TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

28
IGASS 2010 - Honolulu 29-July-2010 TanDEM-X: Mission Status & Scientific Contribution Irena Hajnsek 1/2 , Gerhard Krieger 1 , Kostas Papathanassiou 1 , Stefan Baumgartner 1 , Marc Rodriguez-Cassola 1 , Pau Prats 1, Maria Sanjuan Ferrer 1 , Florian Kugler 1 & TanDEM-X Team 1 Microwaves and Radar Institute & ²Institute of Environmental Engineering, ETH Zurich

Transcript of TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Page 1: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

IGASS 2010 - Honolulu

29-July-2010

TanDEM-X: Mission Status & Scientific Contribution

Irena Hajnsek1/2, Gerhard Krieger1, Kostas Papathanassiou1, Stefan Baumgartner1, Marc

Rodriguez-Cassola1, Pau Prats1, Maria Sanjuan Ferrer1, Florian Kugler1 & TanDEM-X Team

1Microwaves and Radar Institute & ²Institute of Environmental Engineering, ETH Zurich

Page 2: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 2

TanDEM-X: TerraSAR-X-Add-on for Digital Elevation Measurements

Launch: 21.June 2010 (38 days ago) from Baikonor (first signal arrived after 15min from the ground station Troll in the Antarctic)

Page 3: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 3

Standards for Digital Elevation Models (DEM)

DEMs Spatial Resolution Absolute Vertical Accuracy(90%)

Relative Vertical Accuracy (point-to-point in 1° cell, 90%)

DTED-1 90 m x 90 m < 30 m < 20 m

DTED-2 30 m x 30 m < 18 m < 12 m

TanDEM-X DEM 12 m x 12 m < 10 m < 2 m

HDEM 6 m x 6 m < 5 m < 0.8 m

SRTM / X-SAR

SRTMSRTM(DTED-1)(DTED-1)

TerraSAR-XTerraSAR-X(TanDEM-X ~ HDEM)(TanDEM-X ~ HDEM)

TanDEM-X Simulation

Primary Mission Objectives

Page 4: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 4

Secondary Mission Objectives

Across track InSAR (Digital Elevation Model)Development & improvement of algorithm for validation of heights derived from InSAR; Input parameter for a variety of different applications

Added values and generation of scientific products

Along track InSAR (Velocity Measurements)Exploitation of innovative applications and development of algorithm

New application and scientific product development

New SAR Techniques (First Technical Demo.)Demonstration and exploitation of new SAR techniques

New perspectives for future SAR systems and development of new applications

64 km/h

56 km/h

68 km/h

Page 5: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 5

Capabilities of TanDEM-X

TanDEM-X is a highly flexible sensor enabling multiple powerful imaging modes

Cross-Track Interferometry Along-Track Interferometry New Techniques

Digital Elevation Models

Spatial Coherence (forest, …) Double DInSAR (change maps, ..) High Resolution SAR Images

Large Scale Velocity Fields (ocean currents, ice drift, …)

Moving Object Detection

Temporal Coherence Maps

4 Phase Center MTI (traffic, …) PolInSAR (vegetation height, …) Digital Beamforming (HRWS, …) Bistatic Imaging (classification, ..)

r+r r

t+t t

cross-track baselines(0 km to several km)

along-track baselines(0 km to several 100 km)

interferometric modes (bistatic, alternating, monostatic)

SAR modes(ScanSAR, Stripmap, …)

bandwidth / resolution(0 ... 150/300 MHz)

incident angles(20° ... 55°)

polarisations(single, dual, quad)

Page 6: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 6

General Outline of the Data Acquisition Plan

1 global DEM acquisition with small baselines

+

acquisition of scientific radar data products

1 global DEM acquisition with scaled (larger)

baselines

+acquisition of

scientific radar data products

Co

mm

ission

ing

Ph

ase

DEM data takes for difficult terrainwith

different viewing

geometry +

radar data

products

radar data products and customized

DEMswith large

interferometric baselines

tt

1 year1 year 1 year1 year 6 months6 months ≥ ≥ 3 months3 months5 months5 months

Nominal Data Acqusition 3 (+?) Years

Page 7: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 7

Commissioning Phase (CP)

Launch and Early Orbit Phase (LEOP)Duration: 21 June to 19 July 2010

Ground station checkout

Instrument & processor checkout

Pursuit Monostatic PhaseDuration: 7 Cycles (20 July to 07 Oct 2010)

Satellite config: ground-track 0m & along-track 20km

Safe formation flight & Exclusion Zone Test

SAR system calibration campaign

SAR system performance

Mission planning system operationalisation

Bistatic PhaseDuration: 5 Cycles (08 Oct to 29 Nov 2010)

Satellite config: Across-track 500m & along-track 0m

Bistatic commanding and performance

Interferometric processor adaptation

Baseline bias characterisation

DEM calibration tests & error model verification

horizontalbaseline

verticalbaseline

SH(desc.)

NH(asc.)

effectivebaselines

horizontalbaseline

verticalbaseline

SH(desc.)

NH(asc.)

effectivebaselines

Pursuit Monostatic

Formation Flying

TDX on board

Page 8: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 8

First TanDEM-X Images (3 days & 14 hours after TDX launch)

Madagaskar Stripmap

24.06. 2010 14:55:44 (DT 11)

R: standard deviationG: amplitudeB: scaled difference

Published on http://www.dlr.de/

Page 9: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 9

TanDEM-X / TerraSAR-X – First TSX Image 2007 vs. 2010

TSX 2007TSX 2007 TDX 2010TDX 2010

Don region (100 km northwest of Volvograd)

Page 10: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 10

„Blind Overlay“ – First TSX Image 2007 vs. TDX Image 20102007 vs. TDX Image 2010

R: TSX 2007

G: difference

B: TDX 2010

Page 11: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 11

Train 2007(15:03 UTC)

Train 2010(14:53 UTC)

TanDEM-X / TerraSAR-X – First TSX Image 2007 vs. 20102007 vs. 2010

R: TSX 2007

G: difference

B: TDX 2010

Page 12: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 12

Phase

Single Pass X-band Interferomgram

(16 June 2010: 25km along track & approx.

300m across track baseline)

Page 13: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 13

Digital Elevation Model (approx 200m height difference)

Page 14: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 14

First Pol-InSAR Data Takes

Dual-Pol HH-VV Spotlight

Test Site Location: Russia

InSAR Mode: Monostatic

Temporal Baseline: 3sec

Spatial Baseline (┴): 275m

Page 15: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 15

Pol-InSAR

HH-HH VV-VV

HH VV

Interferometric Coherence

Amplitude Images

Page 16: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 16

Pol-InSAR

Interferometric Coherence: at polarisation

i22ii11i

iiii

w]T[ww]T[w

w]Ω[w)w,w(γ~

)w,w(γ~ ii

iw

Cb,awbwaw)w,w(γ~ VVHHiii

)w,w(γ~ maxmax

)w,w(γ~ minmin

Coherence Region:

Max. Phase diff. between polarisations

Page 17: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 17

Pol-InSAR

0 1 2 [m] 3

Page 18: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 18

Pol-InSAR

Dual-Pol HH-VV Spotlight

Test Site: Papua N. Guinea

InSAR Mode: Monostatic

Temporal Baseline: 3sec

Spatial Baseline (┴): 185m

Page 19: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 19

Pol-InSAR

HH-HH VV-VV

HH VV

Interferometric Coherence

Amplitude Images

Page 20: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 20

Pol-InSAR

0 2 6 [m] 8

Page 21: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 21

Pol-InSAR

Dual-Pol HH-VV Spotlight

Test Site: Sahara

InSAR Mode: Monostatic

Temporal Baseline: 3sec

Spatial Baseline (┴): 230m

Page 22: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 22

Pol-InSAR

0 1 2 3 4 [m] 5

Page 23: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 23

TanDEM-X Scientific Experiments: Topic‘s

TDX Experiments CP Phase Comments

Temporal Decorrelation Analysis

Pursuit Monostatic

Along-track baseline: 20 km

~3s time lag suitable for short term temporal decorrelation studies

Velocity Measurements Only possibility to investigate very long baseline GMTI

Superresolution Investigation of high resolution processing (azimuth)

Bistatic Experiment First long baseline bistatic imaging

Polarimetric SAR Interferometry

Bistatic Phase

Across-track baseline: 500 m

Potential of X-band for short volume characterisation

Double differential SAR Interferometry

Assessment of the interferometric phase

Bistatic Processing Bistatic processing performance

Page 24: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 24

TanDEM-X Proposal Submission

Open for Experimental Products Please have a look @ http://tandemx-science.dlr.de

Page 25: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 25

Operational Mode

Commanding

TanDEM-X cooperative mode

Bistatic Alternating Bistatic Pursuit Monostatic

Imaging mode Stripmap Stripmap all basic modes

Polarisation mode all basic polarisation modes (incl. DRA mode for quad polarimetry)

Single all basic polarisation modes (incl. DRA mode for quad polarimetry)

Formation Geometry

Across-track baseline

< 4 km < 4 km < 4 km

Along-track baseline

< 1 km < 1 km Any

Processing and Products

Experimental products generated from the TanDEM-X processor

CoSSC (coregistered slant range single look complex) and interferograms for all acquisitions

Two CoSSC (coregistered slant range single look complex) for all acquisitions

CoSSC (coregistered slant range single look complex) for Stripmap and single polarisation

Experimental products generated by the TerraSAR-X processor

Standard TerraSAR-X level 1 products*(including geocoding) of the monostatic channel for all acquisitions

Non Two standard TerraSAR-X level 1b products* (including geocoding) for all acquisitions

Operational Mode Products

Page 26: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 26

TanDEM-X BLOG: http://www.dlr.de

Page 27: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 27

Thanks for your attention

TanDEM-X Team

Page 28: TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS

Slide 28

TanDEM-X SessionTH1.L10: TanDEM-X Mission

Session Type: Oral Time: Thursday, July 29, 08:20 - 10:00 Location: Coral 2 Session Chairs: Irena Hajnsek, ETH Zurich, Institute of Environmental Engineering / German Aerospace Center, Microwaves and Radar Institute and Alberto Moreira, German Aerospace Center, Microwaves and Radar Institute  

TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS         Irena Hajnsek; ETH Zürich / DLR         Gerhard Krieger; German Aerospace Center (DLR)         Konstantinos Papathanassiou; German Aerospace Center (DLR)         Stefan V. Baumgartner; German Aerospace Center (DLR)         Marc Rodriguez-Cassola; German Aerospace Center (DLR)         Pau Prats; German Aerospace Center (DLR) 

TH1.L10.2: TANDEM-X COMMISSIONING PHASE STATUS         Jaime Hueso Gonzalez; German Aerospace Center (DLR)         Markus Bachmann; German Aerospace Center (DLR)         Harald Hofmann; German Aerospace Center (DLR) 

TH1.L10.3: MONOSTATIC CALIBRATION OF BOTH TANDEM-X SATELLITES         Marco Schwerdt; German Aerospace Center (DLR)         Jaime Hueso Gonzalez; German Aerospace Center (DLR)         Markus Bachmann; German Aerospace Center (DLR)         Dirk Schrank; German Aerospace Center (DLR)         Clemens Schulz; German Aerospace Center (DLR)         Björn Döring; German Aerospace Center (DLR) 

TH1.L10.4: PROCESSING OF BISTATIC TANDEM-X DATA         Helko Breit; German Aerospace Center (DLR)         Thomas Fritz; German Aerospace Center (DLR)         Ulrich Balss; German Aerospace Center (DLR)         Andreas Niedermeier; German Aerospace Center (DLR)         Michael Eineder; German Aerospace Center (DLR)         Nestor Yague-Martinez; German Aerospace Center (DLR)         Cristian Rossi; German Aerospace Center (DLR) 

TH1.L10.5: VALIDATION OF TIE-POINT CONCEPTS BY THE DEM ADJUSTMENT APPROACH OF TANDEM-X         Martin Huber; German Aerospace Center (DLR)         Astrid Gruber; German Aerospace Center (DLR)         Birgit Wessel; German Aerospace Center (DLR)         Markus Breunig; German Aerospace Center (DLR)         Anna Wendleder; German Aerospace Center (DLR)