionen der Binnenschifffahrt mit Grenzwerten der Vorschriften für Straßentransport (EURO) und Bin-nenschifffahrt (ZKR/CCNR).

Bild 2. Vergleich von Emissionen in g/tkm zwischen Motorgüterschiff, welches einen Leichter schiebt, und schweren Nutzfahrzeugen unter Berücksichtigung verschiedener Emissionsreduktionstechniken.

46

Schiffstechnik

Binnenschifffahrt – ZfB – Nr. 9 – 2008

Einen Vorschlag für eine Stufe IV haben die Motorenhersteller auch unterbreitet. Dieser entspricht den Vorschriften der USA zu die-ser Stufe, die bereits verabschiedet sind. Das aus europäischer Sicht herausragende Merk-mal dieser Vorschriften ist, dass sie lediglich für gewerblich genutzte Schiffsmotoren mit einer Leistung von 600 kW und mehr und für Freizeitzwecke genutzte Schiffsmotoren mit einer Leistung von 2000 kW und mehr gelten. Übertragen auf Eu ropa würde dies bedeuten, dass die meisten Schiffsmotoren nicht die Emissionsanforderungen einer Stufe IV zu erfüllen hätten. Die für die USA beschlossenen Grenzwerte liegen deutlich über den von den Mitgliedsstaaten der ZKR vorgeschlagenen.

Derzeit führt im Auftrag der Europäischen Kommission ein Beratungsbüro die obliga-torische Folgenabschätzung (»Impact As-sessment«) für die Überarbeitung der Richt-linie 97/68/EG durch. Dabei sollen neben den Vorschlägen der Motorenhersteller auch die von den Mitgliedsstaaten der ZKR einge-brachten Grenzwerte der nächsten Emissi-onsstufen Berücksichtigung finden. Die Fol-genabschätzung könnte in diesem Jahr abgeschlossen und ein Vorschlag seitens der Kommission zur Änderung der Richtlinie in der ersten Hälfte 2009 dem Europäischen Parlament und Rat vorgelegt werden. (Damit würde die Kommission die ihr in der Richt-linie 2004/26/EG von Parlament und Rat auferlegte Frist um mehr als ein Jahr über-ziehen.) Wegen der Komplexität der Materie – die Binnenschifffahrt ist hier wiederum nur ein Randthema – dürfte eine Verabschie-dung nicht vor Ende 2009, sondern eher im Jahre 2010 zu erwarten sein. Berücksichtigt man dann noch mindestens ein Jahr für die nationale Umsetzung der Richtlinie und mindestens zwei Jahre Entwicklungsvorlauf für die neuen Motoren, erscheint 2012 als Einführungsdatum der nächsten Grenzwert-stufen wenig wahrscheinlich.

Abschließend sind die Emissionsgrenz-werte der Binnenschifffahrt, und zwar die nach den Vorschriften der ZKR, mit den Grenzwerten der Emissionsvorschriften der EU für schwere LKW gegenübergestellt.

Diese Gegenüberstellung ist jedoch nur be-dingt aussagekräftig:• Die Grenzwerte, die von einem Motor er-

reicht werden können, werden nicht nur von den eingesetzten Emissionsminde-rungstechniken bestimmt, sondern auch ganz wesentlich von den Messverfahren. Die Messverfahren für die Bestimmung der Abgas- und Partikelemissionen von Binnenschiffs- und LKW-Motoren sind nicht identisch.

• Die Grenzwerte sind nur ein maßgeb-licher Faktor für die tatsächlich erreich-baren Emissionsminderungen. Andere Faktoren sind beispielsweise der in dem Sektor eingesetzte Kraftstoff oder der Umfang der Ausnahmeregelungen, die in einer Vorschrift vorgesehen sind. Für verkehrs- und umweltpolitische Fra-

gestellungen dürfte ein Vergleich der Emis-sionen bezogen auf die erbrachte Verkehrs-leistung (g/tkm) aussagekräftiger sein als ein Vergleich der Emissionsgrenzwerte (g/kWh). Eine derartige Betrachtung wird nachfolgend angestellt.

Technische Möglichkeiten

zur Verringerung der Schadstoff-

emissionen der Binnenschifffahrt

Unter Berücksichtigung der Entwicklun-gen hinsichtlich strenger werdender Emis-sionsvorschriften, Übereinstimmung mit der Verkehrspolitik der EU und Umwelt-freundlichkeit als Wettbewerbsfaktor von zunehmender Bedeutung wurden im Pro-jekt CREATING (www.creating.nu) des 6. EU-Forschungsrahmenprogramms (FP6-EU) mögliche Lösungen für die Verringe-rung der Schadstoffemissionen der Binnen-schifffahrt untersucht, welche im Folgenden aufgelistet sind:• Motoreninterne Maßnahmen (EGR – ex-

haust gas recirculation, fortschrittliche Einspritzsysteme, Befeuchtung der An-saugluft, Wassereinspritzung in Zylinder und HCCI – homogeneous charge com-pression ignition)

• Abgasnachbehandlung (Dieseloxidati-onskatalysator, SCR – Selektive kataly-tische Reduktion, Partikelfilter – PMF,

Rauchgaswäsche und elektrostatische Abscheidung)

• Höhere Kraftstoffqualität (Kraftstoff mit niedrigem Schwefelgehalt – LSF)

• Alternative Kraftstoffe (Biodiesel – BD, Biodieselkraftstoffgemische – BDB, Die-sel-Wasseremulsionen, Erdgas und Was-serstoff)

• Alternative Verbrennungskraftmaschi-nen (Gasmotoren – NGE)

• Neue Antriebs- und Hilfsmaschinensys-teme (dieselelektrischer Antrieb und Brennstoffzellen)

• Elektronische Systeme (Advising Tempo-maat – ATM und River Information Ser-vices – RIS)

Das Emissionsreduktions-Potential in Ver-bindung mit ausgewählten Emissionsre-duktions-Techniken ist in folgender Tabel-le 10 angegeben.

Für weitergehende Informationen wird auf die Referenzen 12 13 14 verwiesen.

Erfüllbare Emissionsgrenzwerte

Durch die Anwendung von SCR, Partikel-filtern und Kraftstoffen mit niedrigem Schwefelgehalt (10 ppm) auf ZKR I – Bin-nenschiffsmotoren können die EURO V und ZKR III Emissionsgrenzwerte eingehal-ten werden, Bild 1. Für die Einhaltung der EURO VI und ZKR IV Grenzwerte müssen entweder ähnliche Technologien eingeführt werden, wie sie im Straßentransport An-wendung finden, einschließlich der entspre-chenden Kraftstoffe, oder neue Motoren-technologien wie z.B. HCCI und Gasmotoren müssen in die Binnenschifffahrt Eingang finden. In Bild 1 bedeuten Euro truck und CCNR vessel die Emissionsgrenzwerte in g/kWh, wie sie durch die entsprechenden Standards für die Straße und die Binnen-schifffahrt durch die ZKR vorgegeben sind. Im Allgemeinen liegen die Partikelemissi-onen von Binnenschiffsmotoren, welche ZKR I entsprechen, weit unter dem vorge-gebenen Grenzwert und entsprechen etwa dem dargestellten »Basic Case« (BC).

Schadstoffemissionen –

Vergleich Binnenschifffahrt und

Straßengüterverkehr

Der Vergleich wurde für ein DDSG-Steinklasse Motor-Güter-Schiff durchge-führt, welches einen Leichter Europa IIB schiebt. Die Strecke des Transports erstreckt

12 Schweighofer J. and Seiwerth P.: Environmental per-formance of inland navigation. Proceedings of the Europe-an Inland Waterway Navigation Conference, Visegrád, Hungary, Juni 27-29,2007.

13 Schweighofer J. and Seiwerth P.: Inland environmental performance. The Naval Architect, Journal of The Royal Institution of Naval Architects, November 2007.

14 Kampfer A. and Schweighofer J. et al.: Environmental impact of inland navigation, CREATING Work Package 6, final report, 2006, Veröffentlichung 2008 erwartet.

Bild 3. Das »Cleanest Ship« MV Victoria.

47

Schiffstechnik

Binnenschifffahrt – ZfB – Nr. 9 – 2008

sich von Passau (D) nach Vidin (BG) und zurück (insgesamt 2884 km). Für den Stra-ßentransport wurden Nutzfahrzeuge mit 34 bis 40 Tonnen Gesamtgewicht herangezo-gen, welche den entsprechenden EURO Standards genügen. Heutzutage entspre-chen die meisten Motoren der Binnenschiffe dem CCNR I Standard (basic case, M1, BC), wobei für diesen Fall im Vergleich keine Emissionsreduktions-Techniken, wie sie aufgelistet wurden, Anwendung finden. Der Vergleich wurde für NO

X- und Partik-

elemissionen bezogen auf die Transportleis-tung in tkm durchgeführt. Die Partikel- und NO

X-Emissionen in g/tkm in Zusammen-

hang mit dem Referenzfall (M1, BC) sind merkbar höher als jene von schweren Nutz-fahrzeugen, welche EURO V entsprechen, Bild 2.

Die Anwendung von SCR auf Binnen-schiffsmotoren führt aber schon zu beträcht-lich geringeren NO

X-Emissionen und etwa

gleichen Partikelemissionen im Vergleich mit dem EURO V Nutzfahrzeug. Die An-wendung von SCR, Kraftstoff mit geringem Schwefelgehalt (10 ppm), Partikelfilter und Advising Tempomaat führt zu klar überle-genem Umweltverhalten des Binnenschiffs im Vergleich mit dem EURO VI Nutzfahr-zeug hinsichtlich Partikelemissionen und etwa gleichem Umweltverhalten im Ver-gleich mit dem EURO VI Nutzfahrzeug hin-sichtlich der NO

X-Emissionen. Hinsichtlich

der Reduktion der Partikel emissionen spielt der Partikelfilter die größte Rolle, welcher aber Kraftstoff mit niedrigem Schwefelgehalt voraussetzt, wie auch viele andere Emissi-onsreduktions-Technologien, z.B. EGR.

Die Binnenschifffahrt läuft Gefahr ihre Po-sition als umweltfreundlichster Verkehrsträger zu verlieren. In Bezug auf NO

X- und Partike-

lemissionen bezogen auf kWh ist dies schon der Fall. Für die Wiedererlangung der Position des umweltfreundlichsten Verkehrsträgers in Bezug auf die wichtigsten Emissionsarten (NO

X, PM, CO

2, SO

X, CO, HC) ist es notwen-

dig, als erste Maßnahme Kraftstoffe mit nied-rigem Schwefelgehalt entsprechend EN 590 für die Binnenschifffahrt einzuführen. Eine TNO Studie15 hat gezeigt, dass dies für einen Großteil der bestehenden Motoren möglich ist, ohne dass sie dabei Schaden nehmen.

»The Cleanest Ship« –

ein praktisches Beispiel für die

Erfüllung strikter Emissionsgrenz-

werte in der Binnenschifffahrt

Unter Berücksichtung einer relativ ein-fachen praktischen Umsetzung, wurde im FP6-EU Projekt CREATING die Anwen-dung von selektiver katalytischer Redukti-on, Partikelfiltern, Kraftstoff mit niedrigem Schwefelgehalt und Advising Tempomaat als effektivste Maßnahme zur Verringerung

15 Kattenwinkel H., Verbeek R. and Eijk A.: Review of potential issues for inland ship engines when reducing gasoil sulphur level to maximum 10 ppmm. TNO Report MON-RPT-033-DTS-2007-01813, Juni 2007.

Angestrebte Emissionsreduktion

NOX

PM FC CO2

SOX

Advising Tempomaat (ATM) -7% -7% -7% -7% -7%

Schwefelarmer Kraftstoff (LSF, EN 590, 10 ppm)

keine -17% keine keine -99.5%

Selektive katalytische Reduktion (SCR) -85% keine keine keine keine

Rußpartikelfi lter (DPF) keine -95% +2% +2% +2%

Gesamt-Emissionsreduktion -86% -96% -5% -5% -99.5%

Tabelle 11. Angestrebte Emissionsreduktion.

®

WELTWEIT LOSINGEN FUR FULLSTAND UND DURCHFLUSS

Alte Ziegelei 2-4,D-51491 Overath

Tel: 02204 / [email protected]

www.magnetrol.de

SAFETY

INTEGRITY

LEVEL

Sicherheit liegt

in unserer Natur

ECLIPSE® 705Der Eclipse® 705 ist ein mit 24 V Gleich strom arbeitender

Füllstand mess umformer für Flüssig keiten, der auf der

revolutionären GWR-Technologie (Guided Wave Radar)

beruht. Der 705 wurde für den Einsatz mit GWR-Koaxial-

oder Doppel stab sonden entwickelt. Dieser hoch moderne

Füllstand mess umformer zeichnet sich durch eine Mess-

leistung aus, die die zahlreicher herkömm licher Technologien

überragt.

48

Schiffstechnik

Binnenschifffahrt – ZfB – Nr. 9 – 2008

der Schadstoffemissionen der Binnenschiff-fahrt identifiziert. Diese Systeme wurden im Demonstrator »The Cleanest Ship« instal-liert, wodurch nachgewiesen werden soll, dass diese Systeme in der Binnenschifffahrt mit geringem Aufwand anwendbar sind und die Schadstoffemissionen auf das geforderte Niveau reduziert werden können. Die De-monstration wird zur Zeit an einem Schmier-öl-Tanker, der MV Victoria, durchgeführt, die im Rotterdamer Hafengebiet operiert. Die Demonstration wurde offiziell am 20 November 2007 begonnen und dauert ein Jahr. Der Kraftstoffverbrauch und die NO

X-

Emissionen werden direkt gemessen. Die CO

2- und SO

X-Emissionen werden aus dem

Kraftstoffverbrauch errechnet. Die Partike-lemissionen werden aus Prüfstandsergeb-nissen mit und ohne Anwendung von Par-tikelfiltern bestimmt, da eine genaue direkte Messung im Betrieb zu aufwendig ist. Die Ergebnisse in Bezug auf CO

2-, SO

X-, NO

X-

und Partikelemissionen werden regelmäßig aufgezeichnet und der Öffentlichkeit unter folgender Web-Adresse zugänglich gemacht: www.cleanestship.eu.

Emissionsreduktionstechniken

Advising Tempomaat

Der Advising Tempomaat ist ein System, welches Informationen für eine wirtschaft-lich optimierte Fahrweise bereitstellt. Der Kern des Advising Tempomaats besteht aus einem Computerprogramm, welches den Schiffsführer hinsichtlich der wirtschaftlich optimalen Kombination aus Fahrtgebiet und Schiffsgeschwindigkeit »berät«, wo-durch unter Einhaltung des Zeitplans der Kraftstoffverbrauch und die Emissionen des Schiffes minimiert werden. Der Advi-sing Tempomaat, dessen Informationen hinsichtlich Geschwindigkeit manuell um-gesetzt werden, ist ein Nachfolgeprodukt des früheren Tempomaaten, welcher die Geschwindigkeit des Schiffes automatisch an den optimalen Kraftstoffverbrauch an-passte, ohne dem Schiffsführer »beratend« zur Seite zu stehen.

Kraftstoff mit niedrigem Schwefelgehalt

Die MV Victoria wird mit einem extrem schwefelarmen Kraftstoff (10 ppm)betrieben. Der Kraftstoff entspricht dem Standard EN 590, der auch im Straßenverkehr eingesetzt wird. Die Anwendung dieses Kraftstoffs ist die Grundvoraussetzung für den Einsatz der Partikelfilter, welche bei höherem Schwefel-gehalt verstopft würden. In den Jahren zuvor wurde heftig diskutiert, ob man bestehende Binnenschiffsmotoren mit derartigen Kraft-stoffen betreiben kann, ohne dass diese dabei Schaden nehmen. Man befürchtete Schäden an den Motoren bedingt durch eine verrin-

gerte Schmierung wegen des geringeren Schwefelgehalts. Ausgewählte Beispiele aus der Praxis haben gezeigt, dass dem nicht so ist. Im Gegenteil, es wurde berichtet, dass die Motoren mit dem niedrigschwefelhaltigem Kraftstoff sogar besser und effizienter laufen. Dies wurde durch eine TNO-Studie unter-mauert1616, welche aussagt, dass der Großteil der bestehenden Binnenschiffsmotoren mit Kraftstoff EN 590 betrieben werden können und neue Motoren Kraftstoffe mit weniger als 50 ppm Schwefelgehalt verlangen.

Das Nauticlean S System

Das Nauticlean S System von Hug Enginee-ring besteht aus zwei Reaktoren, welche je-weils den SCR-Katalysator und den Partikel-filter beinhalten. Der Partikelfilter ist mit einem Vollstrom-Regenerationsbrenner-Sys-tem ausgestattet, das für eine betriebsunab-hängige, gründliche Rußabbrennung sorgt.

Für die effektive Beseitigung der Rußpar-tikel werden katalytisch beschichtete Silizi-um-Carbid-Wabenfilter verwendet, welche aus Mikrofasern bestehen. Die Rußpartikel verbleiben im Filter, während das Abgas durch den Filter strömt. Dies führt zu einer langsamen Temperatursteigerung im Filter. Sobald die Regenerationstemperatur er-reicht ist, werden die im Filter verbliebenen Rußpartikel vollständig abgebrannt. Auf Grund der katalytischen Beschichtung be-trägt die Regenerationstemperatur etwa 450 °C und die Filter können ohne zusätzliche Energiezufuhr regeneriert werden.

Selektive katalytische Reduktion ist eine Technik für effektive Beseitigung von NO

X-

Emissionen. Hierzu wird Ammoniak ver-wendet, das als Harnstofflösung (33 %) in das Abgas gespritzt wird, wodurch die Stick-oxide (NO

X) in Stickstoff und Wasser redu-

ziert werden.Angestrebte Emissionsreduktion

Für den Advising Tempomaat wurde mit 7 % eine moderate Reduktion des Kraft-stoffverbrauchs (FC) angenommen, wel-che ihre Ursache im operativen Gebiet des Schiffes hat. In Versuchen wurde aber auch schon gezeigt, dass der Einsatz eines Advi-sing Tempomaats bis zu 15 % Einsparung im Kraftstoffverbrauch bringen kann. Im Wert für die Reduktion der Partikelemis-sionen in Zusammenhang mit dem Parti-kelfilter ist auch der Einfluss der selektiven katalytischen Reduktion berücksichtigt.

Das »Cleanest Ship« Team

Das »Cleanest Ship« Team besteht aus:1. BP, Schiffseigentümer, Projektleiter und

16 16 Kattenwinkel H., Verbeek R. and Eijk A.: Review of potential issues for inland ship engines when reducing gasoil sulphur level to maximum 10 ppmm. TNO Report MON-RPT-033-DTS-2007-01813, Juni 2007.

Lieferant des hoch-qualitativen Kraftstoffs2. VT, Betreiber des Schiffes3. Techno Fysica, Implementierung des

Advising Tempomaats und Durchfüh-rung von Messungen in Zusammenhang mit dem Advising Tempomaat

4. Hug engineering, Implementierung des SCR-Katalysators und der Partikelfilter für die Hauptmaschine

5. Hanwel (auch Codinox oder Soottech), Implementierung der Partikelfilter für die Hilfdieselanlagen, Messung von NO

X- und Partikelemissionen

6. Breko, schiffbauliche Problemstellungen7. MTU, Problemstellungen in Zusam-

menhang mit der Maschinenanlage8. Lloyds Register, Klassifizierung9. DLD, Projektkoordination10. Yara, Lieferant von Harnstoff11. Bit factory, Umsetzung und Gestaltung

der Web-Seite12. via donau, technische Beratung und Öf-

fentlichkeitsarbeit (PR, Texte zu Websei-te und Veröffentlichungen)

13. VNSI and SPB, Öffentlichkeitsarbeit (PR)

14. SPB, Koordinator des FP6 EU Projekts CREATING.

Hiezu kommt noch eine Kooperation mit15. der Hafenbehörde von Rotterdam in Be-

zug auf operative Aspekte und Öffent-lichkeitsarbeit (PR).

Bedeutung von CREATING

und dem »Cleanest Ship« Projekt

CREATING und das Cleanest Ship Pro-jekt tragen direkt zur Umsetzung der EU Transportpolitik bei, insbesondere in Bezug auf die Umsetzung des EU Aktionspro-grammes NAIADES (Action Programme NAIADES, COM(2006) 6 final), welches u.a. Maßnahmen zur Verbesserung sowohl der Effizienz der Logistik als auch des Um-weltverhaltens und der Sicherheit der Bin-nenschifffahrt vorsieht.

Das »Cleanest Ship« Projekt demonstriert sehr eindrucksvoll, wie schon zur Verfügung stehende Emissionsreduktionstechniken auf die Binnenschifffahrt, welche immerhin aus mehr als 8500 motorisierten Einheiten be-steht (Rhein- und Donauflotte), angewendet werden können und dass auch die Binnen-schifffahrt in der Lage ist, strengsten Abgas-vorschriften zu entsprechen (Bilder 1 und 2), wodurch sie ihre Position als umweltfreund-lichster Verkehrsträger behaupten kann.

Verfasser: Gernot Pauli – ZKR, [email protected] Schweighofer, via donau – Österreichische Wasserstraßen-GmbH, [email protected]

Final Report – The Cleanest Ship Project

Submission to the Green Ship Technology Award 2008

The Cleanest Ship

A cooperation between Creating (DG Research, 6th

Framework Program) and BP

Blaauw, H.G, Shipping Projects Bureau/Dutch Logistic Development bv, The Netherlands

Schweighofer, J, via donau, Austria

Smyth, M.D. BP shipping ltd, UK

Green Ship Technology Award 2008

Summary

Introduction

Inland navigation is known as a safe and environmentally friendly transport mode. Compared

with maritime navigation and short sea shipping, it has to fulfill much stricter emission

regulations. Inland navigation faces strong competition with road and rail transport,

demanding superiority in environmental friendliness as competitive advantage. Therefore,

inland navigation has to deal with the challenge of introducing highly efficient technologies

for the improvement of its environmental performance being applicable to small spaces, in

contrast to seagoing vessels where enough space is available.

Regarding emissions to the air, especially with respect to emissions of the greenhouse gas

CO2 (carbon-dioxide), the performance of inland vessels is outstanding compared with road

transport. On average, the CO2 emissions of an inland vessel are only about 1/3 of the ones a

truck emits per ton-kilometre (tkm) due to a higher energy efficiency. Also with respect to CO

(carbon monoxide) and HC (hydro carbon) emissions per tkm, inland navigation is

significantly superior to road transport. However, SOX emissions associated with inland

navigation are actually much higher than the ones resulting from road transport, even when

related to tkm (today, these emissions are up to 60 times higher) due to the much higher

sulphur content of fuel used.

The introduction of stricter emission limits for road transport since the early 1990s has led to

a significant reduction of the pollutant emissions of NOX (nitrogen oxide) and PM (particulate

matter) on road. For inland navigation, such strict emission limits are still missing.

Consequently, the superiority in the environmental performance of inland vessels compared

with trucks has become smaller in this regard, and with the introduction of EURO V and

EURO VI limits for road transport in 2009 and 2010 (proposed by the German Federal

Environmental Agency, UBA), respectively, these new trucks may emit even significantly

less NOX and PM per tkm than inland vessels.

Within the EU project CREATING (www.creating.nu), the application of advising

Tempomaat, low sulphur fuel equal to road standard EN 590, selective catalytic reduction and

PM filter was found to be the most suitable solution to improve the environmental

performance of inland navigation. These systems are utilized in the demonstrator, the

Cleanest Ship.

The Cleanest Ship Demonstrator

The demonstration project is carried out on the motor vessel ‘Victoria’, owned by BP

shipping, managed by the Verenigde Tankrederij (VT) and operating in the Port of Rotterdam

area. The demonstration was launched officially in Rotterdam on November 20th

, 2007, and it

will last one year. Fuel consumption and NOX emissions are directly measured; CO2 and SOX

emissions are calculated from the fuel consumption, whereas PM emissions are evaluated

using the emission reduction potential estimated on the test stand, due to difficult accurate

measurement of PM emissions at service conditions.

The results with respect to the reduction of CO2, SOX, NOX and PM emissions, including a

comparison with road transport, are monitored and presented to the public on a regular basis

at www.cleanestship.eu.

Figure 1: The Cleanest Ship MV Victoria.

Emission reduction techniques

The emission reduction techniques utilized are the advising Tempomaat, low sulphur fuel

equal to road standard EN 590, selective catalytic reduction and PM filters. As advising

Tempomaat a system developed by Techno Fysica bv (NL) is used. The selective-catalytic-

reduction catalyst and diesel particulate filters are implemented in the Nauticlean S system

comprising a single reactor for NOX and PM removal, developed and built by Hug

Engineering (D).

The advising Tempomaat

The advising Tempomaat (ATM) is a system enabling an economically optimised operation

of a vessel.

The core of the ATM is formed by a computer programme advising the skipper on the most

economical combination of route and speed, enabling the vessel to arrive on time with a most

efficient use of fuel leading to a reduction of fuel consumption and emissions. The ATM,

where the advised fuel settings are realised manually, is the successor of the Tempomaat

which did automatically adjust the speed of the vessel, without giving advice.

Low sulphur fuel

The motor vessel ‘Victoria’ is operated with low sulphur fuel equal to road standard (diesel

fuel EN 590). Usage of low sulphur fuel is a precondition for the application of PM filters and

efficient reduction of PM and SOX emissions as these emissions are related to the sulphur

content of the fuel used.

The Nauticlean S system

The Nauticlean S system of Hug engineering consists of two reactors with a selective-

catalytic-reduction catalyst and a PM filter, whereby the PM filter is equipped with a diesel

full-flow regenerative burner.

Selective catalytic reduction (SCR) is a technique for efficient removal of NOX emissions by

means of injecting a reducing agent into the exhaust gas. The Nauticlean S system uses

ammonia to reduce nitrogen monoxide and nitrogen dioxide to nitrogen and water, which is

injected as urea (33 % solution).

For efficient PM removal catalytically coated silicon carbide (SiC) PM filters are used. These

filters consist of several honeycombs made of micro fibres. During operation, the soot

particles are retained in the filter. As soon as the regeneration temperature is reached, the soot

in the filters is burned off without residue. Due to the catalytic coating, the regenerating

temperature is around 450 °C and the filter burns itself clean without requiring auxiliary

energy.

Reduction of emissions expected

NOx PM FC CO2 SOx

ATM (advising tempomaat) -7% -7% -7% -7% -7%

LSF (low sulphur fuel, EN 590,

10 ppm) none -17% none none -99.5%

SCR (selective catalytic

reduction) -85% none none none none

PMF (particulate matter filter) none -95% +2% +2% +2%

Total emission reduction -86% -96% -5% -5% -99.5%

For the advising Tempomaat, the fuel consumption (FC) may be reduced by 5 up to 10%. For

the demonstrator a moderate value is assumed due to the limited effect resulting from the

operational area of the vessel. The value for the particulate matter filter includes also the

effect of SCR on PM reduction.

Impact of the Cleanest Ship project

The cleanest ship project contributes directly to the implementation of EC transport policy,

particularly, with respect to the implementation of the Action programme NAIADES,

COM(2006) 6 final, which requires the improvement of logistics efficiency, as well as

environmental and safety performance of inland waterway transport.

As outcome of CREATING and a TNO study on the applicability of low sulphur fuel with a

maximum sulphur content of 10 ppm to existing inland vessel engines, at the Round Table of

the CCNR (Central Commission for the Navigation on the Rhine), consensus was achieved

about introducing fuel of equal or similar quality to road standard for inland navigation and

lowering the sulphur content of fuel to 10 ppm in one step as soon as possible, and the

European Commission is considering the introduction of this fuel already in 2009.

Considering the European inland navigation fleet, already the Rhine and Danube fleets

comprise more than 8500 motorized units. Using the example of the motor vessel ‘Victoria’,

within the Cleanest Ship project, it is shown how highly efficient emission reduction

technologies and better fuel quality can be applied to these units, leading to compliance of the

inland navigation sector with even strictest regulations of road transport, Fig 2.

Figure 2: Emission comparison in g/tkm between motor cargo vessel (MCV) pushing a barge

(Danube vessel) and trucks in service, considering different emission reduction techniques.

Partners involved in the demonstration project

The team of the Cleanest Ship project consists of:

1. BP, being owner of the ship, director of the project and provider of clean fuel

2. VT, as manager of the ship

3. Technofysica for the delivery of the Tempomaat and related measurements

EURO III (2001)

EURO IV (2006)EURO V (2009)

EURO VI

(2010)

M1

M4M6

M7M8

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0 0,1 0,2 0,3 0,4 0,5 0,6

NOx emissions [g/tkm]

PM

em

issio

ns [

g/t

km

]

EURO III truck (2001)

EURO IV truck (2006)

EURO V truck (2009)

EURO VI truck (2010, UBA proposal)

basic case (M1) = CCNR I (2002)

SCR (M2)

SCR + ATM (M3)

SCR + ATM + BD (M4)

SCR + ATM + BDB (M5)

SCR + ATM + LSF (M6)

SCR + ATM + LSF + PMF (M7)

NGE (M8)M2

M3

M5

Truck EURO VI (2010, UBA proposal)

MCV + barge: CCNR I (2002),

without em. red. techn.

MCV + barge: SCR

Truck EURO V (2009)

MCV + barge: SCR + LSF +

PMF + ATM

MCV + barge: CCNR I (2002),

without em. red. techn.

MCV + barge: SCR

Truck EURO V (2009)

MCV + barge: SCR + LSF +

PMF + ATM

4. Hug engineering for the delivery of the SCR and PM filter for the main engine

5. Hanwel (also referred to as Codinox as Soottech) for the PM filters on the generator

sets and NOX and PM measurements

6. Breko for all constructional aspects

7. MTU for engine aspects

8. Lloyds register for classification

9. DLD for project coordination

10. Yara for the delivery of the Ureum

11. Bit factory, for the realization of the website

12. via donau for techniques and public relation (PR)

13. VNSI and SPB for PR

14. SPB as co-ordinator of the project CREATING

Moreover there is a cooperation with

15. the Port of Rotterdam Authority on operational aspects and PR.

Final Report – The Cleanest Ship Project

Marine Fuels and Emissions Conference, Rotterdam, The Netherlands, 2007

The Cleanest Ship

A cooperation between Creating (DG Research, 6th

Framework Program) and BP

Blaauw, H.G. Dutch Logistic Development bv. the Netherlands

Schweighofer, J, via donau, Austria

Smyth, M.D. BP shipping ltd, UK

Marine Fuels & Emissions Conference in Rotterdam on 27 and 28 November 2007

organized by Motor Ship magazine

Summary

Introduction

Inland navigation is known as a safe and environmentally friendly transport mode. Regarding

emissions to the air, especially with respect to emissions of the greenhouse gas CO2 (carbon-

dioxide), the performance of inland vessels is outstanding. On average, the CO2 emissions of

an inland vessel are only about 1/3 of the ones a truck emits per ton-kilometre (tkm) due to a

higher energy efficiency. Also with respect to CO (carbon monoxide) and HC (hydro carbon)

emissions per tkm, inland navigation is significantly superior to road transport. However, SOX

emissions associated with inland navigation are actually much higher than the ones resulting

from road transport, even when related to tkm (today, these emissions are about 60 times

higher) due to the much higher sulphur content of fuel used.

The introduction of stricter emission limits for road transport since the early 1990s has led to

a significant reduction of the pollutant emissions of NOX (nitrogen oxide) and PM (particulate

matter) on road. For inland navigation, such strict emission limits are still missing.

Consequently, the superiority in the environmental performance of inland vessels compared

with trucks has become smaller in this regard, and with the introduction of EURO V and

EURO VI limits for road transport in 2009 and 2010 (proposed by the German Federal

Environmental Agency, UBA), respectively, these new trucks may emit even significantly

less NOX and PM per tkm than inland vessels.

Within the EU project CREATING (www.creating.nu), the application of advising

Tempomaat, low sulphur fuel equal to road standard EN 590, selective catalytic reduction and

PM filter was found to be the most suitable solution to improve the environmental

performance of inland navigation. These systems are utilized in the demonstrator, the

Cleanest Ship.

The Cleanest Ship Demonstrator

The demonstration project is carried out on the motor tank vessel ‘Victoria’, owned by BP

shipping, managed by the Verenigde Tankrederij (VT) and operating in the Port of Rotterdam

area. The demonstration will last one year from November, 2007. Fuel consumption and NOX

emissions are directly measured; CO2 and SOX emissions are calculated from the fuel

consumption, whereas PM emissions are evaluated using the emission reduction potential

estimated on the test stand, due to difficult accurate measurement of PM emissions at service

conditions.

The results with respect to the reduction of CO2, SOX, NOX and PM emissions, including a

comparison with road transport, are monitored and presented on a regular basis at

www.cleanestship.eu.

Emission reduction techniques

The emission reduction techniques utilized are the advising Tempomaat, low sulphur fuel

equal to road standard EN 590, selective catalytic reduction and PM filters. As advising

Tempomaat a system developed by Techno Fysica bv (NL) is used. The selective-catalytic-

2

reduction catalyst and diesel particulate filters are implemented in the Nauticlean S system

comprising a single reactor for NOX and PM removal, developed and built by Hug

Engineering (D).

The advising Tempomaat

The advising Tempomaat (ATM) is a system enabling an economically optimised operation

of a vessel.

The core of the ATM is formed by a computer programme advising the skipper on the most

economical combination of route and speed, enabling the vessel to arrive on time with a most

efficient use of fuel leading to a reduction of fuel consumption and emissions. The ATM,

where the advised fuel settings are realised manually, is the successor of the Tempomaat

which did automatically adjust the speed of the vessel, without giving advice.

Low sulphur fuel

The motor tank vessel ‘Victoria’ is operated with low sulphur fuel equal to road standard

(diesel fuel EN 590). Usage of low sulphur fuel is a precondition for the application of PM

filters and efficient reduction of PM and SOX emissions as these emissions are related to the

sulphur content of the fuel used.

The Nauticlean S system

The Nauticlean S system of Hug engineering consists of two reactors with a selective-

catalytic-reduction catalyst and a PM filter, whereby the PM filter is equipped with a diesel

full-flow regenerative burner.

Selective catalytic reduction (SCR) is a technique for efficient removal of NOX emissions by

means of injecting a reducing agent into the exhaust gas. The Nauticlean S system uses

ammonia to reduce nitrogen monoxide and nitrogen dioxide to nitrogen and water, which is

injected as urea (33 % solution).

For efficient PM removal catalytically coated silicon carbide (SiC) PM filters are used. These

filters consist of several honeycombs made of micro fibres. During operation, the soot

particles are retained in the filter. As soon as the regeneration temperature is reached, the soot

in the filters is burned off without residue. Due to the catalytic coating, the regenerating

temperature is around 450 °C and the filter burns itself clean without requiring auxiliary

energy.

Reduction of emissions expected

NOx PM FC CO2 SOx

ATM (advising tempomaat) -7% -7% -7% -7% -7%

LSF (low sulphur fuel, EN 590,

10 ppm) none -17% none none -99.5%

SCR (selective catalytic

reduction) -85% none none none none

PMF (particulate matter filter) none -95% +2% +2% +2%

Total emission reduction -86% -96% -5% -5% -99.5%

3

For the advising Tempomaat, the fuel consumption (FC) may be reduced by 5 up to 10%. For

the demonstrator a moderate value is assumed due to the limited effect resulting from the

operational area of the vessel. The value for the particulate matter filter includes also the

effect of SCR on PM reduction.

Partners involved in the demonstration project

The team of the Cleanest Ship project consists of:

1. BP, being owner of the ship, director of the project and provider of clean fuel

2. VT, as manager of the ship

3. Technofysica for the delivery of the Tempomaat and related measurements

4. Hug engineering for the delivery of the SCR and PM filter for the main engine

5. Hanwel (also referred to as Codinox as Soottech) for the PM filters on the generator

sets and NOX and PM measurements

6. Breko for all constructional aspects

7. MTU for engine aspects

8. Lloyds register for classification

9. DLD for project coordination

10. Yara for the delivery of the Ureum

11. Bit factory, for the realization of the website

12. via donau for techniques and public relation (PR)

13. VNSI and SPB for PR

Moreover there is a cooperation with

14. the Port of Rotterdam Authority on operational aspects and PR.

The project will start at the third week of November at Rotterdam, and the fourth week of

November at Bruxelles.

Final Report – The Cleanest Ship Project

The Flag – Newsletter of BP, September, 2007

The Flag - Issue 23 - September 2007 www.bp.com/shipping

Focussed on emissions to the air, theenvironmental performance of inland navigationand means for its improvement are discussed inthis article. The investigation that the discussionis based on was carried out in Work Package 6,Environmental Impact of Inland Navigation, ofthe EU project CREATING – Concepts toReduce Environmental impact and Attainoptimal Transport performance by InlandNaviGation, funded within the Sixth FrameworkProgramme (www.creating.nu).

The environmentalperformance of inland navigation

Continued >

21

Taken from Naval Architect

Inland navigation is known as a safe and environmentallyfriendly transport mode. Due to its low share (of about 2 %) oftotal traffic energy consumption (road, rail and inland navigation),see Fig. 1, its contribution to global total traffic emissions isregarded as almost insignificant.

Regarding emissions to the air, especially with respect toemissions of the greenhouse gas CO2 (carbon-dioxide), theperformance of inland vessels is outstanding. On average, theCO2 emissions of an inland vessel are only about one-third ofthe ones a truck emits per ton-kilometre (tkm) due to itsapproximately three times higher energy efficiency related totkm. Therefore, if cargo is shifted from road to water, inlandnavigation can play a significant role in the reduction ofgreenhouse gasses as required by the Kyoto Protocol. Also withrespect to CO (carbon monoxide) and HC (hydro carbon)emissions per tkm, inland navigation is significantly superior toroad transport.

Legislation regarding sulphur content of fuel,NOX and PM emissionsSOX (sulphur oxide) emissions are directly related to the sulphurcontent of the fuel. For inland navigation, in accordance withDirective 1999/32/EC, the maximum sulphur content of fuel islimited to 0.2 %. Starting from January 2010, this sulphur contentlimitation will be reduced to 0.1 % in accordance with Directive2005/33/EC, yet still 100 times higher than the sulphur content offuel used in road transport today. Therefore, the SOX emissionsassociated with inland navigation are actually much higher thanthe ones resulting from road transport, even when related to tkm(today, these emissions are about 60 times higher).

The introduction of emission limits for road transport since theearly 1990s has led to a significant reduction of the pollutantemissions of NOX (nitrogen oxide) and PM (particulate matter) onroad. For inland navigation, such strict emission limits are stillmissing. Consequently, the superiority in the environmentalperformance of inland vessels compared with trucks has becomesmaller in this regard, and with the introduction of EURO V andEURO VI limits for road transport in 2009 and 2010 (proposed bythe German Federal Environmental Agency, UBA), respectively,these new trucks may emit even significantly less NOX and PMper tkm than inland vessels (Figs. 2 and 3). The dates denotewhen the regulations are considered to be fully in force.

Additionally, truck engines are replaced on average after fiveyears of operation. This implies that only five years after theintroduction of a new emission limit, the average truck fleetcomplies with this limit. When a vessel engine is replaced, itsaverage age accounts for approximately 20 years or even more,thus, it will also take much longer in order to achievecompliance with new emission standards compared with trucks,e.g. the majority of inland vessels will comply with CCNR II(Central Commission for Navigation on the Rhine) and EU StageIIIA only by approximately 2025 if no stricter standards areintroduced in the very near future and engines already in servicestay exempt from the new regulations.

The Flag - Issue 23 - September 2007 www.bp.com/shipping

The environmental performance ofinland navigation (continued)

22

Continued >

Figure 1. Distribution of final energy consumption by sector in EU 25 (2003)according to the European Environmental Agency (EEA).

0.6

0.5

0.4

0.3

0.2

0.1

00 2 4 6 8 10

CCNRI

(2002, vessels)

CCNRII /

EU-Stage IIIA

(2008/2007 vessels)

Euro

(1993, trucks)

Euro II

(1996, trucks)Euro III

(2001, trucks)

Euro IV

(2006, trucks)

Euro VI

(UBA proposal

2010, trucks)

US-EPA

(2010, trucks)

Euro V

(2009, trucks)

EU Stage IV

(~ 20012, vessels)

NOx emissions (g/kWh)

PM

em

issio

ns (

g/k

Wh

)

Figure 2. Emission standards for inland waterway and road transport.

Environmental performance of inlandnavigation compared with road transport andachievable compliance with emission standardsThe comparison is performed for a DDSG -Steinklasse motorcargo vessel pushing a Europe II B barge, sailing from Passau(D) to Vidin (BG) and back (2884 km), and trucks in servicecomplying with the respective EURO standards. For the basiccase (M1, BC) the vessel engine complies with CCNR I standardand no emission reduction techniques are applied.

The PM and NOX emissions in g/tkm associated with the basiccase (M1) are significantly higher than the ones of a truckcomplying with EURO V (Fig. 3). Application of selective catalyticreduction (SCR) to the vessel will give already significantsuperiority of the vessel with respect to NOX emissions andequality with respect to PM emissions, compared with theEURO V truck. Application of selective catalytic reduction, lowsulphur fuel (LSF), particulate matter filter (PMF) and advisingtempomaat (ATM) will lead to clear superiority of inlandnavigation with respect to both, NOX and PM emissions,compared with the EURO V truck, and equal environmentalperformance, compared with the EURO VI truck. The mostsignificant reduction of PM results from the application of theparticulate matter filter requiring low sulphur fuel.

Application of selective catalytic reduction, particulate matterfilter and low sulphur fuel to a CCNR I – vessel engine will leadto compliance with EURO V and CCNR III standard (Fig. 4).Compliance with EURO VI standard may be achieved by eitherthe application of similar technology as it is used in roadtransport, including respective fuels, or the introduction of newengine technologies like homogeneous charge compressionignition (HCCI) and natural gas engines (NGE) to inlandnavigation. In Fig. 4, Euro truck and CCNR vessel denote theemission limits in g/kWh prescribed by the respective emissionstandards for road and inland waterway transport (IWT).Generally, vessel engines complying with CCNR I (BC) showmuch better performance than required by the standard withrespect to PM emissions.

Inland navigation is in danger to loose its position as moreenvironmentally friendly transport mode than road transport interms of NOX and PM emissions in g/tkm. For emissions ing/kWh, inland navigation performs already worse than roadtransport. In order to achieve superior environmentalperformance of inland navigation to road transport with respectto all emissions (NOX, PM, CO2, SOX, CO, HC), the very firststep to be taken has to be the introduction of LSF (EN 590) toinland navigation.

Today, the European Commission is considering the introductionof LSF to inland navigation (300 ppm by 2009, and 10 ppm by2011), and on May 3rd, 2007, at the Round Table of the CCNR,consensus was achieved about introducing fuel of equal orsimilar quality to road standard for inland navigation andlowering the sulphur content of fuel to 10 ppm in one step assoon as possible.

The Cleanest ShipApplication of selective catalytic reduction, particulate matterfilters, low sulphur fuel and advising temppomaat was found tobe the most effective and practicable solution to improve theenvironmental performance of inland navigation. Thesesystems will be implemented in a demonstrator, The CleanestShip, confirming the general applicability of these systems toinland navigation and the emission reduction potentialevaluated. The demonstration will be carried out on alubrication oil tanker owned by BP Shipping, managed by theVerenigde Tankrederij (VT) and operating in the Port ofRotterdam area. It will last one year, starting by the end of 2007.The results with respect to NOX, PM, CO2 and SOX emissionswill be monitored and presented on a regular basis atwww.cleanestship.eu.

0.6

0.5

0.4

0.3

0.2

0.1

0

0 1 2 3 4 5 6 7 8 9 10

NOx emissions 9g/kWh)

PM

em

issio

ns 9

g/k

Wh

)

Euro I truck (T1)

Euro II truck (T2)

Euro III truck (T3)

Euro IV truck (T4)

Euro V truck (T5) = CCNR III (V3)

Euro VI UBA prop. truck (T6)

CCNR I vessel (V1)

CCNR II vessel (V2)

Basic case (BC)

EGR + Injection systems

Diesel oxidation catalyst

Humidification

HCCI

PMF

BD

LSF

NGE

SCR

SCR + PMF +LSF

CCNR I (V1)

EURO I (T1)

CCNR II (V2) BC

EURO III (T3)

EURO II (T2)

EURO IV (T4)

EURO VI (T6)

EURO V (T5)

CCNR III (V3)

Basic case

(BC, IWT today)

SCR + PMF +LSF

HCCI, NGE

Figure 4. Comparison of vessel-engine emissions with emissions correspondingto limit values of standards for road transport (EURO) and inland navigation(CCNR), considering different emission reduction techniques.

References

1. Schweighofer J. and Seiwerth P.: Environmental performance of inland navigation.Proceedings of the European Inland Waterway Navigation Conference, Visegrád,Hungary, June 27th-29th,2007. www.via-donau.org/uploads/media/paper_EIWNC_June2007.pdf

2. Kampfer A. and Schweighofer J. et al.: Environmental impact of inland navigation,CREATING Work Package 6, final report, 2006, to be released 2007.

Authors: Schweighofer Juha and Seiwerth Petra via donau – ÖsterreichischeWasserstrassen - gesellschaft m.b.H., Austria www.via-donau.org,[email protected], [email protected]

0.016

0.014EURO III (2001)

M1

M2

M3

M4

M7M8

M6

M5 EURO IV (2006)EURO V (2009)

EURO VI

(2010)

0.010

0.012

0.008

PM

em

issio

ns [

g/t

km

]

NOx emissions [g/tkm]

0.006

0.004

0.002

0.10 0.2 0.3 0.4 0.5 0.6

0

EURO IV truck (2006)

EURO V truck (2009)

EURO VI truck (2010), UBA proposal)

basic case (M1) = CCNR I (2002)

SCR (M2)

SCR + ATM (M3)

SCR + ATM + BD (M4)

SCR + ATM + BDB (M5)

SCR + ATM + LSF (M6)

SCR + ATM + LSF + PMF (M7)

NGE (M8)

EURO III truvk (2001)

MCV + barge: CCNR I (2002)

without em. red. techn.

MCV + barge: SCR +

LSF + PMF + ATM

Truck EURO VI (2010, UBA proposal)

MCV + barge: SCR

Truck EURO V (2009)

Figure 3. Emission comparison in g/tkm between motor cargo vessel pushing abarge and trucks in service, considering different emission reduction techniques.

The Flag - Issue 23 - September 2007 www.bp.com/shipping

The environmental performance ofinland navigation (continued)

23

Final Report – The Cleanest Ship Project

Press Book – Press Briefing Clean Waterborne Transport, Brussels, February, 2008