Thai J. For. 33 (3) : 109-130 (2014) ‘‘…‘ Í 1 (1) : 1-8 (2) Original … · 2015. 7....

22
Thai J. For. 33 (3) : 109-130 (2014) วารสารวนศาสตร 31 (1) : 1-8 (2556) Original article Effects of Past Burning Frequency on Woody Plant Structure and Composition in Dry Dipterocarp Forest Kobsak Wanthongchai 1* Jürgen Bauhus 2 Johann G. Goldammer 3 1 Department of Silviculture, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand *Corresponding Author, E-mail: [email protected] 2 Institute of Silviculture, University of Freiburg, Tennenbacherstr 4, 79085 Freiburg, Germany 3 Global Fire Monitoring Centre, Fire Ecology Research Group, c/o The University of Freiburg,Tennenbacherstr 4, 79085 Freiburg, Germany Received: Sep 2, 2014 Accepted: Nov 22, 2014 ABSTRACT Anthropogenic burning in dry dipterocarp forests has become a common phenomenon throughout Thailand. Too frequent fires may affect plant species composition, soil properties and processes, and nutrient dynamics, thereby impacting upon ecosystem productivity and sustainability. Conversely, complete fire exclusion, may result in changes to ecosystem components, and an increased risk of high-intensity wildfire. This study aimed to investigate the effects of different burning histories (7, 2, 1 or 0 fires in the past 10 years) and prescribed fire on sites with different past burning regimes on woody plant structure and composition in a dry dipterocarp forest at Huai Kha Khaeng Wildlife Sanctuary, Thailand. Each burning history comprised of three 30m×30m plots for the measurement of overstorey vegetation. Four 4m×4m subplots were set up within the plot to assess saplings and seedlings. These investigations were measured both pre-burn and one-year post-burn. The study revealed that the structure of stands that had been frequently burned in the past differed from that of the less frequently burned stands. Moreover, the species composition of the small-sized overstorey vegetation in the frequently burned stands also differed significantly from that of the other stands. The species composition of the unburned site differed from that of the other burning regimes only modestly. Frequent burning also resulted in a reduction of the sprouting capacity of seedlings and saplings, inhibited regeneration and, consequently, resulted in a disproportionate representation of individuals of certain tree species at the various stages of development. Therefore, fire-free intervals of at least 6-7 years should be introduced to facilitate the successful recruitment of young trees. Keywords: Burning frequency, Dry dipterocarp forest, Huai Kha Khaeng Wildlife Sanctuary, Prescribed fire, Woody plant

Transcript of Thai J. For. 33 (3) : 109-130 (2014) ‘‘…‘ Í 1 (1) : 1-8 (2) Original … · 2015. 7....

  • Thai J. For. 33 (3) : 109-130 (2014) วารสารวนศาสตร์ 31 (1) : 1-8 (2556)

    Original article

    Effects of Past Burning Frequency on Woody Plant Structure and Composition in Dry Dipterocarp Forest

    Kobsak Wanthongchai1* Jürgen Bauhus2 Johann G. Goldammer3

    1Department of Silviculture, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand *CorrespondingAuthor,E-mail:[email protected],UniversityofFreiburg,Tennenbacherstr4,79085Freiburg,Germany3GlobalFireMonitoringCentre,FireEcologyResearchGroup,c/oTheUniversityofFreiburg,Tennenbacherstr4,79085Freiburg,Germany

    Received:Sep2,2014 Accepted:Nov22,2014

    ABSTRACT

    AnthropogenicburningindrydipterocarpforestshasbecomeacommonphenomenonthroughoutThailand.Toofrequentfiresmayaffectplantspeciescomposition,soilpropertiesandprocesses,andnutrientdynamics,therebyimpactinguponecosystemproductivityandsustainability.Conversely,completefireexclusion,mayresultinchangestoecosystemcomponents,andanincreasedriskofhigh-intensitywildfire.Thisstudyaimedtoinvestigatetheeffectsofdifferentburninghistories(7,2,1or0firesinthepast10years)andprescribedfireonsiteswithdifferentpastburningregimesonwoodyplantstructureandcompositioninadrydipterocarpforestatHuaiKhaKhaengWildlifeSanctuary,Thailand.Eachburninghistorycomprisedofthree30m×30mplotsforthemeasurementofoverstoreyvegetation.Four4m×4msubplotsweresetupwithintheplottoassesssaplingsandseedlings.Theseinvestigationsweremeasuredbothpre-burnandone-yearpost-burn.Thestudyrevealedthatthestructureofstandsthathadbeenfrequentlyburnedinthepastdifferedfromthatofthelessfrequentlyburnedstands.Moreover,thespeciescompositionofthesmall-sizedoverstoreyvegetationinthefrequentlyburnedstandsalsodifferedsignificantlyfromthatoftheotherstands.Thespeciescompositionoftheunburnedsitedifferedfromthatoftheotherburningregimesonlymodestly.Frequentburningalsoresultedinareductionofthesproutingcapacityofseedlingsandsaplings,inhibitedregenerationand,consequently,resultedin a disproportionate representation of individuals of certain tree species at the various stages of development.Therefore,fire-freeintervalsofatleast6-7yearsshouldbeintroducedtofacilitatethe successful recruitment of young trees.

    Keywords: Burningfrequency,Drydipterocarpforest,HuaiKhaKhaengWildlifeSanctuary,Prescribedfire,Woodyplant

  • Thai J. For. 33 (3) : 109-130 (2014)110

    INTRODUCTION

    Inmanypartsoftheworld,firemaintainstheexistenceofforestecosystems(Pyne2001).However,theresponseofvegetationtofireishighlyvariable.Crownfirescankillmaturetrees and initiate a recovery process that may take several decades or even centuries to complete. In grassland communities, recovery fromfiremaybesorapidthattheeffectsmaydisappearwithin amatter ofmonths. Firebehaviour, fire duration, the pattern of fuelconsumption,andtheamountofsubsurfaceheating all influence injury andmortalityof plants, and tree population subsequentrecovery (Miller 2000). Plant species vary greatly in termsof theirfire resistance andrecovery mechanisms, namely, their sprouting capacity, life history, timing of reproduction and recruitment, evolution of fire-survivaltraitssuchasathickbark,andflammability(BondandWilgen1996). Dry dipterocarp forest (DDF) is a fire-dependent ecosystem (Sabhasri et al. 1968,Kutintara1975,Mueller-DomboisandGoldammer 1990). The DDFs have a long historyoffiredisturbance,derivedfrombothnatural and anthropogenic sources. Fires are lit annually for various reasons, such as, for gatheringnon-timberforestproducts(NTFPs)and to facilitate hunting (Akaakara 2000). BurningusuallyoccursbetweenJanuaryandAprilwhentheannualavailablesurfacefuel,i.e., leaf litter is greatest, due to the earlier leaf fall by the deciduous species found inthese forests (Figure 1). The desiccation of grasses also provides additional dry fuels. SomeDDFs in protected areas by contrasthavelongbeenunburned,asaresultoffireprevention activities.

    From an ecological perspective, the reductioninfirefrequencymaycausestructuralchanges to DDF stands, including increased treedensity,canopycover,successiontowardsmorefire-sensitiveandshadetolerantoverstoreyspecies.However,toofrequentburnsmayresultinaconsiderablelossofnutrientsandplantspecies, resulting in ecosystem degradation (SukwongandDhamanityakul1977).Therefore,anappropriateburning frequency iscrucialfor the maintenance of ecosystem functions inDDF.Inrecentdecades,theeffectsoffireon the vegetation of DDF in Thailand have beeninvestigatedbyanumberofresearchers(SukwongandDhamanityakul1977,Sunyaarch1989, Kanjanavanit 1992, Wachrinrat 2000, Samran and Tongtan 2002, Himmapan 2004). However, theafore-mentionedstudieswereonlyconcernedwithsinglefireevents.Theeffectofburningfrequency,whichiscrucialfor plant species persistence, composition and structure, is poorly understood and needs to beassessedtogainabetterunderstandingoftheroleoffire,especiallyburningfrequency,onvegetationdynamicsinthisfire-dependentecosystem. Thispaperpresentsthewoodyplantstructure and compositions associatedwiththedifferentpastburningregimesinDDFatHuai Kha Khaeng Wildlife Sanctuary (HKK), Thailand. Also, this paper attempts to determine theeffectsofprescribedfiresonthewoodyplant structure and composition of stands with different burning frequencyhistories.Specifically,thehypothesestestedwerethat,withincreasingburningfrequencies,theratesofestablishmentofwoodyplantsdeclineandmortalityincreases,andthatfrequentburningreduces the species richness and diversity of woodyplantspeciesinDDF.

  • Thai J. For. 33 (3) : 109-130 (2014) 111

    Figure 1 The dry dipterocarp forest in rainy season and dry season.

    Figure 2 Location of the experimental study area in dry dipterocarp forest, Huai Kha Khaeng Wildlife

    Sanctuary, Thailand.

    Figure 1 The dry dipterocarp forest in rainy season and dry season.

    Figure 2 Location of the experimental study area in dry dipterocarp forest, Huai Kha Khaeng Wildlife

    Sanctuary, Thailand.

    Figure 1 The dry dipterocarp forest in rainy season and dry season.

    MATERIALS AND METHODS

    Study area ThestudywasconductedintheHKK,locatedapproximately350kmnorthwestofBangkok inThailand.The study sitewaslocated in DDF, in the northeast region of the sanctuary (Figure 2). The region has a tropicalmonsoonalclimatewithdryseasonextendingfromNovembertoApril,andawetseason fromMay toOctober.The averageannual rainfall is 1348mmyear-1.Themeandaily temperaturevaries from23.2˚CinDecember to30.9˚C inApril.Themean

    relativehumidityis89.1%,whichvariesfrom79%inAprilto93%inSeptember(ForestFireResearchCenter2006).Theelevationofthestudyarearangesfrom300-400ma.s.l.TheDDFisdominatedbydeciduoustreespeciesbelongingtotheDipterocarpaceae,suchas,Shorea obtusa, S. siamensis, Dipterocarpus tuberculatus, and to the Leguminosae, such as Xylia kerrii and Sindora siamensis. The understorey consists mainly of a grass layer dominated byHeteropogon contortus and Imperata cylindricaaswellasothershrubs,herbs,andsaplingsandseedlingsofoverstoreytree species (Forest Research Center 1997).

  • Thai J. For. 33 (3) : 109-130 (2014)112

    Figure 1 The dry dipterocarp forest in rainy season and dry season.

    Figure 2 Location of the experimental study area in dry dipterocarp forest, Huai Kha Khaeng Wildlife

    Sanctuary, Thailand.

    Figure 2Locationoftheexperimentalstudyareaindrydipterocarpforest,HuaiKhaKhaengWildlife Sanctuary, Thailand..

    Fire history reconstruction ThepastburninghistorywasreconstructedforthestudyareabymappingburnedareasusingfirereportsfromtheNationalParks,WildlifeandPlant Conservation Department, and a series of satellite images spanning a 10-yr period from 1995to2004.Asaresult,4differentburninghistorieswereidentified.Theseincludedfirefrequenciesof7,2,1and0firesoverthepast10years,whicharesubsequentlyreferredtoasfrequent(FB),infrequent(IB),rare(RB)andunburned(CB),respectively.Thetimessincethelastfireinrelationtotheseburningregimeswere1,3,7,and10years,forFB,IB, RB, and CB, respectively. For experimental purposes, threereplicate plotswere established for eachburningregime(treatment).Itwasnotpossibletoreplicatepatchesofthesamefirefrequencyand time since last fire in the landscape,

    so that treatmentswere not interspersed inspace. Therefore, the plots represent pseudo-replications(Hurlbert1984)ofthesamefireevent and history. Within each treatment, plots wereapproximately300-500mapart.Withinthemappedareasofdifferentfirefrequencies,allplotswereselectedtorepresentthesamegeologic parent material, soil unit, and forest type.Theywerealsolocatedatsimilarelevationand topography.

    Burning protocol Threeexperimentalplots50m×50mwere set up in each treatment.These plotscontainedaninnerplotof30m×30mfordetailedmonitoring,anda10-mwidebufferstripthatpermittedmeasurements tobemadeacrosstheentireinnerplotwithoutedgeeffects.Firelineswereestablishedaroundthemarginsofeach50m×50mplot.Withtheexceptionofthe

  • Thai J. For. 33 (3) : 109-130 (2014) 113

    unburnedarea(CB),experimentalburningwascarried out in the nine plots during the period from 28thDecember2004to9thJanuary2005.Three-strip burning techniques (each stripapproximately16mwide)wereappliedfortheexperimentalburning.Theexperimental

    burnswerelow-intensitysurfacefires,withflamelengthsofabout1.5m.Therateoffirespreadrangedfrom1.3-2.6mmin-1,whereasthefrontalfirelineintensitywasgenerallylessthan500kWm-1(Table1)(Wanthongchaiet al. 2008).

    Table 1 Quantitativefirebehaviourcharacteristicsobservedfortheexperimentalfiresatsitesofdifferentfirefrequencyplots;frequentlyburnedsite(FB),infrequentlyburned(IB),andrarelyburned(RB).

    Fire characteristicsFire frequency plots 1

    RB IB FBRate of spread

    (m min-1)1.3 a(0.2)

    2.6b(0.3)

    2.7b(1.0)

    Flame length(m)

    1.27 a(0.11)

    1.53 a(0.09)

    1.51 a(0.22)

    Fireline intensity(kW m-1)

    291 a(43)

    467 a(62)

    361 a(150)

    Remarks: 1Different letters (a, b) indicate significant differences (ANOVA, P

  • Thai J. For. 33 (3) : 109-130 (2014)114

    Data analysis 1. Vegetation structure Treemortalitywasexaminedoneyearafterthefire.Thecrownprojectionarea,cover,basalareaandstemdensitywerecomparedbetweentheburningregimes,andforpre-burnand post-burn.An estimated crown coverandleafareaindex(LAI)oftheoverstoreywasanalysedusing theHemiviewsoftware(Hemiview2.1,Delta-TDevicesLtd.,Burwell,Cambridge,UK). Therelativeabundanceoftreeswascalculatedfromstandbasalarea.Theimportancevalueindex(IVI)wasalsoevaluated.TheIVIintegrates three important phyto-sociological measures,namely,density,frequencyandbasalareaofspeciesabundance.Logisticregressionprocedureswere employed to evaluate theprobabilityoftreemortalityforsomeimportanttreespeciesasfunctionsoffirefrequencyandtreedbh,usingJMPINsoftware,version4.0.4(SAS Institute Inc 2001). A log-likelihood statisticwasusedtotestthenullhypothesisthatfirefrequencyandtreedbhdidnotaffecttheprobabilityoftreemortality.Waldstatisticswereusedtotestthestatisticalsignificanceofindividuallinearpredictors.PredictorvariableswereconsideredsignificantifP

  • Thai J. For. 33 (3) : 109-130 (2014) 115

    2005).Allofvariableswerefirst tested forhomogeneityofvariance(Levene’stest)andnormaldistribution(Kolmogorov-Smirnov),tomeettherequirementsofANOVA.Wheretheserequirementswerenotmet,thedataweretransformed using either common logarithm orsquarerootforms.Statisticallysignificantdifferences between past burning regimes(P

  • Thai J. For. 33 (3) : 109-130 (2014)116

    Table 2 Overstorey tree characteristics of each burning regime; unburned (CB), frequentlyburned (FB), infrequentlyburned (IB) and rarelyburned (RB).Standard errors aregiven in parentheses.

    Burning regime1P- value

    FB IB RB CBTree density(indiv. ha-1)

    667a

    (54.7)1344b

    (129.0)1311b

    (108.2)1558b

    (113.0)0.000

    dbh(cm)

    14.0(1.5)

    11.1(0.6)

    11.4(0.5)

    11.6(0.5)

    0.092

    Basal area(m2 ha-1)

    12.9a

    (2.1)17.2ab

    (1.4)19.4b

    (1.4)23.6c

    (1.7)0.000

    Crownarea(m2 ha-1)

    8221.7a

    (1827.0)9984.4ab

    (783.8)12590.1b

    (965.2)16505.8c

    (1289.5)0.000

    Remarks: 1Different letters (a, b, c) indicate significant differences (ANOVA, P

  • Thai J. For. 33 (3) : 109-130 (2014) 117

    Table 3 Relative density (RD), relative dominance (RDo), relative frequency (RF) andimportancevalue index(IVI)of5 important treesspecieson the frequentlyburnedsite(FB),infrequentlyburned(IB),rarelyburned(RB),andunburned(CB)inthedrydipterocarp forest, Huai Kha Khaeng Wildlife Sanctuary.

    Burning regime

    No. Species RD (%) RDo (%) RF (%) IVI

    FB 1 Shorea siamensisMiq. 43.65 54.99 15.00 113.642 Gardinia obtusifoliaRoxb. 7.18 1.85 11.25 20.283 Sindora siamensisTeijsm.ex.Miq. 5.52 5.81 6.25 17.594 Antidesma ghasembilla Gaertn. 7.18 2.38 7.50 17.065 Xylia xylocarpaTaub. 4.97 2.88 8.75 16.60

    IB 1 Shorea obtusa Wall. 26.72 27.31 10.08 64.112 Shorea siamensisMiq. 13.50 21.75 8.40 43.653 Aporosa ficifolia Baill. 14.60 9.23 9.24 33.084 Dipterocarpus tuberculatusRoxb. 6.34 15.08 3.36 24.785 Buchanania latifoliaRoxb. 6.06 5.03 6.72 17.82

    RB 1 Shorea obtusa Wall. 27.12 28.41 9.02 64.552 Shorea siamensisMiq. 15.25 13.98 6.02 35.253 Dipterocarpus tuberculatusRoxb. 5.93 11.64 3.76 21.334 Aporosa ficifolia Baill. 5.37 5.52 6.02 16.905 Dalbergia cultrataGrah.ExBenth. 3.39 3.90 4.51 11.80

    CB 1 Shorea obtusa Wall. 31.73 32.90 7.73 72.362 Shorea siamensisMiq. 16.58 28.27 7.73 52.573 Xylia xylocarpaTaub. 6.24 4.01 5.80 16.044 Canarium subulatum Guill. 3.03 6.70 5.31 15.045 Buchanania latifoliaRoxb. 3.03 3.91 4.35 11.29

  • Thai J. For. 33 (3) : 109-130 (2014)118

    Table 4 Characteristics of sapling populations in plots of different past burning regimes(unburned(CB),frequentlyburned(FB),infrequentlyburned(IB)andrarelyburned(RB)),beforeandafterexperimentalburning.Standarderrorsaregiveninparentheses.

    Burning regime1

    FB IB RB CBBefore After Before After Before After Before After

    Density (indiv. ha-1)

    573Aa(210)

    833Aa(247)

    2969Ab(746)

    1927Aa(740)

    3385Ab(862)

    1875Ba(576)

    4570Ab(705)

    3906Ab(796)

    D0 (mm)

    25.1Aa(2.6)

    25.5Aa(2.0)

    35.1Ab(2.1)

    37.0Aa(5.3)

    38.2Ab(3.7)

    32.1Aa(3.3)

    31.3Aab(1.6)

    34.1Aa(2.0)

    Ht (m)

    1.6Aa(0.2)

    1.7Aa(0.1)

    2.2Aab(0.2)

    2.3Aa(0.3)

    3.1Ac(0.3)

    3.0Aa(0.4)

    2.6Abc(0.2)

    2.4Aa(0.2)

    Basal area (m2 ha-1)

    0.6Aa(0.3)

    0.7Aa(0.3)

    3.3Ab(0.9)

    1.9Aa(0.4)

    4.3Ab(0.9)

    2.2Ba(0.7)

    4.0Ab(0.6)

    4.0Bb(0.9)

    Cover(%)

    4.3Aa(1.6)

    7.2Aa(2.2)

    20.2Aab(4.6)

    11.6Aa(3.5)

    45.1Abc(13.5)

    22.3Aa(7.8)

    61.4Ac(16.0)

    63.3Ab(26.9)

    Remark: 1 Identical lower case letters indicate no significant difference between treatmentswithin asampling period (ANOVA, P

  • Thai J. For. 33 (3) : 109-130 (2014) 119

    Figure 4 Diameter distribution (mean ± SE) of the tree (a) and diameter at ground level (d0) of young

    trees (seedlings and saplings) (b) in the different past burning regimes.

    0

    20

    40

    60

    80

    100

    120

    4.5-10 10.1-15 15.1-20 20.1-25 25.1-30 30.1-35 35.1-40 >40

    Num

    ber o

    f tre

    es

    dbh class (cm)

    (a) Frequently burnedInfrequently burned

    Rarely burned

    Unburned

    020406080

    100120140160180200

    >10 10.1-2020.1-3030.1-4040.1-5050.1-6060.1-7070.1-8080.1-90

    Num

    ber o

    f ind

    ivid

    uals

    d0 class (mm)

    (b) Frequently burnedInfrequently burned

    Rarely burned

    Unburned

    Figure 4Diameterdistribution(mean±SE)ofthetree(a)anddiameteratgroundlevel(d0)ofyoungtrees(seedlingsandsaplings)(b)inthedifferentpastburningregimes.

    Effects of different past burning regimes on woody plant composition A total of 54 overstorey specieswas found in thisstudy(Table6),butonly25specieswerefoundontheFBsite,withthe number of species increasing to 33, 43and51speciesat theIB,RBandCBsites,respectively. The H′value,however,didnotdiffersignificantlybetweenthepastburningregimes. The MRPP revealed that the overstorey

    speciescompositiondiddifferbetweenthepastburningregimes(A=0.32,P0.3,P40, P

  • Thai J. For. 33 (3) : 109-130 (2014)120

    Forexample,S. obtusa, Canarium subulatum, Xylia xylocarpa and Aposula villosaweremostabundantontheCBsite.Bycontrast,the overstorey species found at all burningregimes (observed IV0.05)wereS. siamensis, Pterocarpus macrocarpus, Grewia eriocarpa, Terminalia alata, Dillenia spp. and Lannea coromandelica(Table8). A total of 37different specieswasrecordedassaplingspriortoburning.Only7ofthesewerefoundontheFBsite,whilethenumberofspeciespresentassaplingsonthe

    IB,RBandCBsiteswas15,16and16species,respectively.Likewise,ofthetotalnumberof66speciespresentamongsttheseedlingspriortoburning,30wererecordedontheFBsite,whereas37,39,and42specieswerefoundon the IB, RB and CB sites, respectively. The pre-burnH′ofthesaplingswaslowestontheFBsite(0.6)andhighestontheRBsite(1.9)(P

  • Thai J. For. 33 (3) : 109-130 (2014) 121

    No. Species Family FB IB RB CB

    24 Erythrophleum succirubrum Ganep. Caesalpiniaceae

    25 Flacourtia indica (Burm.f.) Merr. Flacourtiaceae

    26 Garcinia spp. Guttiferae

    27 Gardinia obtusifoliaRoxb. Rubiaceae

    28 Grewia eriocarpa Juss. Tiliaceae

    29 Haldina cordifolia (Roxb.)Ridsdale Rubiaceae

    30 Heterophragma sulfureumKurz Bignoniaceae

    31 Hymenodictyon excelcum Wall. Rubiaceae

    32 Lannea coromandelica Merr. Anacardiaceae

    33 Mammea harmandii Kosterm. Guttiferae

    34 Melanorrhoea usitata Wall. Anacardiaceae

    35 Millettia leucanthaKurz Papilionaceae

    36 Morinda coreia Ham. Rubiaceae

    37 Ochna integerrima Merr. Ochnaceae

    38 Pavetta tomentosa Roxb.ex.Sm. Rubiaceae

    39 Phyllanthus embrica Linn. Euphorbiaceae

    40 Pterocarpus macrocarpusKurz Papilionaceae

    41 Schleichera oleosa (Lour.) Oken Sapindaceae

    42 Shorea obtusa Wall. Dipterocarpaceae

    43 Shorea roxburghii G. Don Dipterocarpaceae

    44 Shorea siamensisMiq. Dipterocarpaceae

    45 Sindora siamensisTeijsm.ex.Miq. Caesalpiniaceae

    46 Spondias pinnata (L.f.)Kurz Anacardiaceae

    47 Strychnos nux-vomica L. Strychnaceae

    48 Terminalia alataHeyneexRoth Combretaceae

    49 Terminalia bellericaRoxb. Combretaceae

    50 Terminalia chebulaRetz. Combretaceae

    51 Terminalia corticosaPierreexLaness. Combretaceae

    52 Vitex glabrata R. Br. Verbenaceae

    53 Vitex limonifolia Wall. Verbenaceae

    54 Xylia xylocarpaTaub. Mimosaceae

    Table 6 (Cont.)

  • Thai J. For. 33 (3) : 109-130 (2014)122

    Table 7 Summary statistics for the multi-response permutation procedure (Sørensen distances) of the overstorey species compositions associated with the different past burningregimes;unburned(CB),frequentlyburned(FB),infrequentlyburned(IB)andrarelyburned(RB).Theresultsprovideacomparisonbetweenallburningregimes,aswellasmultiplepairwisecomparisonsoftheSørensendistances.

    Sørensen distanceδ under null hypothesis

    T P-value AObserved δ Expected δ Variance Skewness

    Overall comparison 0.341 0.500 0.0020 -0.73 -3.55 0.003 0.318Multiple comparisons

    FB vs IB 0.310 0.500 0.0051 -1.74 -2.67 0.024 0.381FB vs RB 0.333 0.500 0.0033 -2.33 -2.90 0.022 0.333FB vs CB 0.281 0.500 0.0039 -1.83 -3.49 0.010 0.439IB vs RB 0.532 0.500 0.0010 -0.39 1.03 0.850 -0.063IB vs CB 0.491 0.500 0.0014 -0.87 -0.23 0.357 0.017RB vs CB 0.481 0.500 0.0009 -0.17 -0.64 0.255 0.037

    Table 8 TheMonteCarlotestofsignificanceofobservedmaximumindicatorvalues(IV) for certainselectedoverstoreyspecies(mostcommonspeciesandthespeciesmoreabun-dantunderspecificburningregimes),basedon1000randomisations.Themeansandstandard deviations of the IVfromtherandomisationsaregivenalongwithP-values forthehypothesisthattherewerenodifferencesthebetweenpastburningregimes.

    Burning Regime Species

    1Observed indicator value (IV)

    IV from randomised groupsMean Std. dev. P-value

    FB Antidesma ghasembilla * 65.8 40.9 14.18 0.048RB Dipterocarpus tuberculatus * 65.8 36.8 11.86 0.022CB Xylia xylocarpa* 65.2 35.6 12.48 0.037CB Canarium subulatum * 65.2 32.9 14.55 0.05CB Aporosa villosa * 65.2 38.5 12.95 0.02RB Erythrophleum succirubrum * 61.4 37.1 10.14 0.019CB Shorea obtusa * 40.4 34.2 4.35 0.048

    Terminalia corticosa ** 31.5 48 18.25 0.775Shorea siamensis ** 31.4 31.7 2.26 0.537Grewia eriocarpa ** 31.3 35 17.96 0.576Lannea coromandelica ** 26.5 39.3 13.21 0.863Morinda coreia ** 23.8 35.3 10.76 0.875Flacourtia indica ** 21.4 31.6 15.95 0.85Pterocarpus macrocarpus ** 21.4 36.6 15.1 0.844Terminalia chebula ** 19.6 34.2 17.28 0.828Dillenia spp. ** 19.6 34.2 17.28 0.828Terminalia alata ** 16.7 31.9 15.43 0.851Strychnos nux-vomica ** 16.7 35.5 15.94 0.908

    Remarks: 1 *Speciesspecificallyassociatedwithaparticularpastburningregime(P0.05)

  • Thai J. For. 33 (3) : 109-130 (2014) 123

    Effects of prescribed burning on woody plant mortality ItwasnotclearwhetherprescribedburningcausedtreemortalityinDDF.Mostofthedeadtreeswereinthelowerdbhclasses,irrespectiveoftheburningregime.MostofthedeadtreeswereeitherS. obtusa, S. siamensis or A. ficifolia.Therelativetreemortalitywas4,5,14and5%ontheFB,IB,RBandCBsites,respectively,thoughitwasnotsignificantbetweenpastburningregimes.Thelogisticregressionanalysisrevealedthatalthoughtheprobabilityoftreemortalityincreasedwithdecreasingdbh(P

  • Thai J. For. 33 (3) : 109-130 (2014)124

    Effects of past burning regime on woody plant structure The results revealed that the overstorey structurewasclearlyloweronthefrequentlyburned site than thaton the less frequentlyburnedsites.TheoverstoreyspeciescompositionoftheFBsitealsodifferedsignificantlyfromthat of the others (IB, RB and CB). The species diversity (H′),ontheotherhand,exhibitednodifferencesbetweenthepastburningregimes.Thedifferencesinthestockingdensitiesbetweenthesitesofthedifferentpastburningregimesweremainlyduetovariationsinthenumberofsmalltrees,supportedbythewellknownfact that small trees are more readily killed byfirethanthelargeones.Thisimpliesthatthe establishment and thegrowthofyoungtrees into the higher diameter classes (i.e., progressing from sapling to tree stage) is a more continuous process during the longer fire-free intervalson lessfrequentlyburnedsites. Watson and Wardell-Johnson (2004) reported that, although species richness did not differ significantlywith either the timesincefireorthefirefrequency,bothofthesefactors affected community structure and composition in open forest andwoodlandvegetationinGirraweenNationalPark,South-East Queensland, Australia. The densities of saplings and seedlings were loweron theFBsite thanon the lessfrequently burned sites, an observationsimilar to that of Peterson and Reich (2001). ThisalsocorrespondedwiththefindingsofWachrinrat(2000),whoreportednumbersaslowas203saplingsha-1and3140seedlingsha-1 inDDFwherefireprotectionactivitieswere not conducted.By contrast, inDDFwherefiremanagementwasimplemented,theauthor recorded as many as 1292 saplings ha-1

    and 9110 seedlings ha-1.The lower saplingand seedling densities on the FB site might havebeendueto thefact thatfireoccurredalmost every year, limiting the regeneration andsubsequentdevelopmentofseedlingstosaplingstoaveryshortfire-freeperiod(Sukwong1982).Thedevelopmentoffireresistanceiscloselylinkedtoheightanddiametergrowth.Thegrowth ratesof seedlings and saplingsinDDF-HKKwere studied extensivelybyHimmapan(2004),whocalculatedtheaveragediametergrowthofallspeciestobe1.1cmyr-1 for saplings and 1.2 cm yr-1forseedlings,withheightgrowthof65cmyr-1 for saplings and 38cmyr-1 for seedlings. Based on the height growthcalculatedbyHimmapan(2004)andtheflameheightobservedinthisstudy(about1.2-1.5m),theseedlingsmayrequireafire-freeintervalofabout5-6yearsbeforetheircrownsliftabovetheaverageflameheightsso they can develop into saplings. Theseedlingcoveragewassignificantlyhigher on the FB site than on the IB and RB sites.Thiscanbeattributed to the fact thatmorethan53%oftheseedlingsand80%ofthe saplings on the FB site had more than one main stem. The corresponding values on the IBsitewereonly18%and20%,respectively,and10%and7%ontheRBsite.

    Absence of woody plant species as a result of different burning regime A disparity in the proportions of S. siamensis and S. obtusatrees,twoofthemostdominant species in DDF, in the different stages ofdevelopment,wasobserved.Thenumberofsaplings of these dominant species increased withthelengthofthefire-freeinterval(Figure6).Thissuggeststhatthesetwospeciesmayrequireafire-freeintervalofbetween4to7

  • Thai J. For. 33 (3) : 109-130 (2014) 125

    years for seedlings to reach the sapling stage, aswasthecaseontheRBsite.Thisinferenceis reinforcedby thefindingsof a studybySukwong(1982),whoreportedthatS.obtusaseedlings required afire-free interval of atleast7yearstoattainasizethatenablesthemtowithstandfiredamage.Ashorterfire-freeinterval, as observedon theFB site, is notsufficientlylongforthedevelopmentofthesespecies. Even though dominant on all sites, the disproportionate representation of these species amongst the various stages of development on the FB site may impact negatively upon their long-term development in the landscape. The species composition of the overstorey on the frequently burned sitesdifferedsignificantlyfromthatoftheothers(IB,RBandCB).Thisdifferencewascausedby the absence of certain species from theFBsite.Forexample,Diospyros ehretioides, Vitex limonifolia, Aporosa villosa, Schleichera oleosa and Buchanania latifoliawere notobservedontheFBsite,yettheywerepresenton the other three, resulting in the differing speciescompositions.TheabsenceofsomespeciesontheFBsiteraisedthequestionofcomparabilitybetweenpastburningregimes.Himmapan (2004) stated that the average diameter increment across all species in the DDF-HKKwasabout0.4cmyr-1. Therefore, overstoreytreeswithdbhover15cmcanbeconsideredoldtrees,andhaveprobablybeenalive for at least 40 years. The analysis of the species composition using MRPP revealed that the overstorey oldtree(dbh>15cm)speciescompositionbroadlyoverlappedbetweenthepastburningregimes (A=0.14, P=0.051).This suggeststhat differences in the species composition ofthevariouspastburningregimeswasdue

    todifferencesinthenumberofyoungmaturetrees (dbh< 15 cm).Moreover, this alsoreveals that the species composition of sites wassimilarhistorically,andwas,therefore,comparable.The differences in the youngmature tree composition, therefore, may have beeninfluencedbythefrequencyofburning.Consequently,itisunlikelythatthelossoftheafore-mentionedspecieswasbroughtaboutby site differences.However, the absenceof these specieswas generally observed inDDFs throughout Thailand (Sunyaarch 1989, SahunaluandDhanmanonda1995,Wachrinrat2000, Samran and Tongtan 2002, Himmapan 2004).Thesespecieshavefireadaptivetraits,suchas,athickbarkandtheabilitytosprout(Kaitpraneet1987,RundelandBoonpragob1995), andmaybe consideredfire-tolerantspecies.Itispossible,however,thattheycannotwithstandfrequentburning,suchasontheFBsite,becausetheregenerationprocessistooseverelyimpeded.Thesespeciesmayalsobelesslight-demanding,andpossiblyfoundtheconditions under the relatively open canopy ontheFBsiteunsuitable.Thelesserdegreesof canopy openness on the other sites (IB, RB, and CB), on the other hand, may have served to favour less light-demanding species. However, theselessfrequentlyburnedsiteswerestillbrightenoughthatlight-demandingspecies could occur. S. siamensisappearstohavebeenanimportantoverstoreyspeciesinthefrequentlyburnedsites,asthisspecieswasalsoreportedtobethemostdominanttreebyHimmapan(2004),whostudiedfrequentlyburnedforestsites in the HKK. Gardinia obtusifolia, Sindora siamensis and Antidesma ghasembillawerealsodominantontheFBsite.Onlessfrequentlyburnedsites,however,S. obtusawasthemost

  • Thai J. For. 33 (3) : 109-130 (2014)126

    abundantspecies,withS. siamensis, A. ficifolia and D. tuberculatus also dominant on the IB and RB sites. These species have adaptation traits suchasthickbarks,andre-sproutingcapacityfollowingdamagetothestem.Inaddition,the

    fruits of Shorea spp. and Dipterocarpus spp. aredispersedbywindafterthepeakofthefireseason,andgerminateatthebeginningofthewetseason(Sukwonget al.1975).

    Figure 6 Diameter distributions of selected tree species in the different burning regimes. Frequently burned, Infrequently burned, Rarely burned, Unburned.

    0

    20

    40

    60

    80

    100

    120

    140

    160

    dbh>4.5 cm d01.30 m d0

  • Thai J. For. 33 (3) : 109-130 (2014) 127

    Effects of prescribed burning on woody plant Therewasnoevidencetoshowthatprescribedburningcaused treemortality inDDF.Indeed,thetreemortalityrateobservedontheunburned(CB)sitewassimilartothatontheburnedareas.Thelowincidenceoffire-relatedmortalitycanbeattributedtothickbark,whichreducesheateffectsonthecambium;thelow-intensitysurfacefires(approximately290-470 kW m-1)andlowflamelengthneverreached the tree crowns (flame lengthwasonly1.2-1.5m).Whelan(1995)suggestedthatmortalityafterfireisnotalwaysanindicationthatthefirehashadasignificantimpactonthecommunityasthedeadtreesmayhavebeensick,weakened,oldorinjured,andmayhavebeendestinedtodieevenwithoutthefire.Itispossiblethatthemortalitythatsetinafterthelow-intensitysurfacefireswasconfinedtosuppressedtrees,whichdevelopfireresistancecharacteristicsmuchmoreslowlythanvigoroustreesofthesameageandspecies.Exceptionaldrought conditions in the year 2004 may also haveinfluencedtreemortality,particularlythatof small trees. Total rainfall in the year 2004 wasonly996.4mm,comparedto1332.9mmand1453.7mmintheyears2003and2005,respectively (Forest Fire Research Center 2006).However,themortalityofsmalltreesasaresultoffrequentburningsuggeststhatifthis trend continues, future stand development and,consequently,theproductivityofthesespecies,couldbejeopardisedbecauseofthereduction of the regenerative capacity of the forest (Guinto et al. 1999). ItappearedthatburningresultedinanincreaseinthenumberofsaplingsontheFBsite,whereasfirelikelyreducedthenumberof saplings at the other sites.Thismaybeattributedtothefactthatthestemsofseedlings

    maynotbeseriouslyaffectedbyfireandthattheycontinuetogrow,orthatwherethestemisdamagedanewshootcansprout rapidlyandreachthesaplingstage(>1.3mheight)inthefollowingyear.ExceptfortheRBsite,thefactthattherewasgreatvariationinthesaplingdensityatthesubplotlevelafterthefire,characterisedbybothincreasesanddecreases,meant that a statistical analysis (paired t-test) revealed no significant differences to thepre-burnsituation.Increasesintheseedlingdensitymaybe attributed to the improvedseedbedconditionsafterfire.Firestimulatesseed germination, and improves nutrient availability.ThisresultcorrespondswiththefindingsofSunyaarch(1989)andHimmapan(2004). A reduction in re-sprouting capacity in thefrequentlyburnedsite(Figure5)maybeattributedtobetterrootsystemdevelopmentand nutrient storage in the roots on the less frequently burned sites.Even thoughmostwoodyplants inDDFcan sprout after theabove-groundpartoftheplanthasbeeneitherkilledordamagedbyfire(Sukwonget al.1975,Kaitpraneet 1987, Stott et al. 1990, Rundel andBoonpragob1995),thecapacitytosproutdeclineswhenburningistoofrequent,asthenutrient and starch reserves stored in the root systemcannotbereplenished.Bycontrast,thelongerfire-freeintervalatthelessfrequentlyburned sites allowed for a recovery of thesproutingcapacity.Therefore,frequentburningmay jeopardise long-term tree population dynamics and, hence, the productivity of DDF.

    CONCLUSION

    This study revealed that the structure ofstandsthathadbeenfrequentlyburnedinthepastdifferedfromthatofthelessfrequentlyburnedstands.Moreover,thespeciescomposition

  • Thai J. For. 33 (3) : 109-130 (2014)128

    of the small-sizedoverstoreyvegetation inthe frequently burned stands also differedsignificantly from that of the other stands.The species composition of the unburnedsitediffered from thatof theotherburningregimes onlymodestly. Frequent burningalso resulted in a reduction of the sprouting capacityofseedlingsandsaplings,inhibitedregenerationand,consequently,resultedinadisproportionate representation of individuals of certain tree species at the various stages of development.Therefore, fire-free intervalsofatleast6-7yearsshouldbeintroducedtofacilitate the successful recruitment of young trees.

    ACKNOWLEDGEMENTS

    TheauthorswishtothanktheNationalParks, Wildlife and Plant Conservation Department in Thailand for the permission to conduct thisstudyinHKK.Wewouldliketothankthe Geo-Informatics and Space Technology Development Agency (GISDA) in Thailand for the provision of satellite images. Special thanks to the Faculty of Forestry, Kasetsart University, Thailand for providing a vehicle andequipment.Wealsowishtothankthosestudentswho assisted in thefieldwork.WeexpressourgratitudetoNiphonSangaunyart,Soodchai Visuthipanit, Kraisorn Wiriya, and all their staff for the invaluable assistancethroughout thefieldwork.Many thanks toAlexanderHeld,formerstaffofGlobalFireMonitoring Center (GFMC), for technical assistance.Thisstudywaspartlysupportedby the InternationalPhDProgramme (IPP)at the Faculty of Forest and Environmental Sciences,UniversityofFreiburg,Germany.

    REFERENCES

    Akaakara, S. 2000. Forest fire control in Thailand. Royal Forest Department, Bangkok.

    Bond,W.J.andB.W.V.Wilgen.1996.Fire and plants. Chapman and Hall, London.

    Byram,G.M.,1959.Combustionofforestfuels.pp.61-89. In Davis, K.P. (Ed.), Forest Fire; Cntrol and Use.McGraw-Hill,NewYork,

    ForestFireResearchCenter,2006.Monthlyclimaticdatareportfrom2001-2005.In Forest Fire Control Office, National Park, Wildlife and Plant Conservation Department, Bangkok, Thailand.

    Forest Research Center. 1997. Application of remote sensing and GIS for mornitoring forest land use change in Huay Kha Khaeng Wildlife Sanctuary. Faculty of Forestry, Kasetsart University, Bangkok.

    Guinto,D.F.,A.P.N.House,Z.H.XuandP.G.Saffigna.1999.Impactsofrepeatedfuelreductionburningontreegrowth,mortality and recruitment inmixedspecies eucalypt forests of southeast Queensland, Australia. For. Ecol. Manage115,13-27.

    Himmapan, W. 2004. Behavior, effect and smoke composition of burning fire in dry dipterocarp forest at Huay Kha Khaeng Wildlife Sanctuary, Uthai Thani province. In, Silviculture. Kasetsart University, Bangkok.

    Hurlbert,S.H.1984.Pseudoreplicationandthedesignofecologicalfieldexperiments.Ecol. Monogr54,187-211.

  • Thai J. For. 33 (3) : 109-130 (2014) 129

    Kaitpraneet, S. 1987. Forest fire ecology. Faculty of Forestry, Kasetsart University, Bangkok.

    Kanjanavanit, S. 1992. Aspects of the temporal pattern of dry season fires in the dry dipterocarp forests of Thailand. Department of Geography, School of Oriental and African Studies. University of London, London.

    Kutintara,U.1975.Structure of dry dipterocarp forest. Colorado State University, Fort Collins.

    McCune, B. and M.J. Mefford. 1999. Multivariate analysis of ecological data, version 4.MjM software designGlenedenBeach, Oregon.

    Miller,M.2000.Fireautecology.pp.9-34.In Brown,J.K.andJ.K.Smith,(Eds.),Wildland fire in ecosystems: effects of fire on fauna. Gen. Tech. Rep. RMRS-GTR-42-vol.1. USDA Forest Service, Rocky Mountain Research Station, Ogden, UT.

    Mueller-Dombois,D.andJ.G.Goldammer.1990. Fire in tropical ecosystems andglobalenvironmentalchange:anintroduction. pp. 1-10. In Goldammer, J.G. (Ed.), Fire in the tropical biota: ecosystem process and global challenges. Ecological studies no. 84. Springer-Verlag, Berlin.

    Peterson,D.W.andP.B.Reich.2001.Prescribedfireinoaksavannah:firefrequencyeffects on stand structure and dynamics. Ecol. Appl 11: 914-927.

    Pyne, S.J. 2001. Fire: A brief history. University of Washington Press, Seattle.

    Rundel, P.W. andK.Boonpragob. 1995.Dry forest ecosystems of Thailand.

    pp.93-123. In Bulloock, S.H., H. Mooney and E. Medina, (Eds.), Seasonally dry tropical forests.CambridgeUniversityPress,NewYork.

    Sabhasri, S.,A.Boonnitte,C.KhemnarkandS.Aksornkoae.1968.Structure and floristic composition of forest vegetation at Sakaerat, Pak Thong Chai, Nakorn-Ratchasima: I Variation of floristic composition along transect through dry evergreen and dry dipterocarp forests. Bangkok, Thailand.

    Sahunalu,P.andP.Dhanmanonda.1995.Structureand dynamics of dry dipterocarp forest, Sakaerat, northeastern Thailand. pp. 465-494.InBox,E.O.(Ed.),Vegetation science in forestry.KluwerAcademyPublisher,Netherlands.

    Samran, S. and T. Tongtan. 2002. Change after forest fire of natural resources of dry dipterocarp forest, Huay Kha Khaeng Wildlife Sanctuary. Royal Forest Department, Bangkok.

    SAS Institute Inc. 2001. A guide to statistics and data analysis.DuxburyPress,Cary,NC.

    Seaby,R.M.andP.A.Henderson.2006.Species diversity and richness version 4. Pisces Conservation Ltd., Lymington, UK.

    Smitinand, T. 2001. Thai plant names (Revised Edition). Royal Forest Department, Bangkok.

    SPSSInc.2005.SPSS base 13.0 for windows user’s guide SPSS Inc, Chicago IL.

    Stott, P.A., J.G. Goldammer and W.L. Werner. 1990.Theroleoffiresinthetropicallowland deciduous forest ofAsia.pp.32-44.In Goldammer, J.G. (Ed.),

  • Thai J. For. 33 (3) : 109-130 (2014)130

    Fire in the tropical biota: ecosystem processes and global challenges. Ecological Studies no. 84. Springer-Verlag, Berlin,

    Sukwong,S.1982.Growthofdrydipterocarpforest tree species. Thai J. For (1):1-13.

    Sukwong,S. andP.Dhamanityakul. 1977.Someeffectsoffireondrydipterocarpcommunity.pp.380-390.In Proceedings of management of forest production in Southeast Asia sym. Bangkok,

    Sukwong, S., P.Dhamanityakul andP.S.Pongumphai. 1975.Phenology andseasonal growthof dry dipterocarpforest species. Kasetsart J.9,105-113.

    Sunyaarch, S. 1989. Effects of fire on vegetation and soil in dry dipterocarp forest, Sakaerat, Nakorn Ratchasima. Kasetsart University, Bangkok.

    Wachrinrat, C. 2000. Community dynamics of building phase in fire and non fire protected sanctuary dry dipterocarp forest, Nakorn Ratchasima. Silviculture. Kasetsart University, Bangkok,

    Wanthongchai, K., J.R. Bauhus and J.G. Goldammer. 2008.Nutrient lossesthrough prescribed burning ofabovegroundlitterandunderstoreyindrydipterocarpforestsofdifferentfirehistory. Catena74,321-332.

    Watson, P. and G. Wardell-Johnson. 2004. Fire frequencyandtime-since-fireeffectsontheopen-forestandwoodlandfloraofGirraweenNationalPark,South-East Queensland, Australia. Austral Ecol.29,225-236.

    Whelan,R.J. 1995.The ecology of fire. CambridgeUniversityPress,Melbourne.