The Anatomy of Seismically Designed Structures€¦ · tension in the top chord in a cantilever...

24
Consortium of Universities for Research in Earthquake Engineering 1301 S. 46th Street, Richmond, CA 94804-4698 tel: 510-231-9557 fax: 510-231-5664 http://www.curee.org CUREE The Anatomy of Seismically Designed Structures adapted from the 2003 CUREE Calendar illustrated essays by Robert Reitherman © 2002 CUREE. All rights reserved.

Transcript of The Anatomy of Seismically Designed Structures€¦ · tension in the top chord in a cantilever...

Consortium of Universities for Research in Earthquake Engineering1301 S. 46th Street, Richmond, CA 94804-4698 tel: 510-231-9557 fax: 510-231-5664

http://www.curee.orgCUREE

The Anatomy of Seismically Designed Structuresadapted from the 2003 CUREE Calendar

illustrated essays by Robert Reitherman

© 2002 CUREE. All rights reserved.

1

The Anatomy of Seismically Designed StructuresIntroduction

This year’s CUREE Calendar provides brief illustrated essays explaining in simpleterms the anatomy of seismically designed structures.

The 206 bones and 639 muscles of the human body, along with the necessaryconnecting material such as ligaments at the joints, make up the structural ele-ments of the human being’s anatomy. Each of these elements has a particular role.For example, the exertion of tensile forces in the biceps has the same action as thetension in the top chord in a cantilever truss. In conjunction with the compressionmember (humerus bone/bottom compression chord) it generates a moment, a ro-tation, that tends to hold up or raise your arm. If you wish to make your armswing downward and push on something, you generate tension in the muscle onthe underside of the cantilever, the triceps. These structural elements can be treatedas if they were components of “the human machine.” (Bridgman, 1939) Genera-tions of medical students have learned about muscles, or myology, in the treat-ment of the classic anatomy textbook by Gray (1825-1861). In that work, termsfamiliar to structural engineers such as “mechanics,” “lever arm,” and “parallelo-gram of forces” are used, and the structural actions are elegantly analyzed usingprinciples of statics to determine the forces the muscles exert. Osteology (studyof the bones) is an important aspect of anatomy. Bones can break, but doctorsprobably spend more time learning about and dealing with the joints that connect

the bones in the overall skeleton. Structuralengineers similarly spend more time study-ing the joints in their seismically designedstructures than the members themselves,(though they call this “detailing” while doc-tors call it syndesmology). In the discussionhere of the structural elements that make upthe anatomy of a seismically designed struc-ture, connections will be repeatedly empha-sized.

While the state of the art of seismic design has progressed greatly in the last halfof the twentieth century, some of the basic knowledge of earlier decades formedthe platform upon which it could be built. For example, trusses, and thus bracedframes, can be analyzed using the method of joints (Squire Whipple, 1847), sec-tions (A. Ritter, 1862), and graphics (Clerk Maxwell, 1864). Though moment-resisting frame analysis is now conducted more efficiently and accurately than in

earlier times, the Maxwell-Mohr method (Maxwell, 1864, and Mohr, 1875),Castigliano (1873), and Hardy Cross (1930) developed the basic understanding.

However, there are three key concepts that are inescapable in seismic design thatwere only fully developed in recent years. First, earthquake ground motions gen-erate inertial loads that rapidly change with time. Thus, calculations that includea term labeled with a unit of time—seconds—are common in seismic analyses,and these terms include periods of vibration or their inverse, frequencies; accel-erations; velocities; and momentum. In many other structural engineering prob-lems, e.g., calculations of gravity loads to design floor beams, no unit of time isused. These time-related topics are the province of dynamics, and only beginningin the 1960s did a course in structural dynamics become part of the standard civilengineering curriculum in the USA. (Penzien, 2002) Second, probabilistic analy-sis is somewhat common in many engineering fields, but it is central to earth-quake engineering, and it was also a 1960’s addition to the basic civil engineeringcurriculum. (Benjamin and Cornell, 1970) The third fundamental earthquake en-gineering concept that distinguishes this field is that the earthquake loading canbe so severe that the materials must often be designed to behave inelastically.Within the domain of Hooke’s Law, stress is proportional to strain, but beyondthat point, behavior becomes complex. Most of the analytical and experimentalwork investigating inelastic behavior began approximately in the 1960s, (see forexample Newmark and Veletsos, 1960). The development of analysis and experi-mental methods to adequately account for inelastic behavior is still a growth in-dustry.

Rarely is there an undergraduate civil engineering semester-long course devotedto the subject of earthquake engineering that requires teaching the basic conceptsof dynamics, probability, and inelasticity, woven into the context of the kit ofparts, the physical elements, that are used to design structures that perform well inearthquakes. (SJSU, 2002) At the master’s degree level (Master of Science inCivil Engineering, or Master of Engineering degrees) many universities offer aspecialization in earthquake engineering. The entry level to the subject of earth-quake engineering is usually encountered by engineering or architecture studentsin their undergraduate years in occasional brief references to earthquakes duringclasses on other subjects, such as introductory structures, introductory dynamics,or a geotechnical engineering course. Thus, it may be helpful to offer in one placeshort summaries of the basic seismic-load-resisting elements a practicing engi-neer uses in designing buildings, towers, bridges, and other structures,

Diagram of tensile forces exerted by the biceps(bottom left) and triceps (bottom right).

illustration source: Bridgman, 1939, p. 42.

2

Design vis-à-vis Analysis

The design aspect of these elements is featured here, rather than their analysis.Conversely, most of the educational experience of an engineering student relatesto analysis, not design. For example, homework assignments and exam questionsfrequently probe a student’s knowledge of how to analyze a truss or frame ele-ment, but less often deal with how to select the element and proceed throughdesign steps. Sometimes the terms “seismic analysis” and “seismic design” areloosely used interchangeably. To be precise, however, there can be no seismicanalysis until some seismic design has already occurred. At a minimum, a pre-liminary or schematic seismic design must be produced. Perhaps this preliminaryseismic design is a hand-drawn sketch showing approximate dimensions, the overallconfiguration of the structure, and notes on what the materials are. Perhaps it is astick diagram of a frame, with initial assumptions as to some typical membersizes, allowing for a quick computer analysis. In many cases with buildings, arelatively complete architectural preliminary design is the starting point. A struc-tural designer typically proceeds through a number of iterations of design andanalysis—first proposing a solution and then testing that solution against codeprovisions and engineering principles—to evolve a preliminary seismic designconcept into a finished design ready to be built. Good structural designers acquirethe knack or intuitive ability to efficiently apply analytical tools in resolving thekey design decisions that must be made first, which will then allow for an efficientdesign process to refine other design decisions.

Many of us have had the experience as children of taking a clock apart to literally“see what makes it tick.” Very few of us have any childhood memories of beingable to put the clock back together again. In learning a foreign language, it isfeasible for an intermediate-level student to learn how to diagram a complex sen-tence in detail, taking it apart to label each past perfect tense, each participialphrase, and so on. However, it takes true mastery of the language to start with ablank piece of paper and produce a complex, well-written sentence. Designing isthe process of writing down a statement, and analysis is the process of critiquingthat work to try to find errors in it or verify its accuracy. In that process of firsthypothesizing and then testing, it is often true that “it is easier to malign thandesign.” Lateral force calculations are essential, but they follow the initial deci-sions as to the structure’s layout. “It has long been acknowledged that the seismicresistance system of a structure is just as important, if not more important, thanthe actual lateral design forces.” (Holmes, 1976, p.827) Though analytical toolsbecome more sophisticated every year, the basic design task of proposing a struc-tural system and selecting materials and connections remains as demanding a taskas ever. The skillful structural designer keeps both modes of thought working in

his or her head at the same time. Design and analysis are parallel, interactingprocesses, not opposites. Thus the subheading above is labeled design “vis-à-vis” analysis not design “versus” analysis.

Architecture and Engineering

Some of the important decisions concerning the seismic design of a building, thestructural design that eventually appears on the structural or “S” sheets in theconstruction drawing set, are made by the architect. Typically, the architect has aprime contract with the owner. The structural engineer and other consultants,such as mechanical or electrical engineers, landscape architects, and acousticalexperts, are subcontractors to the architect. Decisions as to the external shape ofthe building and even the precise location of internal structural elements, anddetermination of some of the structural materials, are typically made by the archi-tect in his or her preliminary architectural design, often with only a few consulta-tions with the structural engineer.

That fait accompli is often the starting point for the engineer’s design work. Thisis not to say that this common practice is efficient or desirable. “If we have a poorconfiguration to start with, all the engineer can do is to provide a band-aid—improve a basically poor solution as best he can. Conversely, if we start off with agood configuration and a reasonable framing scheme, even a poor engineer can’tharm its ultimate performance too much. This last statement is only slightly exag-gerated. Much of the problem would be solved if all structures were of regularshape, but economics of lot sizes and arrangements, various planning require-ments for efficient use of space, and aesthetically pleasing proportions require thestructural engineer to provide for safe constructions of various shapes.”(Degenkolb, 1977)

Floor plan of Banco Central, 1972 Nicaragua Earthquake. Note the eccentric location of rein-forced concrete walls. “Had a strong north-south component of shaking been present, consider-ably more damage would have occurred at the east end due to torsion induced by the elevatorcores.” (Wyllie, 1973, p.578)

3

Choices for the Lateral-force-resisting Elements of Structural Systems

There is an ever-increasing use of response modification techniques that changethe seismic demand on the lateral-force-resisting elements, but it is a rare struc-ture that is not comprised of elements featured here. Such techniques are aimed atchanging the forces in the structure due to ground motion (e.g. seismic isolation)or at changing the displacement within the structure due to the ground motion(e.g. damping devices).

The taxonomy of the vertical elements in a seismically designed structure is quiteconcise. The choices are limited to the following, with very few exceptions: bracedframes (vertically-oriented truss elements), moment-resistant frames (formerlycalled rigid frames), and shear walls. Shear walls are so named because of theloading they resist—they counteract the tendency of one story of a structure tomove sideways, or shear, vis-à-vis another—not because of their internal forcesor stresses, which in some cases are dominated by flexure, not shear.

The materials of which these elements can be made, again with very few excep-tions, are limited to:

Steel (we include here other metals, such as aluminum)Reinforced masonryReinforced concreteWood

Some of these combinations of elements and materials are rare and are not treatedhere with their own page of description. Braced frames can be made of reinforcedconcrete, and occasionally such bracing in a bridge tower is seen, but most bracedframes have been made of steel or wood. Masonry forming a braced frame wouldbe an extremely unusual case. Moment-resistant frames, while theoretically pos-sible in any material, can be excluded here with regard to masonry and wood.Because the eccentrically braced frame is a new breed that should be distinguishedfrom other braced frames, it is treated here as its own type of element in its ownessay. The vertical cantilever or inverted pendulum, such as the ubiquitous ex-ample of a street light, or the hybrid case of the cable-plus-cantilever structure ofthe telephone pole, are not treated here, though they are types of elements com-monly encountered in bridge design. Other examples of types of elements thatresist earthquake loads that are outside the scope here include shells, arches, andsuspension bridges.

Other taxonomies or classification systems are possible, and seismic codes usu-ally divide up these vertical elements into more specific categories, so that designprovisions for a shear wall or moment-resisting frame with special ductile detail-ing is differentiated from one that has lesser detailing requirements, or the struc-tural system that includes moment-resisting frames as well as shear walls is dif-

ferentiated from the case that has only one of these. For purposes of tabulatingdesign coefficients, such as the R or response modification factor, the NEHRPProvisions (BSSC, 2001, chapter 5) tabulates 67 combinations. In the UniformBuilding Code, K factors were assigned for many years to structures based prima-rily on the basis of a few kinds of vertical elements resisting lateral forces, forexample assigning a coefficient of 1.33 to shear wall/bearing wall systems andhalf that value for “special” (meeting special seismic requirements) moment-re-sisting frames. (SEAOC, 1999, Appendix C)

The vertical elements need a “lid on the box,” a horizontal element to tie themtogether and distribute forces in plan, and the diaphragm fills this role. While

The basic choices for lateral-force-resisting elements.illustration source: Arnold and Reitherman, 1982, p. 37

Shear wall 1. Wood2. Reinforced Concrete3. Reinforced Masonry4. Steel

Braced frame 5. Steel6. Ecentrically Braced Frame7. Wood(and other variants)

Moment frame 8. Reinforced Concrete9. Steel

Diaphragms 10. Reinforced Concrete11. Wood

4

there are historic buildings, especially in Europe, that have horizontally spanning masonry that serves as a diaphragm, masonry diaphragms may be neglected here inthe context of modern seismic design. Steel diaphragms in the form of trusswork are sometimes found in buildings, but this is more often restricted to industrialstructures or bridges, and that combination of material and type of element is also excluded here. Wood and concrete diaphragms make up the vast majority ofdiaphragms encountered in seismic design. (Metal deck is somewhat common on roofs, but is not treated here).

The basic choices are very limited, though there is a vast number of ways this “kit of parts” can be used to assemble diverse structures. It is no surprise that earthquakeinsurance rating schemes (described by Steinbrugge, 1982), or loss estimation methods (e.g., HAZUS, NIBS, 1999) are based on roughly ten basic structural system/material combinations, with the addition of subclasses for ranges of number of stories. For most purposes, the matrix of elements and materials reduces our combi-nations to those listed on the prior page, each of which is featured for one of the twelve month pages.

The astute reader will have noted that the above list sums to eleven. Has the December page of this calendar been left blank?

No, there is a twelfth topic covered here, and it appears as an obvious addition when we realize that there are actually five “structural” materials, not just wood, steel,concrete, and masonry. The fifth is the very ground on which the structure is founded. Increasingly, the fields of geotechnical engineering, foundation design, and theearth sciences, employ sophisticated quantitative techniques that parallel the methods used in structural engineering, and in any seismic design problem, the “founda-tion for the foundation” must be considered along with the manmade materials that constitute the structure above. While the earth in which the foundation isembedded is generally taken as a given and not “designed,” even that assumption is not always true, now that large-scale soil remediation techniques can be employed.And a structural designer’s image of his or her structure cannot stop at the base and leave a blank spot on the conceptual sketch where the ground begins. Decisionsconcerning framing plans and other aspects of the structure determine gravity and seismic loads on the foundation, which can be economically resisted only if soilproperties are taken into account in the early design states. The input motion to the structure from an earthquake is modified by local soil conditions and is an essentialingredient that must be considered from the beginning. Soil-structure interaction is a major field in its own right that is devoted to the way the earthquake’s vibrationsthrough the ground are modified by the fact that from the earthquake’s point of view, there is a significant “outcropping,” i.e., a building, tunnel, bridge, or otherstructure, built on or into the earth.

The state of development of the rational analysis of the earth that supports a structure is maturing today in many ways parallel with the way the properties of thestructural elements are considered in seismic design. A few of these commonalities are: how the materials dynamically respond to the earthquake based on frequen-cies and damping; the major distinction in inelastic behavior as compared to elastic behavior; estimation of how much displacement and deformation occurs as wellas the acceleration levels; how the varying amounts of knowledge about the material properties probabilistically affects the uncertainty of the resulting calculations;consideration of the fact that the loading occurs over tens of seconds of rapidly changing movements during the earthquake, rather than in a static way, thus requiringa consideration of the history of previous cycles of motion.

Non-seismic Factors in the Selection of Seismic-Force-Resisting Elements

Non-seismic considerations influence a structure’s seismic design in many ways. The following tabulation provides one simple, generalized way of looking at thisrelationship. Space allows only one or two examples of seismic design implications with an example of a related non-seismic design factor. In some cases, the non-seismic influence is neutral or favorable, but in other cases, it introduces a major seismic design problem. Typically, the non-seismic design factors are set first duringthe design process, and then the seismic design adjusts itself to those determinants. Just as engineering students are often unaware of the primary design role of thearchitect in contractual terms, it is often a surprise to them that seismic design, at least for most buildings, and to a considerable extent even for bridges and industrialstructures, occurs within constraints already set by non-seismic considerations. One of the toughest tasks in structural engineering is to design a building to resiststrong earthquakes, when the earthquake that will test the construction is very uncertain as to when and where it will occur, its motions are very random, and thecapacity of the building to inelastically respond is known much less reliably than in the case of resistance to most other loads. Yet this tough seismic design problemis only rarely the top priority, because the owner and architect are also confronted with issues that are judged by them as more immediate: efficiency of the functionalspaces, internal and external aesthetics, and compliance with non-seismic code and planning requirements.

5

Occupancy-related Configuration

The lobby level, usually the ground story, of a large publicbuilding such as a hospital or office building, is often about1 1/2 to 2 times the height of the other stories above and hasfew or no walls.

Fire Protection

If Type I construction (the most fire resistant) is required,reinforced masonry or reinforced concrete walls, or rein-forced concrete or well-fire-protected steel columns, will berequired, and the diaphragm will be reinforced concrete.

Acoustics

If sound transmission through walls and floors must bereduced to a very low level, then concrete floors andconcrete or masonry walls are often used.

Construction Cost

Low construction budgets are a fact of life.

Appearance

Beauty is in the eye of the beholder, or as the late architectGeorge Simonds once said, “form follows fashion.”

Energy Conservation, HVAC System,

Environmental Concerns

Materials differ in thermal mass and insulation.

Gravity Load Resistance

With the exception of the eccentrically braced frame, all ofthe structural elements used in seismic design were firstdeveloped to resist gravity loads or wind, and then in the20th century “retrofitted” to perform seismic roles.

Soft or weak stories: While the seismic loads are greatest at the bottom level, the floor plan imposes therequirement that there be no solid interior or exterior walls, or walls spaced far apart, whereas in the abovestories, a shear wall system with cellular layout may be possible. This may create a lobby level weaker than thestory above, or shear walls that are discontinuous at the lobby level. Even with frame structures, tall stories canbe much more flexible (“softer”) than other levels.

Locations of structural materials and masses: These ramifications are not necessarily problematic from aseismic design standpoint, but note that exposed steel or timber walls or floors may be eliminated as options,and that buildings that have high fire protection levels are higher in mass than they would otherwise be. Firesprinkler water tanks are also significant concentrated masses in high-rise buildings.

Shear wall locations: Introduction of localized areas of stiffness due to concrete or masonry walls in awoodframe building can be advantageous or disadvantageous, depending on the wall’s location. Walls thatcause eccentricity of center of mass from center of rigidity lead to torsion. Concrete topping on wood floorsincreases their rigidity and mass.

Low structural engineering design budgets go along with low overall construction budgets, reducing the amountof time that can be spent on design as well as minimizing or eliminating construction inspection by the designer.Introducing a steel moment frame at strategic places in a woodframe building (e.g., garage openings, “soft frontwalls” of retail buildings) may seem like a simple engineering feat, but may push the construction cost beyondbudget.

Unfavorable configurations are produced as well as opportunities: Pilotis (stilts) made popular by modernarchitecture can cause a soft story. If structural elements are featured architecturally (“structuralism”) then thereis wider latitude and more creativity in the seismic design, though detailing becomes more expensive to makemembers, and especially connections, aesthetically pleasing.

Selection of horizontal members, wall locations, materials: Large ducts may necessitate trusses in the sus-pended ceiling space, rather than beams, though beams would more easily allow the development of a moment-resistant frame. Introducing high mass into wood residences for “thermal flywheel” reasons also introduceshigh stiffness where concrete or masonry walls are located.

Column or wall spacing is usually set by span limits for resisting gravity and to correspond to floor planrequirements, and then seismic considerations are considered. The ability of steel frames in the decades prior tothe 1994 Northridge Earthquake to achieve longer economical spans allowed fewer columns to be placed fartherapart and also increased beam depths. This trend with regard to columns and beams negatively impacted theductility of steel moment-resisting frames.

Non-seismic Design Factor Examples of Seismic Design Implications

Seismic and Non-seismic Considerations for Selection of Type of Seismic Element and Material

6

Seismic Provisions in Codes and Standards

Numerous prescriptive design requirements for all the various elements discussedhere are provided in codes and standards for buildings, bridges, and other kinds ofconstruction. No attempt has been made in these brief essays to cite the numerousrelevant documents or summarize their provisions. Oftentimes university archi-tecture and engineering instructors in structures classes that are design-orienteduse code documents as basic texts to relate structural theory to structural practice.The commentary portions of the NEHRP Provisions (BSSC, 2001), SEAOC bluebook (SEAOC, 1997), FEMA’s Seismic Rehabilitation Guidelines (ATC, 1997),and Uniform Building Code and related International Building Code seismic pro-visions (ICBO, various) can be treated as, in effect, textbooks that help to bridgebetween the analysis rules the codes mandate for checking designs, on the onehand, and the concepts and procedures used to produce designs on the other. Itmust be remembered, however, that a code should not be considered a completemanual or “cookbook” but rather a standardized set of minimum legal require-ments that must be met in the process of conceptualizing and engineering a safeand efficient structure.

A Lesson Plan Provided By Earthquakes

As an aspect of the physical world becomes fully understood, science is able toexplain and predict a given phenomenon, and verified theory supplants or comple-ments reliance on empirical data.

Merely by mapping the wells that supplied drinking water in central London andthe locations of fatalities from an outbreak of cholera in 1854, Dr. John Snow wasable to identify the source of a cholera outbreak. (Gilbert, 1958) Snow realizedfrom the empirical data that for some reason, the water from one particular wellwas the source of the disease, and after he had that pump’s handle removed, theoutbreak was controlled. This empirical approach to graphing (mapping in thiscase) the data, and looking for a statistical pattern, could identify the geographicsource but not the causal mechanism. Snow’s work was 25 years before LouisPasteur experimented with the cholera virus in chickens and developed a vitiatedstrain that could provide an immunity for an inoculated organism, all based onPasteur’s theory or understanding of the problem, which is the justly famous GermTheory of Disease. The applicability of that theory to other diseases, with severalcommon types of immunizations routinely saving millions of lives, was far be-yond what was possible within the case-by-case empirical level of understanding.

With regard to earthquakes, the case-by-case empirical approach is mismatchedagainst a phenomenon that is so uncertain and hard to predict. First, the earth-quake shaking that was recorded in the last earthquake is not exactly the same aswhat a given structure will experience in the future; secondly, the structure thatexperienced an earthquake is not identical to the one that a structural engineer isdesigning today. (Even if the “same” structure that was exposed to the last earth-quake is to be exposed to an earthquake that could be made to be identical to thelast one, the structure will likely be different in its characteristics because of thatvery experience of the first earthquake). The “recipe” of complete structures iscomposed of many ingredients--many elements, layouts, details, sites. The long-term goal must be to evolve from an empirical basis to a sound theoretical founda-tion, being always open to new insights provided by practice, analysis, experi-mentation, and actual earthquakes.

While far from a comprehensive historical review, a brief list of key seismic de-sign lessons provided by earthquakes is shown below. Because the essays thatfollow on the anatomy of the elements of a seismically designed structure arelimited to American practice so they can fit a concise format, it is important tonote in passing the major contributions of researchers and engineers in other coun-tries who have learned from their own earthquakes.

While the capability of engineering analysis today to predict structural andgeotechnical behavior in future earthquakes is remarkably advanced compared towhat it was only a few decades ago, there are other earthquakes that will inevita-bly occur that will provide more empirical data with which the theoretical basis ofseismic design will be advanced. The seismic design lesson plan provided toengineers by actual earthquakes has yet to be completed.

Robert Reitherman

Acknowledgements

While any errors or omissions in these essays are solely my responsibility, thehelpful review comments provided by the following are gratefully acknowledged:Gregg Brandow, Kelly Cobeen, Bill Holmes, and Andrew Whittaker.

7

1908 Reggio-Messina, Italy Earthquake

A commission of engineers studying this earthquake proposed, inessence, the equivalent static lateral force method, with a lateralcoefficient of 1/12 applied to the ground story mass and 1/8 to thesecond story. (Freeman, 1932, p. 566)

illustration source: John. A Freeman1923 Tokyo or Great Kanto Earthquake

Reinforced concrete structures as tall as ten stories designedby Tachu Naito, using structural response theories developed

by Riki Sano, Kyoji Suyehiro, and others in Japan in theteens and twenties, performed well. (Reitherman, 1998)

illustration source: EERC-NISEE

1933 Long Beach, California Earthquake

Unreinforced masonry’s poor performance led to the developmentof modern earthquake resistive (reinforced) masonry, and thisearthquake also produced the first significant earthquakeaccelerogram.

illustration source: Security Pacific National Bank Collection Los Angeles Public Library

1971 San Fernando, California Earthquake

Reinforced concrete moment-resisting frame buildings andbridges were especially hard hit, leading to rapid acceptance

of the need for detailing providing ductile behavior inconcrete. Pictured is the complete ground story collapse of

the Psychiatric Building at Olive View Hospital in the1971 San Fernando Earthquake.

illustration source: Steinbrugge Collection, EERC-NISEE

1994 Northridge, California Earthquake

Compared to the vast population of structures in the Los Angelesregion the number of damaged wood and steel buildings was notlarge. Nonetheless the damage was deemed by many owners,engineers, and code officials to be excessive, and researchprograms on these topics were launched.

illustration source: Robert Reitherman

1995 Kobe (Hyogo-Ken-Nanbu, Great Hanshin) Earthquake

This is one of the most instructive earthquakes to date for illustratingthe effects of a near-fault (kinchi jishin) earthquake, where the strongest

shaking (meizoseismal area) was a “bull’s eye” direct hit on a veryurbanized region. The top of this toppled building is at left, across the

street from its base.

illustration source: Charles A. Kircher

The Instructiveness of Destructiveness

CONSORTIUM of UNIVERSITIES for RESEARCH in EARTHQUAKE ENGINEERING

CUREE 2003

8

The familiar bridge or roof truss is loaded vertically by gravity and spans horizontally, while the braced frame is loaded primarily horizontallyby seismic inertia loads and in essence acts as a vertical cantilever. The basic unit of a truss and the source of its stability is the triangle, astructural unit that resists structural loads via development of axial forces in its members. Pure truss action results if the forces in the membersare aligned with (concentric with) the centerlines of pinned joints. This distinguishes the concentric braced frame discussed here from theeccentrically braced frame (discussed separately). The braced frame is a direct, economical, and elegant seismic solution -- virtually a full-scale diagram of the forces flowing through it. Directness of the path taken by forces in the members is also a potential seismic disadvantage:When the strain in a braced frame member exceeds its elastic limit, there is no place for the system to “let off steam” safely unless specialseismic, i.e. inelastic, design features are incorporated, or special devices employed. “Buckling of beams and columns cannot representacceptable means of dissipating seismic energy as such response would endanger the gravity load carrying capacity of the structure. Henceinelastic action under earthquakes must only take place in the diagonal bracing members and adequate detailing must be provided to ensure

that the braces can go through the expected inelastic demand without premature fracture.”(Tremblay, 2001)

A basic seismic design principle is that the structure should gradually deform as the seismicload increases into the inelastic range, allowing it to dissipate energy safely rather thansuddenly breaking. The title of a recent textbook points out this importance: Ductile Designof Steel Structures. (Bruneau, Uang, and Whittaker, 1997) The non-ductile braced frame behaviors that must be prevented include the following:(1) The diagonal delivers too much force to the connection at the beam-column joint and the connection breaks; (2) The brace or other memberbuckles in compression; (3) A tension-only (e.g. tie-rod) diagonal stretches inelastically, seemingly a benign deformation, but on the nextrepetition of a cycle when it is again loaded in tension, there is slack in the system and the frame must resist a“slamming” effect, and the hysteresisloop is pinched; and (4) If diagonals frame into columns (as in a K brace) or beams (as in a V or chevron brace), the force delivered by the bracedamages the column or beam. In addition, modern seismic codes encourage redundancy. At a given story, on each line of bracing, diagonalbraces should share the lateral load exerted in a given direction by having some resist in tension while others take compression.

The fact that the diagonal is dedicated to a seismic role makes it an ideal place for application of innovative devices such as fluid dampers. Therecent retrofit of the Bennett Federal Building in Salt Lake City illustrates another technique, which was pioneered in Japan in the 1980s: “Thebasic concept of the Unbonded Brace is the prevention of compression buckling of a central steel core by encasing it over its length in a steeltube filled with concrete or mortar. A slip interface, or ‘unbonding’ layer, between the steel core and the surrounding concrete is provided toensure that compression and tension loads are carried only by the steel core…. inhibiting local buckling of the core as it yields in compression.”(Brown, Aiken, and Iafarzadeh, 2001) The term used in an early paper by Watanabe et al., 1988 clearly describes the concept: “Brace Encasedin Buckling-Restraining Concrete and Steel Tube.”

Steel braced frames are often used in low-rise buildings, which, combined with the high stiffness of the bracing, tends to put these structures at the low-period end of the response spectrum. Thisin turn usually means higher response (e.g., greater spectral acceleration) than in the long-period range, and these accelerations affect the structure as well as the equipment and contents. Thepositive aspect to a stiff, low-period structure, however, is that it tends to protect built-in nonstructural components such as partitions from drift-induced damage. Steel braced frames are veryfrequently used as the vertical structural elements providing lateral force resistance for bridges, electrical transmission towers, elevated water tanks, and non-building industrial structures.

Steel Braced FramesTrusswork has no equal in boldly expressing structural design. Famous non-seismic design examples wherethe bracing is part of the "trademark" of a famous landmark include the Eiffel Tower in Paris and the GeorgeWashington Bridge in New York. Seismic design examples, where the braced frames that resist earthquakesare intentionally designed to provide a prominent architectural effect, are common in new buildings, andbraced frames are frequently expressed on the exterior of seismically retrofitted structures as an inexpensivestructural measure that also adds visual appeal.

"The senses of the forces [tension or compression] in thediagonals can be determined by first imagining them to beremoved and then ascertaining their role in preventing theprobable type of truss deformation that would occur." -(Schodek, 1980, p. 126)

photo source: Godden Collection, EERC-NISEE

Seismic Retrofit of the Bennett Buildingillustration source: GSBS Architects, Reaveley Engineers

CONSORTIUM of UNIVERSITIES for RESEARCH in EARTHQUAKE ENGINEERING

CUREE 2003

9

It could be argued that some of the various wind design knee-bracing layouts for high-rise buildingsin the late 1800’s and early 1900’s were early examples of the eccentrically braced frame (EBF).The EBF, however, is not merely any diagonally-braced frame in which both ends of the brace donot connect at beam-column joints in a concentricity of center lines of all the structural membersinvolved. It is a framing system in which the eccentricity is intentionally planned, rather thanintroduced as an accommodation to fenestration or other architectural layout considerations, and thelocation of inelastic behavior is strategically and very explicitly designed to occur in beams in sucha way as to not threaten the gravity-load-resisting system.

To appreciate the degree of innovation represented by this invention, consider the other basic typesof lateral-force-resisting elements. There is only a limited menu from which the structural designercan choose. Walls have been around for several thousand years for the purpose of enclosing space;they were not invented to resist earthquakes, they were merely adapted for that purpose by earthquakeengineers who modified the materials and the detailing. Column-beam frames with joints that arerelatively rigid in resisting moments as the frame deforms under sidesway were constructed in metal(iron, then steel) with various riveting and bolting techniques in Europe and the Eastern United Stateswithout any seismic design in the 1800’s. The first building with extensively welded column-beamjoints, the Westinghouse factory in Sharon, Pennsylvania, built in 1926 (Condit, p.192) wasconstructed without thought for earthquakes. Reinforced concrete frames were designed andconstructed as efficient vertical-load-resisting elements and only slowly “retrofitted” in the latter halfof the twentieth century to become reliable seismic elements. Earthquake engineers graduallylearned from earthquakes, such as the 1967 Caracas and 1971 San Fernando, how to modify non-seismic concrete frames to perform well as seismic load-resisting elements. Concentrically bracedframes of K, V or inverted V (chevron), X, or single diagonal configuration have been used forcenturies in timber, later in iron, and finally steel, in non-seismic regions. These braced frame layoutswere appropriated for seismic use and gradually modified. None of these three basic types of verticalstructural elements that resist horizontal seismic forces—walls, braces, frames—was inventedbecause of earthquakes, and all three have had to be modified by earthquake engineers to take intoaccount inelastic behavior and dynamic response. Starting with a “blank piece of paper,” anddevising a new structural element specifically with earthquakes in mind as was done with theeccentrically braced frame by Fujimoto in Japan (Fujimoto et al., 1972) and Popov in the USA(Popov, 1980), is thus very noteworthy.

Eccentrically Braced FramesFrames with moment-resisting joints advantageously respond to earthquakes in a flexible manner and have thepotential for high ductility, while braced frames have greater stiffness and reduced drift-induced nonstructuraldamage. The eccentrically braced frame (EBF) offers some of the virtues of both. The development of this newstructural system, with earthquakes specifically in mind, is an example of the continuing trend toward energydissipation devices and strategies. H. Fujimoto tested eccentrically braced K braces in 1972, and in its current formit can be dated to 1978 with the experimental work published by Egor Popov (1913 - 2001), Charles Roeder, and others.

Early prototype analytical EBF model "EccentricSeismic Bracing of Steel Frames," Egor Popov,Proceedings of the Seventh World Conference onEarthquake Engineering, 1980

Charles Roeder and an early physical EBF modelphoto source: Egor Popov

Embarcadero IV Building, San Francisco, the firstlarge eccentrically braced frame structure

photo source: Andrew Merovich

CONSORTIUM of UNIVERSITIES for RESEARCH in EARTHQUAKE ENGINEERING

CUREE 2003

10

The knee brace, which could be considered a hybrid of the braced frame and the moment-resistant frame, is sometimes used in timber structures,but only for storage sheds and similar light mass (light earthquake load) cases where a large amount of flexibility does not cause drift-induceddamage to the nonstructural components that are present in most occupancies. Generally, wood posts and beams cannot be feasibly joined togetherrigidly enough to create a joint that can resist rotation. The cabinetmaker’s rigid joinery on the scale of a chair or table tends to be overwhelmedby the forces experienced by full-scale buildings or other structures. There is structural research interest in the subject of timber moment-resistingframes, (Ceccotti and Karacabeyli, 1998), but such elements are to date rare. Thus, the two common options for vertical timber elements forresisting lateral forces are shear walls (separately discussed) and braced frames.

It is difficult to make the connections in a wood braced frame as strong as the members. Unfortunately, a basic principle of seismic design callsfor just the opposite. It is desirable for connections to develop the full strength of the members so that a brittle failure at a joint cannot suddenlyoccur. In addition, if the mode of failure of a connection is for the wood to suddenly split and lose its hold on the bolts or other hardware connectingit to another member, ductility is compromised. Another seismic design principle is redundancy, but a timber braced frame tends to rely on a smallnumber of members and connecting bolts, whereas a single wood shear wall panel typically draws on the capacity of dozens of nails that eachtends to deform with great ductility. In referring to the timber braced frame research program conducted at the University of British Columbiain collaboration with Forintek, Helmut Prion notes: “Because of their inherent stiffness and low ductility, braced frames are particularly vulnerablein severe earthquakes. The only elements that can provide any significant amount of energy absorption are the connections, and therefore specialattention needs to be paid to connection detailing to assure ductile behaviour under large deformations.” (Prion et al., 1999, p. 64)

At one time woodframe walls that were composed of 2x4 (now 1.5 in. by 3.5 in.,38 mm x 89 mm), or sometimes larger studs, often relied on diagonal wood bracingfor their earthquake resistance. After World War II, the advent of plywoodgenerally superseded these braces. Light braces built into the stud wall framing act essentially as small braced frames, but theytend to quickly lose capacity in the inelastic range. Cut-in braces use pieces of wood the same depth as the wall studs and are insertedbetween them so that the segments line up to form a diagonal. Let-in braces use one continuous piece of wood, typically a one-by (3/4 inch in thickness), notched into each stud. Where the ends of this diagonal lap the horizontal framing (plates) above andbelow, there is room for only a few nails to provide this critical connection.

The flow of forces in a timber and a steel braced frame of the same layout are essentially the same under earthquake loads in theelastic range, though the path of forces, the mode of behavior, and seismic design philosophy in timber and steel braced frame twinscan be quite different in the inelastic range. One indication of why there would be a difference is that grades of steel have well-defined yield points, whereas wood engineering researchers must debate at length and agree on an “effective” or reference yieldpoint for analytical purposes. The splitting, crushing, and breaking of a piece of wood in the range defined as inelastic does notconform to a classic definition of ductility. As with the steel braced frame, a problem that timber braced frames must confront isthat the directness of the axial pathway of forces through the braced frame’s members does not automatically provide a place forinelastic energy dissipation, though dampers and other innovative applications have been proposed. (Symans, et al., 2002)

Wood Braced FramesThe wood members in braced frames are often large in cross section, either to handle their structural loads orbecause fire provisions in building codes have required that members be nominally eight inches (200 mm) inminimum dimension to qualify as Heavy Timber. Not everyone likes exposed concrete or steel; concrete blockis less than universally loved. But virtually everyone likes large timbers. Thus the wooden braced frames inindustrial buildings remodeled into shops, or in the restaurants or residences with dramatic interiors, have theunique advantage of showing off a structural material that is also aesthetically appreciated.

Light diagonal bracing inserted into woodframe wallsconstitutes a "rule of thumb" braced frame, but is veryweak and brittle as compared to plywood or OSBsheathed shear walls or engineered braced framesutilizing bolted connections.

illustration source: Anderson, 1970

In this full-scale experiment with a specimen simulating a 7.5 m (25 ft)high braced frame for a tall one-story building, connections were care-fully designed as true pin joints to avoid secondary stresses.

illustration source: Yasamura, 1990

CONSORTIUM of UNIVERSITIES for RESEARCH in EARTHQUAKE ENGINEERING

CUREE 2003

11

The first large multi-story reinforced concrete frame building in the United States, using the Ransome method of reinforcement, was the Ingalls Building inCincinnati, Ohio built in 1903. By 1910, concrete construction had already become very popular. (Condit, p. 241) This element was invented long before modernseismic design evolved. Most large concrete buildings designed to resist earthquakes in the first half of the 20th century in California, had a dual system witha perimeter frame of concrete or steel and interior core shear walls of reinforced concrete, or at least masonry infill. As time went on, designs became moreadventuresome and started to rely primarily on concrete frames for lateral resistance, opening up more floor space.

Earthquakes such as in 1957 in Mexico City, 1964 in Alaska, and 1967 in Caracas pointed out the potential for collapse of inadequately ductile concrete framesin severe earthquakes. As far back as 1935, during the Helena, Montana Earthquakes, a multistory school with reinforced concrete frame-plus-hollow-tile wallshad collapsed. (Steinbrugge, 1970). The damage to the Olive View Hospital in the 1971 San Fernando Earthquake (Mahin et. al., 1976) clearly illustrated thevalue of spiral or other close-confinement transverse reinforcing in columns as well as toughness throughout the beam-column joints. Confinement (hoops orspirals in the column, stirrups in the beam near joints), continuity (rebar lap splice details and the presence of bars running through joints or anchored securelyin them with 135 degree bar bends rather than just right angles), and other ductile detailing had not kept pace withconstruction practices. "From the perspective of reinforced concrete construction, the San Fernando earthquakerepresents a turning point in structural engineering practice." (Wood, 1998, p. III-25) Significant research by the concreteindustry, university researchers, and others was necessary to establish a ductile design philosophy for reinforced concretemoment-resistant frames in the years following 1971 and in forward-looking research of the 1960's. (see Blume,Newmark, and Corning, 1961) By the time of the 1994 Northridge Earthquake, reinforced concrete moment-resistantframes, if designed under recent codes and standards, performed well, even in the case of older bridges that had benefitedfrom 1990s vintage retrofits (Yashinsky, 1998).

In the Northridge Earthquake, eight large reinforced concrete parking garages collapsed completely or partially. (Holmesand Somers, 1995, chapter 4) In these cases, many of the issues had to do with diaphragms, columns designed only toresist gravity loads, or precast concrete beams rather than just the moment-resisting frames. Pre-cast concrete elements

in high seismic areas of the USA are not typically designed to have ductile connections and to provide the structure’s lateral-force-resisting capacity. Thereare few generalizations that have no exceptions in the field of seismic design, and this is true with regard to the preceding statement. Research specificallyaimed at enabling precast concrete to constitute the structure’s ductile lateral-force-resisting system (PRESSS, Precast Seismic Structural Systems) hasindicated its feasibility (Sritharan, Priestley, Seible, and Igarashi, 2000).

An early researcher and practitioner aptly pointed out “the utility of both iron and béton [Fr., concrete] could be greatly increased for building purposesthrough a properly adjusted combination of their special physical properties….” (Ward, 1883, p. 388) None of the other structural materials are made withrecipes individualized to achieve “a properly adjusted combination” that is as precisely fashioned to meet what is called for by the engineer's calculations.To the contrary, all of the other structural materials come to the construction site as units of standardized dimensions with the same properties throughout—pieces of steel of structural shapes and grades selected from a catalogue, sticks of timber of standardized dimensions and grades, blocks or bricks thatare the same standard product used for non-seismic purposes. The process of customizing reinforced concrete structures to better resist earthquakes hasnot stopped but has instead entered a new phase in seismic design in recent years by taking advantage of the properties of fiber reinforced polymers,especially for the retrofit of bridges.

Reinforced Concrete Moment-Resisting FramesReinforced concrete has been called “the supreme engineering material.” (Condit, p. 168) An engineer cancustomize its properties to make it precisely conform to the requirements of calculations. Other advantagesare its durability, low cost, and fire resistance. Major figures in the development of Modern architecture, suchas Le Corbusier, Gropius, Wright, Nervi, and Maillart, produced innovative designs featuring reinforcedconcrete moment-resisting frames. With the ductility possible today, this element is a frequent seismic designchoice for both bridges and buildings.

Spirally reinforced column at left;column with #3 (71 sq. mm) widelyspaced ties at right. Olive ViewHospital, 1971 San Fernando Earth-quake.

source: Steinbrugge Collection,EERC-NISEE

Good performance of the well-confined con-crete within the spiral reinforcement, RuffnerAvenue I-118 Overcrossing, 1994 NorthridgeEarthquake. (Spalling of concrete outside theconfinement does not significantly affect capac-ity and can be easily repaired).

photo source: Thomas Sardo, Caltrans

CONSORTIUM of UNIVERSITIES for RESEARCH in EARTHQUAKE ENGINEERING

CUREE 2003

12

Moment-resisting steel frames originated as riveted members and connections comprised of numerous small pieces of steel such asangles, which evolved to a relatively standard approach of using larger rolled shapes for columns and beams with rivets to connectT-stubs and angles at their joints. (ATC, 1997, Section C 5.2) The entire steel skeleton was formerly encased in concrete fireproofing,whereas lightweight fireproofing, which adds no strength or stiffness, is the rule today. “These buildings included many stiff, strongunreinforced masonry walls and partitions. Structural engineers relied upon these walls and partitions to help resist wind andearthquake loads…” and all the connections in the building were moment-resisting. Riveting was phased out as a constructiontechnology in the 1950s and 1960s, replaced by high-strength bolts (Roeder, 1998-a, p. III-694)

Roeder (1998-b, p. III-686) notes that by the 1970s, welded moment-resistant steel frames incorporated some design features thatwere not seismically advantageous, such as less redundancy (not all of the column-beam joints were moment-resisting andseismically detailed), and the columns were farther apart to reduce the number of labor-intensive connections and to provide for morearchitectural flexibility. Those trends in turn meant that deeper beam sections were used where the moment-resistant connectionswere located, and this reduced the ability of the joints to accommodate rotation in a ductile manner. A less desirable welding processalso became common. Configurations and materials in some cases went significantly beyond the experimental earthquakeengineering knowledge base built up by researchers such as Bruce Johnston, Glen Berg and others at the University of Michiganbeginning in the 1950s, Egor Popov, V.V. Bertero, Helmut Krawinkler, and others in the 1960s and 1970s at UC Berkeley, and JohnFisher, Le-Wu Lu and others at Lehigh University in the 1970s.

By the 1960s “engineers began to regard welded steel moment-frame buildings as being among the most ductile systems contained in thebuilding code. Many engineers believed that steel moment-frame buildings were essentially invulnerable to earthquake-induced structuraldamage and thought that should such damage occur, it would be limited to ductile yielding of members and their connections.” (SAC, 2000,p. 1-3) However, “one of the important overall surprises of the Northridge earthquake of January 17 1994, was the widespread andunanticipated brittle fractures in welded steel beam to column connections.” (Mahin, Hamburger, and Malley, 1998, p. III-647) The collapseof very large buildings in the Pino Suarez complex in Mexico City in the 1985 earthquake, while involving an unusual frame system with largebox columns and trusses, had earlier illustrated the possibility of brittle failure. Testing and analysis of improved beam-column connectionswas conducted by the SAC Joint Venture and others following the Northridge Earthquake to return the steel moment-resisting frame to“membership in good standing” in the club of seismically resistant structural elements. The resulting changes to the building code requirea more complicated approach to steel frame design than prior to Northridge, but one which offers significantly better performance.

As that research was underway, exactly a year after the Northridge Earthquake, the collapse of some steel frame buildings in Kobe, Japan,(AIJ, 1995) illustrated that with a different design code and different detailing, there were also potential problems, even though the materialitself was the paragon of ductility. Any seismic element is a combination of its material and the precise way in which it is assembled. Thisis true even in the case of a material such as steel, which has such a large amount of inherent ductility.

Steel Moment-Resisting FramesTo intrude on the floor plan as little as possible, it is efficient to use steel beams to carry gravity loads horizontallyto widely spaced supporting steel columns. With proper seismic design, this efficient gravity-load-resistingsystem can also resist earthquake loads. There will always be a need for a framework that frees the interior spaceof a building from permanent walls and opens up the exterior to light and views, while using a minimumamount of a ductile material, and the steel moment-resisting frame is the structural element ideally suited tothat role.

A 21-story building in the Pino Suarez Complex collapsed onto a similar,14-story adjacent building in the 1985 Mexico City Earthquake.

photo source: Robert Reitherman

Typical Northridge Earthquake fractureillustration source: SAC Joint Venture

(FEMA, 2000)

CONSORTIUM of UNIVERSITIES for RESEARCH in EARTHQUAKE ENGINEERING

CUREE 2003

13

Plywood, which became mass produced and inexpensive after World War II, provided a much stronger and stiffer sheathing materialthan board siding, which was a finish material used since the early years of the development of the United States. In the past decade,oriented strand board (OSB) appeared on the scene and competes in popularity with plywood for shear wall sheathing for woodframe("two-by-four") construction. The nailing around the edges of a sheathing panel is designed to have a closer spacing than over theintermediate studs, and when a wall is loaded laterally, deformation is absorbed mostly by the nails around the perimeter of each panel.Traditionally, each full-story-height rectangular panel, e.g., the solidly sheathed area on each side of a window, has been regardedas a shear wall (segmented shear wall design method). Increased efficiency results, especially for resisting overturning moments,if the individual panels on both sides of the window opening are connected with metal straps to form larger wall bracing units, whichis called perforated shear wall design. (See Breyer, Fridley, and Cobeen. (1999, p. 10.22.)

Recent full-scale woodframe building shake table experimentation (Fischer et al., 2001 and Mosalam et al., 2002) in the CUREE-Caltech Woodframe Project has demonstrated the significant influence that finish materials such as drywall and stucco can have onseismic performance, even though these finishes are now typically considered "nonstructural" materials. As one example, the peakground story drift for the two-story and three-story test specimens cited above, comparing the wood-structure-only case with the samestructure with stucco and gypsum wallboard, was reduced by approximately two-thirds when subjected to a Northridge Earthquakerecord with a peak ground acceleration of 1/2 g. Cyclic dynamic testing by Gatto et al. (2002) of wood-sheathed shear walls withstucco showed not only an increase in capacity but a change in failure mode. Adjacent sheathing panels did not rotate individuallybut instead acted as a unit, rigidly joined by the stucco that extended across them.

Instead of nail yielding around panel edges, which is a relatively benign form of inelastic energy dissipation, wall studs eventually fractured.

The difference in stiffness between plywood- or OSB-sheathed shearwalls and drywall or stucco raises a design issue. If a level of damageprotection far in excess of code minimums is sought, it implies great stiffness to protect brittle finishes, and yet it is difficult to greatly booststiffness by "beefing up" the sheathing and nailing of the wood shear walls. Two fundamental design approaches are possible. First, partitionscould be isolated from in-plane motion as is relatively common in high-rise construction, though in most woodframe buildings, many of thewalls are load bearing, which makes this detailing problematic. A related strategy of accommodating drift is to leave the attachments fixed,but to use more flexible exterior finish materials such as board siding or vinyl siding rather than stucco. A complicating factor is that the exteriormaterials are usually selected on the basis of non-seismic criteria, and another challenge is that even if exterior wall surfaces are flexible, interiorwalls are very commonly surfaced with gypsum wallboard.

A second approach to the differential stiffness issue does not require radical change to basic construction features. Further research could bedevoted to the goal of obtaining more capacity from finish materials such as stucco, which must consider the reliability issues of qualityassurance in the field and durability over time. Most of the recent innovations in the earthquake aspects of woodframe construction have comefrom detailing and steel hardware connection products. A breakthrough in the basic construction materials could be achieved if stucco canbe seismically designed as, in effect, a thin layer of reinforced concrete, with its small-scale reinforcing and connections arranged to providefor strength, stiffness, and ductility. The ductility criterion is perhaps the most difficult to achieve, because if too much inelastic behavioroccurs, it is by definition damage, and damage to stiff finish materials is the original concern motivating this approach.

Wood Shear WallsThe “general range of the fraction of wood structures to total structures seems to be between 80% and 90% inall regions of the US, for example being 89% in Memphis, Tennessee and 87% in Wichita, Kansas,” (Malik, 1995)and the vast majority rely on wood shear walls, making this the most common of the elements discussed here.When properly constructed, its performance in past earthquakes has typically been reliable. Ongoing researchaims at improving the efficiency of this element by increasing its strength and drift control capability at a smalladditional construction cost.

Testing of Stepped Woodframe Cripple Walls. Significantdifferences in performance are caused by the presence ofstucco on the exterior. The stepped geometry that is commonto hillside houses also influences behavior.

photo source: Chai, Hutchinson and Vukazich, 2002

Home under construction in the 1971 San Fernando Earthquake. Notedisplacement of relatively rigid roof diaphragm and racking of plywoodshear panels, which were not yet fully nailed.

photo source: Gregg Brandow, Brandow & Johnston

CONSORTIUM of UNIVERSITIES for RESEARCH in EARTHQUAKE ENGINEERING

CUREE 2003

14

In earthquakes of the first half of the twentieth century in the USA, reinforced concrete shear wall buildings with severe damage were most notable as exceptions to generally good performance,with isolated instances of collapse from the 1925 Santa Barbara Earthquake (San Marcos Building), 1940 El Centro (Dunlack Hotel), and 1952 Kern County Earthquakes (Cummings ValleySchool). Severe damage was usually due to inadequate width of walls and low quality construction. (Steinbrugge, 1970) In the 1964 Alaska Earthquake, core walls failed in the Four SeasonsBuilding and the six-story building collapsed, probably because of inadequate lap splices. Damage also occurred in the case of the Mt. McKinley and 1200 L Apartment Buildings, though themore extensive amount of shear wall prevented collapse. (Steinbrugge, Manning, and Degenkolb, 1967) In the 1994 Northridge Earthquake, large concrete parking garages collapsed, but themain factors had to do with diaphragms, gravity-load-resisting columns with inadequate tolerance for imposed deformations, and pre-cast elements, rather than traditional reinforced concreteshear walls.

The tilt-up shear walls in a warehouse-type structure or one- or two-story office building, which are poured flat and then lifted up into place, began to display a bad habit of collapsing in the 1964Alaska Earthquake in the case of the Alaska Sales and Service Building and a large warehouse at Elmendorf Air Force Base (Steinbrugge et al., op. cit.) Tilt-ups usually do not have seismicdeficiencies in the wall panels themselves, but rather in the connections of these elements to the roof diaphragm, which is usually made of wood.

Three factors relevant to reinforced concrete shear walls coincide in Chile: (1) there are large earthquakes, e.g. 1960 (Mw 9.5) and 1985 (Ms 7.8); (2)there is a prevalence of reinforced concrete shear walls for the vertical elements resisting lateral forces; and (3) the seismic performance of these buildingshas been good. In one survey of approximately 400 buildings in Chile up to 15 stories in height, almost all relied on reinforced concrete shear wallsfor resisting both seismic and gravity loads. This survey found that in high seismic regions of the United States, designers used reinforced concreteshear walls for about half of the buildings up to three stories in height, for only about an eighth of those in the four-to-six story range, and for only onetwentieth of the buildings from seven to fifteen stories tall. (Eberhard and Meigs, 1995) In the Chilean city of Viña del Mar, which was strongly shakenby the 1985 earthquake, 80% of the reinforced concrete shear wall buildings had no damage. This good performance was attributed to the extensiveamount of shear wall oriented along both axes of the plane, which for each axis added up to between 2 to 4% of the floor area. The Chilean designphilosophy provides for less wall ductility (e.g., less confinement of chord steel at ends of walls) but greater strength and stiffness. “If less wall areahad been used, the displacements during the 1985 earthquake and the resulting damage, would have been larger.” These Chilean buildings wereextremely stiff, with their periods approximating N/20, where N is the number of stories. (Wood, 1991) Where walls with high ratios of height to lengthare used, as is common in the US, there may be advantages in lengthening the period of the structure to the point where it escapes the usual short-periodplateau of response, but that longer period is associated with greater story drifts and nonstructural damage.

A sample of individuals representing Los Angeles structural engineering firms, testing laboratories, and building departments was surveyed after theNorthridge Earthquake concerning the seismic risk associated with structural systems. Compared to a welded steel moment-resisting frame, 89%thought the reinforced concrete shear wall option had lower earthquake risk (though the survey was conducted only about a year after the NorthridgeEarthquake, when steel frame vulnerabilities were well-publicized but research had not yet produced many answers). When asked what kind of building

they would prefer their own offices to be in, half chose the reinforced concrete shear wall option while the other half of the votes were divided among the steel braced frame, ductile reinforcedconcrete frame, and low-rise woodframe candidates. (Gates and Morden, 1995, p. 3-40) The collapse of some very large buildings with discontinuous shear walls in the 1999 Chi-Chi (Taiwan)and Turkey Earthquakes (Naiem and Lew, 2000) points out the limitations of any material, unless it is used wisely.

Reinforced Concrete Shear WallsThe reinforced concrete shear wall is a tried-and-true workhorse that usually performs reliably if its needs arerespected in terms of the layout of the building. In many cases the “failure” mode of adequately reinforcedconcrete walls in severe earthquakes has been the formation of horizontal or diagonal cracks which are easilyrepaired after the earthquake. As the earthquake shaking continues, the crack keeps working and damage tothis element increases, but within limits, while stability of the overal structure is maintained and drift controlis provided for nonstructural elements.

Large buildings with reinforced concrete shearwalls in the Chilean city of Viña del Mar werelargely undamaged in the 1985 earthquake.

photo source: Sharon Wood

CONSORTIUM of UNIVERSITIES for RESEARCH in EARTHQUAKE ENGINEERING

CUREE 2003

15

Prior to the 1933 Long Beach Earthquake, reinforced masonry was so rare that the “unreinforced” adjectivewasn’t necessary when referring to masonry walls laid up without benefit of a grid of steel reinforcing embeddedin grout. (See Cowan, 1977, p.225, and Tobriner, 1984 for discussion of very early examples of reinforcedmasonry). The statistical picture of unreinforced masonry building performance was as clear as the photographicpictures of destruction: In the City of Long Beach, out of about 2,000 unreinforced brick buildings, damage thatwas severe enough to cause bricks to fall was suffered by 86% of them, and 55% were damaged so heavily thatabout half the wall areas collapsed or required replacement. (Wailes and Horner, 1933) The first significantseismic building code provisions in the United States, the Field and Riley Acts in California, were a direct result.These laws applied to new construction, and later the risk posed by existing unreinforced masonry buildingsmotivated the implementation of the first retroactive seismic upgrade laws in the US. It was also in Long Beachthat this later retrofit phase began when the building official of that city, Ed O’Connor, began implementingmandatory seismic upgrades of unreinforced masonry buildings in 1959. (Reitherman, 1984) Los Angeles alsoenacted an influential ordinance in 1981. As of 2000, three-fourths of the 25,000 unreinforced masonry buildingsin the state inventoried by local jurisdictions were subject to mandatory upgrade ordinances. (CSSC, 2000)

Older mixtures for mortars, especially after decades of deterioration, are sometimes said to “hold the bricks apart,not together.” While it might seem that today’s higher strength Portland-cement-based mortars could adhere onemasonry unit to the next, this “glue” is not up to the task of keeping a masonry building intact in a strong

earthquake in the absence of steel reinforcing. Where codes still allow unreinforced masonry buildings in low seismic zones in the USA today,the design philosophy is to provide enough strength for the low level of loading to keep the structure elastic. Brick construction was modifiedafter 1933 in California to produce a structural sandwich composed of two wythes of brick separated by a few inches of space (the cavity) inwhich was placed a grid of reinforcing steel and, in essence, an especially fluid concrete mixture with small aggregate (grout). In this filled-cavity construction, there are no headers, which are bricks extending into the wall and are seen on-end, as compared to the stretchers laid withtheir long axis parallel with the wall, which expose their sides.

Concrete block, (also called concrete masonry unit or CMU, hollow concrete block, or cinder block), also pre-dated the 1933 earthquake. Thisconstruction style evolved to incorporate the vertical seismic reinforcing and grout running up through the hollow cells and reinforcing steeland grout allowed to run horizontally. Seismic research initiatives have more recently been launched and coordinated to keep pace with theother structural materials, such as the Technical Coordinating Committee for Masonry Research, or TCCMAR, which was established in 1985.(Noland, 1987) Experimentation has included a full-scale reaction-wall experiment of a portion of a concrete masonry building five stories inheight. (Seible et al., 1994) Textbooks (e.g., Paulay and Priestley, 1992) and design guides are widely available.

While most seismically designed masonry buildings in the USA in high seismic zones are made of concrete block, other alternatives includemodern hollow brick, which can be reinforced similarly to hollow concrete block and should not be confused with the weaker hollow clay tileused for fire walls and partitions in the 1800s and early 1900s. Most stonework seen in modern, seismically designed buildings is nonstructuralveneer, though double-wythe, filled cavity reinforced stone masonry construction is possible.

Reinforced Masonry Shear WallsMost of the buildings studied in architectural history are made of masonry: Egyptian and Greek temples, Hindusiharas, Buddhist stupas, Roman sports arenas, Persian palaces, Mayan pyramids, Byzantine domes, Islamicminarets, Gothic cathedrals, Renaissance universities, and the list goes on. This is because (1) masonry waschosen for its high quality; (2) it aesthetically complemented many different styles; and (3) the structures haveendured. Reinforced to carry out its seismic role, masonry can be used in high seismic regions to create beautifuland durable buildings which perform similarly to concrete shear wall buildings if detailed adequately.

Unreinforced masonry’s poor performance led to thedevelopment of modern earthquake resistive (reinforced)masonry. The Long Beach Earthquake also produced thefirst significant earthquake accelerogram.

photo source: Security Pacific National Bank CollectionLos Angeles Public Library

Reinforced masonry, pseudo-dynamic experimentation, five-story buildingsource: University of California, San Diego, NSF-TCCMAR Project

CONSORTIUM of UNIVERSITIES for RESEARCH in EARTHQUAKE ENGINEERING

CUREE 2003

16

In discussing the steel braced frame, we can make the analogy between a horizontally spanning truss and a vertically oriented braced frame. Similarly, an analogy can be drawn between thehorizontally spanning steel plate girder and the vertically oriented steel plate shear wall. “Together, the steel plate wall and boundary columns act as a vertical plate girder. The columns act asflanges of the vertical plate girder and the steel plate wall acts as its web. The horizontal floor beams act, more-or-less, as transverse stiffeners in a plate girder.” (Astaneh, 2000)

Of the elements discussed here, steel plate shear walls, along with the steel eccentrically braced frame, were the last of the elements that were added to the repertoire of the structural designerwho had to contend with earthquake loads. (Energy dissipating devices, seismic isolation, and active control are recent developments also, but are outside the scope discussed here). However,in the field of ship design, fastening steel plate to structural steel shapes to form wall or diaphragm elements was routinely done for over a century before being accomplished in seismic design.Ships experience large inertial forces in storms that lead naval architects to design portions of their structures for about 1 g of acceleration. The vertical load carried by bulkheads and hulls ina large ship can be tremendous, as they bear the weight of what is in effect a multi-story building. Water pressures, even neglecting wave effects, add to the demand. In Twenty Thousand LeaguesUnder the Sea, (Verne, 1873) Professor Aronnax gives the harpoon-wielding sailor, Ned Land, a quick lesson in hydrostatic pressure to convince Ned thatthick iron plates would be necessary to keep any undersea craft from being crushed. The professor calculates that going deeper underwater by 10 metersincreases the water pressure produced by the weight of the column of water above that level a kilogram per square centimeter (about 15 psi, or 2,000 psf).This can be thought of as about 50 times the pressure (live load) for which a residential building floor is designed. In a ship’s hull, at the same time thatlarge out-of-plane loads are applied, the same steel element acts as part of a beam spanning the other axis, longitudinally, resisting hogging and saggingbending moments that for a large ship are calculated into the realm of hundreds of millions of Newton-meters (billions of inch-pounds). The configurationand loading on a ship’s hull is obviously different than on a building’s shear wall. Nonetheless, naval architecture’s use of steel plate walls illustrates thepotential strength and toughness that can be adapted for use in seismic design from such a type of construction. Timoshenko (1953, pp.434 ff.) discussesearly 20th century structural engineering advances in steel ship design.

The twenty-story Nippon Steel Building in Tokyo, built in 1970, was the first seismically designed structure to use steel shear walls. Five “H’s” in planwere arranged symmetrically in a row down the center of the building. (Thorburn, Kulak, and Montgomery, 1983)

The steel shear wall structure that has been the most dramatically tested by a real earthquake to date is the Olive View Hospital—that is, the new (1988)medical center, on the site of the original facility of the same name, that was so badly damaged in the 1971 San Fernando Earthquake that it was demolished.In the 1994 Northridge Earthquake, accelerometers in the new six-story building (two stories of reinforced concrete shear walls surmounted by four ofsteel plate shear walls) “registered the highest accelerations ever recorded in a building (0.9g free field and 1.7 g at the roof).” (Holmes and Somers, eds.,1995, p. 230) The structure managed to resist these tremendous loads without damage, and except for water pipe breakage, most of the facility wasotherwise functional. The cost of damage repair was 11% of its replacement cost, and it was back in full operation within a month. (FEMA, 1997)Compared to the performance of its predecessor in 1971, the steel shear wall design’s performance in 1994 was excellent.

In addition to its high strength and stiffness, research has been conducted to select the material properties of the flange and web materials to maximizeperformance. If one keeps in mind the seismic design strategy of resisting earthquake loads by intentionally designing components that will yield, it isnot surprising that some research has centered on the use of low yield, rather than high yield steel, for the panel material. (Nakashima, 1994)

Steel Shear WallsIf one combines the most material—a solid wall rather than a frame—with the strongest of the structural materials—

steel—it is not surprising that tremendous lateral load capacity can result. While common in ship design, steel platewalls are only rarely used in buildings, but this type of element offers the designer an option that canconcentrate massive amounts of earthquake resistance into compact spaces where other types of elementswould not be strong enough. Energy dissipation strategies can also be combined with steel shear walls toprovide damping and energy dissipation with this type of element.

Experimental research by Kyoto UniversityDPRI and Nippon Steel.

photo source: Masayoshi Nakashima

CONSORTIUM of UNIVERSITIES for RESEARCH in EARTHQUAKE ENGINEERING

CUREE 2003

17

The vertical structural elements that resist lateral forces would be a disorganized crowd of individuals trying to compete in a tug of war if they weren't linked together with horizontal diaphragms,which allow the walls or frames to work as a group in resisting lateral forces. Because out-of-plane resistance capacities are very small for walls, moment-resisting frames, and braced frames,it is only through the diaphragms that the vertical elements oriented in line with the earthquake loads at a given instant can convey their stabilizing effect to their partners.

In the 1964 Alaska Earthquake, pre-cast concrete roof or floor beams and planks, (products that were relatively new as of that time), performed very poorly. (Steinbrugge, Manning, and Degenkolb,1967) Lacking the integral characteristic of poured-in-place concrete, the building that was constructed in pieces tended to fall apart in pieces, as welds connecting adjacent units failed. A basicsolution to the problem is to employ continuous reinforced concrete topping to tie together the precast units, in addition to improving the welds. Although today there are many hotels and otherkinds of construction outside the high seismic West with precast floor or roof units without any topping, it has become a standard solution where earthquakes are more frequent and seismic designforces higher. Looked at as an individual unit, the pre-cast beam with top flange forming the floor or roof area (e.g., T beams), or flat planks, offer many advantages. For example, the concretemixed and poured under factory rather than field conditions can avoid much of the shrinkage and associated cracking and stresses that would occur in a large diaphragm made of monolithic concrete.As with the other parts of the anatomy of a seismically designed structure, the connections of pre-cast diaphragm units (with each other and with the vertical elements), are often the key concern,rather than the quality of the members themselves. However reinforcing within the diaphragm element was inadequate in some cases in the Northridge Earthquake where large diameter, poorlyconfined chord steel tended to spall off the edge of the concrete diaphragm. “Once the concrete cover spalled, the chord/collector bars were rendered ineffective, and in some cases, catastrophicbuilding failures ensued.” (SEAOC, 1997, p. 198) Wood, Stanton, and Hawkins (1998) also identified vulnerabilities in the web portion of these large diaphragms in some instances.

In most cases, when the floor or roof will be built with reinforced, poured-in-place concrete, the cost of providing aseismically resistant diaphragm is very similar to non-seismic construction. Unusually thick concrete slabs, for examplefloors in warehouses that may be about 250 mm (10 inches) or more in thickness, are typically designed that way becauseof large vertical loads, not lateral loads. From a seismic standpoint, keeping these elements thinner rather than thicker confersa seismic benefit, since so much of the mass of a typical building is concentrated in its floors. The reinforcement in concretediaphragms is specially designed to conform to its role of behaving like a beam on its side, with the edges performing chordor flange roles. This is precisely where little reinforcing is needed if only vertical loads are considered. The steel deckingoften used to erect concrete floors functions primarily as formwork that is left in the floor assembly, rather than reinforcing,and therefore reinforcing bars or mesh are still needed. (Bare steel decking can be designed as a diaphragm for roofs, butis not discussed here).

The choice of concrete allows for high diaphragm strength and stiffness, and this almost always makes for a rigid diaphragm,rather than a flexible diaphragm that is often assumed for wood diaphragms. Loads are distributed by rigid diaphragms tothe vertical elements in a given story in proportion to the relative rigidities of these elements, not by tributary area, and torsioncan be resisted.

The issues that arise with diaphragms that may pose problems for the structural designer usually have to do with configuration. Like any diaphragm, the reinforced concrete floor or roof can bechallenged to carry out its lateral-force-resisting job when its shape in plan is significantly concave (i.e., there are large re-entrant corners). For purposes of classifying this as an irregularity andtriggering remedial requirements, the NEHRP Provisions (BSSC, 2001, Chapter 5) define the threshold of this condition when both projections or legs beyond the “notch” or corner extend formore than 15% of the plan dimension in the given direction. If holes (such as the common stairwell, elevator shaft, and atrium) add up to more than 50% of the area of a diaphragm, this is alsoan irregularity that triggers special design countermeasures. Analogously, a beam with half its web cut out would have a tough time spanning loads across to supports. If the stiffness of a diaphragmat one level differs by more than 50% from that of the diaphragm in an adjacent level, another irregularity is identified in the NEHRP Provisions.

Reinforced Concrete DiaphragmsA building owner has no particular non-seismic need for diagonal braces or the ductile connections in amoment-resisting frame. The argument must be made that these are seismically necessary. However, theengineer does not need to convince the owner or architect that the building should have floors and a roof—i.e.,diaphragms--which are key to a complete seismic-load-resisting system. A concrete floor system offers someseismic advantages, but its selection is usually predetermined by non-seismic factors such as fire resistance,control of footfall vibration, acoustic separation, and vertical load carrying ability.

Beam web and flange analogy for a diaphragmillustration source: Arnold and Reitherman, 1982, p. 38

CONSORTIUM of UNIVERSITIES for RESEARCH in EARTHQUAKE ENGINEERING

CUREE 2003

18

A floor or roof, as well as a shear wall, is “a flat structural unit acting like a deep, thin beam. The term ‘diaphragm’ is usually applied to roofsand floors. A shear wall, however, is a vertical, cantilevered diaphragm.” (APA, 2001, p. 4) As used here, “diaphragm” is limited to floors androofs, which act in theory as if they were deep beams on their sides, with the midsection of the diaphragm handling the shear stresses while theedges act like the flanges of a wide-flange beam and take the tension and compression. The reactions, moments, shears, deflections, andconsideration of end conditions, can be analyzed using the same theory used in the case of beams that resists gravity loads.

Diaphragms framed with nominal two-by lumber (38 mm, 1.5 inch thickness) and sheathed with plywood or oriented strand board are almostalways used when the walls are of woodframe construction. Basic engineering procedures are given in various APA publications (APA, 2001),and in Breyer, Fridley, and Cobeen. (1999) Prior to about World War II, board siding, either diagonal sheathing (laid out at a 45 degree anglevis-à-vis the walls) or straight sheathing (boards laid parallel to the walls) were common. (ATC, 1997, Sec. C8.5.1)

The seismic design of wood diaphragms, like all lateral-force-resisting elements, requires care and skill, but the engineer does not usually haveto compete for extra seismic capacity in the layout of the building the way he or she must often struggle to obtain enough shear wall lineal footage.The vertical-load-resisting function of the sheathing as part of the floor or roof is already a given, which means that there is little extra cost forthe necessary seismic details for the sheathing, nailing, and chords. In all-wood construction, seismic damage to the diaphragm is virtually unheardof, though this is not to tempt fate and state that this element will always perform as intended, no matter how large the hole in a diaphragm or howirregular its layout (e.g., complex plan shapes and split levels).

Wood diaphragms are often used with large reinforced masonry or tilt-up buildings. While the diaphragm loads increase in these cases, the “beam” (diaphragm) is also deeper, so that even largewood diaphragms can usually use thicknesses of sheathing and nailing schedules that are not drastically different or more expensive than in ordinary house construction. (The framing, however,is often more complicated for vertical-load-resistance purposes, with a hierarchy of girders, beams, joists, and purlins.) The most common cause of damage with these large diaphragms in mixedwood-concrete/masonry construction has been the connection at the wall, though cases of damage within the diaphragm itself were observed in the Northridge Earthquake. Cross-building tiesand collectors are often needed in larger buildings, which pose other connection issues. The problem of inadequate concrete or masonry wall connections to wood diaphragms surfaced in the1964 Alaska Earthquake in the collapse of the Alaska Sales and Service Building and warehouses at Elmendorf Air Force Base. (Steinbrugge et al., 1967) However, it was the 1971 San FernandoEarthquake that led engineers and code officials to closely scrutinize this problem. Briasco (1973) provides the standard diagnosis of the weak link provided by the standard ledger connectionof the era. Failure modes included the nails pulling out of or ripping through the plywood, and the ledger splitting in cross-grain tension, both with the same effect: The wall could tilt outwardand fall, simultaneously dropping a portion of the roof. Wood is extremely weak when tensile forces act across the grain, pulling one ring of wood from the adjacent one, the way one can easilysplit firewood. With nails connecting the diaphragm's plywood to the top of the ledger, and with the metal joist hangers providing no significant lateral resistance, the connection of wall to roofexerted a wrenching action at the top of the ledger, inducing a bending or torsional moment on the ledger that causes cross-grain tension. The most common retrofit solution is similar to thatused in new construction: One end of a steel bolt or strap is embedded in the wall (or extended through the wall in the retrofit case) and the other end is connected directly to the sides of theroof framing. A review of building code provisions for this type of building, in the context of current seismic evaluation standards, is given by SEAONC (2001).

While a common generalization is that “wood diaphragms are flexible” (as compared to the rigid diaphragm analysis alternative), there are in fact ranges of rigidity. Factors that increase diaphragmrigidity include: gluing the sheathing to the joists; walls or partitions attached to the top of the diaphragm that act somewhat as stiffeners on the web of a plate girder; low aspect ratio of lengthto width; and of course the particular sheathing and nailing details (e.g., blocking or concrete soundproofing topping increases stiffness). Wall rigidities are the other key factor: It is the relativerigidities of diaphragm and walls that determines whether the loads are distributed according to the flexible or rigid analytical assumption. Experimental results are discussed in Fischer et al.,(2001) and Dolan (2002), design guidance is given in SEAOC (1999, section C805.3), and current code issues discussed by Mochizuki and Fennell (2002).

Wood DiaphragmsJust as wood shear walls are the most numerous of the vertically-oriented seismic resistant elements, wooddiaphragms are the most common type of diaphragm in the United States. With careful and usually inexpensiveseismic detailing, wood diaphragms have performed very reliably in earthquakes in all-wood construction.The vulnerability of inadequate connections of masonry or concrete walls to wood diaphragms in newbuildings has been largely remedied with current joist anchorage and other connection details. Fortunately,these measures are also relatively inexpensive to implement as retrofits for existing mixed construction.

Experimental simulation of earthquake loading on a wooddiaphgram, Virginia Polytechnic Institute.

photo source: Daniel Dolan

CONSORTIUM of UNIVERSITIES for RESEARCH in EARTHQUAKE ENGINEERING

CUREE 2003

19

H. F. Reid’s elastic rebound theory (Reid, 1908) elegantly explained how the build-up of strain in Earth’s crust released earthquake vibrations as a fault ruptured. Using their knowledge of rocksand the signs of the past occurrence of faulting, geologists can estimate the likelihood that faults will slip a particular amount, and thus release earthquakes of given magnitudes, over future timespans. Other earth scientists such as Richter (1935) conceptualized and quantified earthquakes in ways that were increasingly relevant to engineering. A current frontier of seismology and a researchfocus of the Southern California Earthquake Center is earthquake source physics—trying to understand in greater detail what happens kilometers under the earth's surface where slip is spread overa large, irregular rupture surface, which is the true source of an earthquake. Seismologists study wave propagation modeling (for site-specific studies) or general attenuation relationships (to defineregional-scale zones in building codes). In modeling waves from source to site, there lies the hope of being able to predict precisely where motion will be elevated or lowered in severity: “amongthe extremely complex wave-motions of the surface of unstable ground, due to reflections, refractions and the superimposing of these motions there are what may be called nodal spots….” (Freeman,1932, p. 767) See Somerville and Yoshimura, 1990 for a modern view of this phenomenon. By about 1970, the theory of plate tectonics provided earth scientists with the explanation for the globaldistribution of crustal strain and earthquakes (Uyeda, 1972, 1978), though a hint of the plate tectonics concept originated with Wegener much earlier (Wegener, 1915). Geodesists have benefitedfrom the advent of GPS (Global Positioning System) to measure the deformation of Earth’s surface and relate this to strain accumulation.

There are several major geotechnical engineering sub-disciplines extensively involved in seismic design. The geotechnical design contributionrelated to foundations is not unique to earthquake engineering, though seismic factors complicate foundation design decisions. For example,a deep pile foundation may be necessary to handle seismic overturning forces where spread footings would otherwise have sufficed. Soil-structure interaction studies of a very sophisticated nature today grapple with the fact that when structures are relatively stiff and massive, theyare not just a dependent variable being shaken by the ground -- they in turn affect how the localized earth shakes.

Site response is a key seismic design consideration. Borcherdt (2002) found that site response data from the 1994 Northridge Earthquakeconfirmed the site coefficient formulation in the NEHRP Provisions, which are explained in Borcherdt (1994) and in the Commentary to theNEHRP Provisions (BSSC, 2001). Sites are assigned to six (A through F) Site Classes based on their measured or inferred mean shear wavevelocities. The S factor introduced into the UBC in 1976 was a constant independent of the expected severity of ground motion, whereas inthe NEHRP Provisions, these two considerations are related. As shown by site response for very soft soils in the 1985 Mexico City and 1989Loma Prieta Earthquakes, “earthquake motions attenuate in soft soils as the strength of the soil is exceeded and the soil behaves in a highlynonlinear manner,” but until that limiting effect on the motion comes into play, soft soil motion can be greatly amplified as compared to theacceleration at bedrock. (SEAOC, 1999, p. 89)

Nathan Newmark, who was well known to the structural engineering discipline for pioneering work in inelastic design spectra (1960), alsodid research in the geotechnical field that is still influential today. He was the first to mathematically elucidate the principles involved thatenable a mass of rock or earth to start moving and continue sliding in landslides. (Newmark, 1965) A yield acceleration is necessary toovercome the friction restraining the soil mass, which is modeled as a block on an inclined plane. By analyzing strong motion records, onecan quantify the amount of time during which the motion acts above this threshold level, and therefore compute how far the slide proceeds.

Liquefaction was a mysterious form of ground failure for many years until its scientific basis was understood, such as in the work of Housner (1958). Seed and Lee (1966), and Seed and Idriss (1967)produced early work that continues to be influential as a framework for improving the state of the art, as in the case of Youd and Idriss, 1997. The two most often used parameters are the cyclicstress ratio and a calibration of field data on the local material such as from the Standard Penetrometer Test (SPT) (ASTM, 1999). Youd and Perkins (1978) devised relationships between the wayover 20 categories of cohesionless soil had been deposited (river channel vs. delta for example), combined with four categories of age of deposit. Because the site’s seismicity cannot be controlled,the two basic liquefaction factors amenable to remediation projects are dewatering and compaction, thus providing the capability of “designing” the soil itself, as well as the structure.

The Earth Beneath A StructureProgress made in reducing to mathematical relationships the seismic behavior of the earth beneath a structure(or surrounding it in the case of a tunnel) has paralleled the way engineers have rationalized the behavior ofstructures over the past century. In many ways, the soil on which the structure is founded is less amenable toanalysis, observation, and experimentation, than the structure, but it is an integral element of the seismic loadpath. Great strides have been made in the earth sciences and geotechnical engineering in recent years to applysophisticated quantitative analytical and experimental techniques.

NEES Mobile Geotech Lab - A localized earthquake can begenerated by this equipment and field data collected.

photo source: University of Texas at Austin

20

AIJ (Architectural Institute of Japan), 1995. Reconnaissance Report on Damage toSteel Building Structures Observed from the 1995 Hyogoken-Nanbu (Hanshin/Awaji) Earthquake, in Japanese, with abridged English translation by MasayoshiNakashima.

Anderson, L. O., 1970. Wood-Frame House Construction. Washington, DC: Dept.of Agriculture (Agriculture Handbook #73).

APA, 2001. “Diaphragms and Shear Walls: Design/Construction Guide.” Tacoma,WA: APA, The Engineered Wood Association (www.apawood.org) See also“Introduction to Lateral Design,” 1999.

Astaneh, Abolhassan, 2000. “Steel Plate Shear Walls,” Proceedings of the US-Japan Partnership for Advanced Steel Structures Workshop on Seismic FractureIssues in Steel Structures, February, 2000, San Francisco, California.

Astaneh, Abolhassan, 2001. Seismic Behavior and Design of Steel Shear Walls.Structural Steel Educational Council, July 2001. Available via AISC website: http://www.aisc.org

ASTM (American Society for Testing and Materials), 1999. ASTM Standard 1586-1999, “Standard Test Method for Penetration Test and Split-Barrel Sampling ofSoils.”

ASTM (American Society for Testing and Materials), 2000. ASTM StandardD2487-00, “Standard Classification of Soils for Engineering Purposes (Unified SoilClassification System).”

ATC (Applied Technology Council), 1997. NEHRP Commentary on the Guidelinesfor the Seismic Rehabilitation of Buildings. FEMA Publication 274, companion toFEMA Publication 273, the Guidelines volume. Washington, DC: Federal Emer-gency Management Agency. Developed into FEMA 356, Pre-Standard andCommentary for the Seismic Rehabilitation of Buildings.

Benjamin, Jack, and C. Allin Cornell, 1970. Statistics, Probability, and Decisionfor Engineers. New York: McGraw-Hill. This textbook, and the associated courseat Stanford University, was a novel feature of civil engineering curricula at the time.

Blume, John A., N.M. Newmark, and L.H. Corning, 1961. Design of Multi-storyReinforced Concrete Buildings for Earthquake Motions. Skokie, IL: PortlandCement Association.

Borcherdt, Roger, 1994. “Estimates of Site-Dependent Response Spectra forDesign (Methodology and Justification),” Spectra, vol., 10, no. 4, November 1994.

Borcherdt, Roger, 2002. “Empirical Evidence of Site Coefficients In Building CodeProvisions,” Spectra, Vol. 18, No. 2, May, 2002, pp. 189-217.

Bridgman, George B., 1939. The Human Machine. Toronto: General Publishing,1939.

Brown, Parry, Ian Aiken, and Jeff Jafarzadeh, 2001. “Seismic Retrofit of theWallace F. Bennett Federal Building,” Modern Steel Construction, August, 2001.

Breyer, Donald, Kenneth Fridley, and Kelly Cobeen, 1999. Design of WoodStructures: ASD. New York: McGraw-Hill.

Briasco, Ezio, 1973. “Behavior of Joist Anchors Versus Wood Ledgers,” LeonardMurphy, ed., San Fernando, California Earthquake of February 9, 1971. Washing-ton, DC: National Oceanic and Atmospheric Administration.

Bruneau, Michel, Chia-Ming Uang, Andrew Whittaker, 1997. Ductile Design ofSteel Structures. New York: McGraw-Hill.

BSSC (Seismic Safety Commission), 2001. NEHRP Recommended Provisions forSeismic Regulations for New Buildings and Other Structures: Part 2: Commen-tary, 2000 Edition. Washington, DC: Federal Emergency Management Agency;FEMA 369. The companion Part 1, Provisions, is FEMA 368. FEMA documentsare available by calling 1-800-480-2520.

Ceccotti, A. and E. Karacabeyli, 1998, “Seismic Performance of Moment ResistingTimber Frames,” Proceedings of the 5th World Conference on Timber Engineering,Montreaux, Switzerland, pp. 540-547.

Chai, Rob, Tara C. Hutchinson, S. M. Vukazich, 2002 (in press). Seismic Behaviorof Level and Stepped Cripple Walls. Richmond, CA: Consortium of Universitiesfor Research in Earthquake Engineering.

Clough, Ray and Joseph Penzien, 1975. Dynamics of Structures. New York:McGraw-Hill.

Condit, Carl W., 1983. American Building: Materials and Techniques from theFirst Colonial Settlements to the Present. Chicago: University of Chicago Press.

Cowan, Henry, 1977. The Master Builders: A History of Structural and Environ-mental Design From Ancient Egypt to the Nineteenth Century. New York: Wiley.Cowan illustrates iron reinforcing in St.Genevieve (later called the Pantheon) in the1770’s.

CSSC (California Seismic Safety Commission), 2000. “Year 2000 Report to theLegislature: Status of California’s Unreinforced Masonry Building Law.” Sacra-mento, CA: California Seismic Safety Commission.

Degenkolb, Henry, 1977. “Seismic Design: Structural Concepts,” Summer SeismicInstitute for Architectural Faculty. Washington, DC: AIA Research Corporation, p.111.

Cited References

21

Dolan, Daniel, 2002. Design Methodology for Diaphragms. Richmond, CA:Consortium of Universities for Research in Earthquake Engineering (CUREE).CUREE-Caltech Woodframe Project report in press.

Eberhard, M. O., and B. E. Meigs, 1995. “Earthquake-Resisting System SelectionStatistics for Reinforced Concrete Buildings,” Spectra, vol. 11, no. 1, 1995.

FEMA (Federal Emergency Management Agency), 1997. Report on Costs andBenefits of Natural Hazard Mitigation. Washington, DC: Federal EmergencyManagement Agency.

Folz, Bryan and André Filiatrault, 2001. “Cyclic Analysis of Wood Shear Walls,”ASCE Journal of Structural Engineering. 127 (4), 433-441.

Fischer, David, A. Filiatrault, B. Folz, D.-M. Uang, and F. Seible, 2001. ShakeTable Tests of a Two-Story Woodframe House. Richmond, CA: Consortium ofUniversities for Research in Earthquake Engineering.

Freeman, John, 1932. Earthquake Damage and Earthquake Insurance. New York:McGraw Hill.

Fujimoto, M., et al., 1972. “Structural Characteristics of Eccentric K-BracedFrames,” Transactions of the Architectural Institute of Japan, May, 1972, pp. 39-49,in Japanese; abstract translated into English in Earthquake Engineering Abstracts,Earthquake Engineering Research Center, National Information Service for Earth-quake Engineering (NISEE), UC Berkeley.

Gates, William E. and Manuel Morden, 1995. “Lessons From Inspection, Evalua-tion, Repair and Construction of Welded Steel Moment Frames Following theNorthridge Earthquake,” in Surveys and Assessment of Damage to BuildingsAffected by the Northridge Earthquake of January 17, 1994. Sacramento, CA:SAC Joint Venture; Report No. SAC 95-06.

Gatto, Kip and Chia-Ming Uang, 2002. Cyclic Response of Woodframe Shearwalls:Loading Protocol and Rate of Loading Effects. Richmond, CA: Consortium ofUniversities for Research in Earthquake Engineering.

Gilbert, E. W., 1958. “Pioneer Maps of Health and Disease in England,” Geo-graphical Journal, 124 (1958), pp. 172-183, cited by Edward Tufte, 1983, TheVisual Display of Quantitative Information Cheshire, Connecticut: Graphics Press,p. 24.

Gray, Henry, 1858. Anatomy of the Human Body. Republished in numerouseditions and readily available in revised form today from several publishers.

Holmes, William, 1976. “Design of the Veteran’s Administration Hospital at LomaLinda, California,” in Franklin Y. Cheng, ed., Proceedings of the InternationalSymposium on Earthquake Structural Engineering. University of Missouri, Rolla,vol. II.

Holmes, William and Peter Somers, 1995. Northridge Earthquake of January 17,1994 Reconnaissance Report, Vol. 2. EERI Spectra Supplement C to Vol. 11,January 1996.

Housner, George, 1958. “The Mechanisms of Sandblows,” Bulletin of the Seismo-logical Society of America, Vol. 48, April 1958.

ICBO (International Conference of Building Officials), various dates. ICBOpublishes guides such as Seismic Design Handbook, Seismic Design Manual Series,and Design for Earthquakes. Whittier, CA: International Conference of BuildingOfficials (www.icbo.org). As of this writing, the three major model building codeorganizations in the United States—Building Officials and Code AdministratorsInternational (BOCA), Southern Building Code Congress International (SBCCI)and the ICBO —plan to integrate into the International Code Council (ICC)(www.inticode.org) in January, 2003. The code that the ICC promulgates is calledthe International Building Code (IBC), along with related codes such as the Interna-tional Plumbing Code, International Mechanical Code, and so on.

Mahin, Stephen, Ronald Hamburger, and James Malley, 1998. “National Programto Reduce Earthquake Hazards in Steel Moment-Resisting Frame Structures,” inProceedings of the NEHRP Conference and Workshop On Research on theNorthridge, California Earthquake of January 17, 1994. Richmond, CA: Consor-tium of Universities for Research in Earthquake Engineering.

Mahin, Stephen A., V. V. Bertero, A. K. Chopra, and R. G. Collins, 1976. Responseof the Olive View Hospital Main Building During the San Fernando Earthquake.Berkeley, CA: Earthquake Engineering Research Center, University of California,Oct. 1976, UCB/EERC-76/22.

Malik, A. M., 1995. Estimating Building Stocks for Earthquake Mitigation andRecovery Planning. Ithaca, NY: Cornell Institute for Social and Economic Re-search.

Mochizuki, Gary, and William Fennell, 2002. “Developing a Practical Interpreta-tion and Application of the Building Code to Wood Frame Building DiaphragmDesign,” Proceedings of the 2002 SEAOC Convention. Sacramento, CA: Struc-tural Engineers Association of California.

Mosalam, Khalid, et al., 2002. Seismic Evaluation of an Asymmetric Three-StoryWoodframe Building. Richmond, CA: Consortium of Universities for Research inEarthquake Engineering.

Naeim, Farzad and Marshall Lew, 2000. “The 1999 Earthquake Disasters World-wide: How Many Times Do We Have to Re-learn the Fundamentals of SeismicEngineering?” The Structural Design of Tall Buildings, Vol. 9, No. 2, Special Issue2000.

22

Nakashima, Masayoshi et al., 1994. “Energy Dissipation Behavior of Shear PanelsMade of Low Yield Steel,” Earthquake Engineering and Structural Dynamics. Vol.23, December, 1994, pp. 1299-1313.

Newmark, Nathan, and Anestis Veletsos, 1960. “Effect of Inelastic Behavior on theResponse of Simple Systems to Earthquake Motions,” Proceedings of the SecondWorld Conference on Earthquake Engineering, vol. II, Tokyo and Kyoto, Japan.

Newmark, Nathan, 1965. “Effects of Earthquakes on Dams and Embankments,”Geotechnique, Vol. 15, No. 2, p. 139-160.

NIBS (National Institute of Building Sciences), 1999. HAZUS 99 TechnicalManual. Washington, DC: Federal Emergency Management Agency.

Noland, James, 1987. “A Review of the U.S. Coordinated Program for MasonryBuilding Research,” Proceedings of the Fourth North American Masonry Confer-ence. Los Angeles, CA: University of California at Los Angeles.

Paulay, Thomas and Nigel Priestley, 1992. Seismic Design of Reinforced Concreteand Masonry. Chichester, UK: John Wiley & Sons.

Penzien, Joseph, 2002. Personal communication. Professor Penzien studiedstructural dynamics at MIT in 1959 on his first sabbatical, but the mathematical anddynamics courses and professors he sought out were in aeronautics and mechanicalengineering. He and Professor Ray Clough began teaching a course in structuraldynamics as a regular part of the civil engineering curriculum at the University ofCalifornia in the 1960s, with the text, Dynamics of Structures (New York: McGraw-Hill) first published in 1975.

Popov, Egor, 1980. “Eccentric Seismic Bracing of Steel Frames,” Proceedings ofthe Seventh World Conference on Earthquake Engineering.

Prion, Helmut, Ricardo Foschi, Frank Lam, and Carlos E. Ventura, 1999.“Research at the University of British Columbia,” in Frieder Seible, AndréFiliatrault, and Chia-Ming Uang, editors, Proceedings of the Invitational Workshopon Seismic Testing, Analysis and Design of Woodframe Construction. Richmond,CA: Consortium of Universities for Research in Earthquake Engineering, 1999.

Reid, Harry Fielding, 1908. “The Mechanics of the Earthquake,” Vol. II, in TheCalifornia Earthquake of April 18, 1906: Report of the State Earthquake Investiga-tion Commission. Washington, DC: Carnegie Institution.

Reitherman, 1984. “An Interview With Edward M. O’Connor: RetroactiveEarthquake Regulations In Long Beach,” Building Standards, International Confer-ence Of Building Officials, September-October, 1984.

Reitherman, Robert, 1998. “1926: The Suyehiro Vibration Analyzer,” in The 1998CUREe Calendar: Historic Developments in the Evolution of Earthquake Engi-neering. Richmond, California: Consortium of Universities for Research inEarthquake Engineering.

Richter, Charles F., 1935. “An Instrumental Earthquake Magnitude Scale,” Bulletinof the Seismological Society of America, January, 1935.

Roeder, Charles, 1998-a. “Correlation of Past Connection Experiments withSeismic Behavior,” in Proceedings of the NEHRP Conference and Workshop OnResearch on the Northridge, California Earthquake of January 17, 1994. Rich-mond, CA: Consortium of Universities for Research in Earthquake Engineering.

Roeder, Charles, 1998-b. “Cracking and Ductility in Steel Moment Frames,” inProceedings of the NEHRP Conference and Workshop On Research on theNorthridge, California Earthquake of January 17, 1994. Richmond, CA: Consor-tium of Universities for Research in Earthquake Engineering.

SAC Joint Venture, 2000. Recommended Seismic Design Criteria for New SteelMoment-Frame Buildings. Washington, DC: Federal Emergency ManagementAgency. (FEMA 350)

Sano, Riki, 1915. Theory of Earthquake Resistant Building. Sano’s 1931 lecturetour across the United States provides an English version of his studies: Scientificand Technical Papers, Suyehiro Memorial Committee, Tokyo, 1934.

SJSU (San Jose State University), 2002. Course Catalog. Civil Engineering 165,Earthquake Resistant Design, is an exception to this generalization concerning theabsence of undergraduate courses devoted to seismic design. See:http://www.engr.sjsu.edu/mcmullin/courses/ce165/ce165.htm

Schodek, Daniel, 1980. Structures. Englewood Cliffs, NJ: Prentice-Hall.

SEAOC (Structural Engineering Association of California), 1999. RecommendedLateral Force Requirements and Commentary, Seventh Edition. Sacramento, CA:SEAOC. Because of its pale blue cover (dark blue in the case of the SeventhEdition), this influential volume is sometimes referred to as “the blue book,” and ithas been periodically updated since its first publication in 1960.

SEAONC (Structural Engineers Association of Northern California), 2001. Guide-lines for Seismic Evaluation and Rehabilitation of Tilt-Up Buildings and OtherRigid Wall/Flexible Diaphragm Structures. San Francisco, CA: SEAONC; alsoWhittier, CA: International Conference of Building Officials.

Seed, Harry Bolton, and K. L. Lee, 1966. “Liquefaction of Saturated Sands DuringCyclic Loading,” Journal of the Soil Mechanics and Foundations Division, ASCE92, SM 6, pp. 105-134.

Seed, Harry Bolton, and I. M. Idriss, 1967. “Analysis of Soil Liquefaction: NiigataEarthquake,” Journal of the Soil Mechanics and Foundations Divisions, ASCE 93,SM 3, pp. 83-108.

Seible, F., G.A. Hegemier, A. Igarashi, G.R. Kingsley, 1994. “Simulated SeismicLoad Test on Full-Scale Five-Story Reinforced Masonry Building,” Journal ofStructural Engineering, ASCE, March, 1994.

23

Somerville, Paul and Joanne Yoshimura, 1990. “The Influence of Critical MohoReflections on Strong Ground Motions Recorded in San Francisco and OaklandDuring the 1989 Loma Prieta Earthquake,” Geophysical Research Letters, Vol. 17,No. 8, July 1990, pages 1203-1206.

Sritharan, S., M.J.N. Priestley, F. Seible, and A. Igarashi, 2000. “A Five-StoryPrecast Concrete Test Building for Seismic Conditions - An Overview,” Proceed-ings of the 12th World Conference on Earthquake Engineering, Auckland, NewZealand, January 30 - February 4, 2000.

Steinbrugge, Karl V., John H. Manning, and Henry J. Degenkolb, 1967. “BuildingDamage in Anchorage,” Fergus Wood, ed., The Prince William Sound, Alaska,Earthquake of 1964 and Aftershocks. Washington, DC: Coast and GeodeticSurvey.

Steinbrugge, Karl V., 1970. “Earthquake Damage and Structural Performance inthe United States,” in Robert Wiegel, editor, Earthquake Engineering. EnglewoodCliffs, New Jersey: Prentice-Hall.

Steinbrugge, Karl V., 1982. Earthquakes, Volcanoes, and Tsunamis: An Anatomyof Hazards. New York: Skandia Group.

Symans, Michael, K. Fridley, W. Cofer, and Y. Du, 2002. Innovative Systems.Woodframe Project Report W-20. Richmond, CA: Consortium of Universities forResearch in Earthquake Engineering.

Thorburn, L. J., G. L. Kulak, and C. J. Montgomery, 1983. Analysis of Steel PlateShear Walls, Structural Engineering Report No. 107. Department of Civil Engi-neering, University of Alberta. Summarized in Astaneh, 2001, op. cit.

Timoshenko, Stephen, 1953. History of Strength of Materials: With a BriefAccount of the History of Theory of Elasticity and Theory of Structures. New York:McGraw-Hill.

Tobriner, Stephen, 1984. “A History of Reinforced Masonry Construction De-signed To Resist Earthquakes,” Spectra Vol. 1, No. 1, Nov. 1984.

Tremblay, Robert, 2001. “Seismic Behavior and Design of Concentrically BracedSteel Frames,” Engineering Journal, Third Quarter, 1001, pp. 148-166.

Uyeda, Seiya, 1972, 1977. The New View of the Earth: Moving Continents andMoving Oceans. San Francisco, CA: 1977. (Translated and updated in 1977 fromthe first edition in Japanese published in 1972).

Verne, Jules, 1873. 20,000 Leagues Under the Sea. Part I, Chapter 4. Publishedoriginally in French (Vingt Mille Lieues Sous Les Mers) and since translated andrepublished many times.

Wailes, C.D. and A. C. Horner, 1933. “Survey of Earthquake Damage at LongBeach, California,” City of Long Beach files, published in summary form inEngineering News-Record, May 25, 1933 as “Earthquake Damage Analyzed ByLong Beach Officials.”

Ward, William E., 1883. “Béton in Combination with Iron as a Building Material,”Transactions of the American Society of Mechanical Engineers, IV (1883); quotedin Condit, op. cit., p. 170.

Watanabe, A. Y. Hitomi, E. Saeki, A. Wada, and M. Fujimoto, 1988. “Properties ofBrace Encased in Buckling-Restraining Concrete and Steel Tube,” Proceedings ofthe Ninth World Conference on Earthquake Engineering, Vol. IV, pp. 719-724,Tokyo and Kyoto, Japan.

Wegener, Alfred, 1915. The Origin of Continents and Oceans. Original in German;translated and revised several times.

Wyllie, Loring, 1973. “Performance of the Banco Central Building,” Managua,Nicaragua Earthquake of December 23, 1972. Oakland, California: EarthquakeEngineering Research Institute, vol. II.

Wood, Sharon, 1991. “Performance of Reinforced Concrete Buildings During the1985 Chile Earthquake: Implications for the Design of Structural Walls,” Spectra,vol., 7, no. 4, November, 1991.

Wood, Sharon, 1998. “Research Overview: Concrete and Masonry Buildings,” inProceedings of the NEHRP Conference and Workshop On Research on theNorthridge, California Earthquake of January 17, 1994. Richmond, CA: Consor-tium of Universities for Research in Earthquake Engineering.

Wood, Sharon, John Stanton, and Neil Hawkins, 1998. “Influence of Floor Dia-phragms on the Seismic Response of Precast Parking Garages,” in Proceedings ofthe NEHRP Conference and Workshop On Research on the Northridge, CaliforniaEarthquake of January 17, 1994. Richmond, CA: Consortium of Universities forResearch in Earthquake Engineering.

Yasamura, Motoi, 1990. “Seismic Behavior of Braced Frames in Timber Construc-tion,” Tsukuba, Japan: Building Research Institute.

Yashinsky, Mark, 1998. “Performance of Bridge Seismic Retrofits During theNorthridge Earthquake,” in Proceedings of the NEHRP Conference and WorkshopOn Research on the Northridge, California Earthquake of January 17, 1994.Richmond, CA: Consortium of Universities for Research in Earthquake Engineer-ing.

Youd, Les, and I. M. Idriss, editors, 1997. Proceedings of the NCEER Workshop onEvaluation of Liquefaction Resistance of Soils. NCEER 97-0022. Buffalo, NewYork: Multidisciplinary Center for Earthquake Engineering Research (MCEER).