Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi...

44
Team 2 Team 2 AAE451 System Definition Review AAE451 System Definition Review

Transcript of Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi...

Page 1: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Team 2Team 2 AAE451 System Definition ReviewAAE451 System Definition Review

Page 2: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

OutlineOutline Mission Statement Major Design Requirements Concept Selection

• Overview• Pugh’s method

Advanced Technologies• Technologies incorporated• Impact on sizing

Constraint Analysis• Major performance constraints• Basic Assumptions• Constraint diagrams

Sizing Studies• Design Mission• Current sizing approach

Propulsion Selection

2

Page 3: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Mission StatementMission StatementTo be the primary systems

integrator of a high speed, long range executive transport system with unprecedented efficiency and minimal environmental impact.

3

Page 4: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Major Design Major Design RequirementsRequirementsDesign Target Goals

4

Page 5: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Design MissionDesign Mission

0-1: Take off to 50 ft. 5-6: Climb to 5000 ft. (Best Rate)

1-2: Climb to 42000 ft. (Best Rate) 6-7: Divert to Alternate 200 nm

2-3: Cruise at Mach 0.85 7-8: 45 minute Holding Pattern

3-4: Decent to Land (No Range Credit) 8-9: Land

4-5: Missed Approach (Go Around)

3

0 1

2

4 5

6 7

8 97100 nm 200 nm

Los Angeles Hong Kong Alternate

5

Page 6: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Pugh’s Method ProcessPugh’s Method Process Eight initial designs were presented and discussed A concept was chosen for baseline comparisons Each design was evaluated for each criterion

• Every design was assigned a +, -, or S

• All criteria are equally weighted All +, -, and S ratings were individually totaled for each design

• In Pugh’s method, each aircraft’s ratings are not summed Positives and negatives were investigated

• Positives were applied to other designs Designs were narrowed to four, and a new baseline was chosen All criteria were re-evaluated with the new baseline After iterating, two designs were chosen for further investigation

6

Page 7: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Concepts OverviewConcepts Overview

Concept 1 Concept 2 Concept 3

Concept 4 Concept 5 Concept 6

Concept 7 Concept 87

Page 8: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Design Number 

1 2 3 4 5 6 7 8

 Criteria       Baseline        Cruise Drag + + s s + + + +

Weight - s s s s - - -Ability to

accommodate UDF- s - s s s s s

Cabin Noise s s - s s s s sEnvironmental

Noise+ s s s s s + +

Landing Gear s s - s s s s +Window Placement + + - s + s + -

Attractiveness s + - s - + + +Pressurization s s s s s s s -Static Margin - - s s - + - -

 total S's 4 6 5 10 6 6 4 2total +'s 3 3 0 0 2 3 4 4total -'s 3 1 5 0 2 1 2 4

Pugh’s Method Round 1

8

Page 9: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Design Number

2 4 6 7

     

Cruise Drag + - s +

Weight - + s -

Ability to accommodate PF - s s s

Cabin Noise s s s s

Environmental Noise + s s +

Landing Gear + - s +

Window Placement s s s +

Attractiveness - - s +

Pressurization s s s s

Cost - + s -

Static Margin - + s -

 

total S's 3 5 11 3

total +'s 3 3 0 5

total -'s 5 3 0 3

Pugh’s Method Round 2

9

Page 10: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Concept 1Concept 1

Rear fuselage mounted engines T-tail

Low wing

Circular Fuselage

10

Page 11: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Concept 2Concept 2

•Vertical stabilizer

• Lifting Canards

•Rear mounted engines

11

Page 12: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Advanced TechnologyAdvanced TechnologyUnducted PropfanComposite Materials

http://www.aviation.ru/jno/MACS97/An-70-engine.jpg

12

Page 13: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Unducted Propfan Unducted Propfan Unducted Fan shows promise to reduce

emissions and fuel consumption “ERA is focused on the goals of NASA’s N+2, a

notional aircraft with technology primed for development in the 2020 time frame as part of the agency’s subsonic fixed wing program”Aviation Week Dec 14, 2009 on the development

of UDF

13http://f00.inventorspot.com/images/Test%20Prop.jpg

13

Page 14: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Benefits of UDFBenefits of UDFRelative to 1998 levels, NASA plans to

reduce cumulative noise levels to 42 dB below stage 4, 75% lower NOx emissions, and reduce fuel burn by 40%◦ Aviation Week onN+2 goals regardingUDF

1414

Page 15: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

How to Model UDF?How to Model UDF?According to Aviation Week Current

UDF Tests State that the UDF is Capable of: 25%-30% better fuel burn than

current engines 20% lower NOx emissions than

current engines Good probability of meeting N+2

goals by 2020

15

Page 16: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

How to Model UDF?How to Model UDF?Use a benchmark engine built on

or before 1998Calculate fuel burn and emissions

via projected N+2 percentagesAssume Stage 4 noise

complianceUse GE36 blade diameter with a

thrust scale factor for engine diameter

16

Page 17: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Composite MaterialsComposite MaterialsSignificant Empty Weight SavingsProven TechnologySignificant Savings in Production CostUp to 50% of Structure Could Be

Constructed from Composite Materials Based on Historical Aircraft

http://www.comglasco.com/product_line/automotive/aluminun/comglasco0072.jpg

17

Page 18: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

How to Model Composite How to Model Composite MaterialsMaterials

Initial Plan Was to Use Database of Weight Fraction of Composite Hawker 4000 With Comparable Designs

*All Weights Courtesy of Jane’s All The World’s Aircraft

18

Page 19: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

New Method to Model New Method to Model CompositesComposites

No Significant Weight Fraction Difference With Hawker 4000

Hawker used weight savings from composites to increase cabin volume for a very comfortable ride for aircraft category weight

New Method is to Use a 20% Empty Weight Reduction*

*based of historical estimates from http://www.aviation-history.com/theory/composite.htm

19

Page 20: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Constraint DiagramsConstraint DiagramsBasic assumptions and initial

estimates for aircraft concepts • (CL)maxT/O = 1.5• (CL)maxLanding = 2.0• CD0 = .0180• e = .8• Mcruise = .85• Cruise Altitude = 42,000 ft• AR = 10.5 (canard)• AR = 8 (conventional)• No thrust reversers

20

Page 21: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Constraint Diagram of Conventional Aircraft

21

Landing ground roll 2600 ft

Page 22: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Constraint Diagram of Canard Pusher

22

Page 23: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Sizing CodeSizing CodeCurrent status:

• MATLAB script Inputs: ~100 variables describing each aircraft Fuel Weight

Engine Model (flight profile analysis) Drag Prediction (component buildup)

Empty Weight (component buildup) Correlation Factors (to similar aircraft) Technology Factors (engines) Calculates gross weight

23

Page 24: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

MATLAB Code FlowchartMATLAB Code FlowchartInitial Guess

Wo

Geometry Calculatio

ns

We Prediction

Engine Model

Drag Calculation

Wfuel Prediction

W0 Calculation

W0 = W0 calc

Set W0 guess to W0 calc

24

Page 25: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Input VariablesInput VariablesFrom constraint diagram

• W0/S = 76 (conventional), 84 (canard)• TSL/W0 = .33

Wing, Canard, and Tail• Geometric variables (AR, Taper ratio, sweep,

etc)Fuselage

• Dimensions, shape, etc.Engines

• Weight, number, size, etc.Mission Variables

• Range, Cruise Mach, etc.Location of components (for xcg

calculuation)25

Page 26: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

AssumptionsAssumptionsFlight conditions are constant

over 500 ft altitude intervals during climb and descent.

Engine data is scalableIt was assumed that the

equations in Daniel Raymer’s textbook were accurate

26

Page 27: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

ValidationValidationCorrelated Conventional design

to G550 and Canard design to Beechcraft Starship

Conventional

Canard

Fuel Weight 0.77 0.77

Empty Weight

1.28 1.33

Gross Weight

1.01 1.05

27

Page 28: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Estimated Weight TableEstimated Weight Table

Conventional Canard

Empty Weight (lbs) 47200 48800

Fuel Weight (lbs) 24100 23100

Weight of Crew (lbs)(200 per)

800 800

Weight of Passengers(lbs)

(220 per)3960 3960

Gross weight (lbs) 73100 75100

28

Page 29: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Drag PredictionDrag PredictionUsed to help predict:

• Engine size• Amount of fuel• Coast of aircraft

29

Page 30: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

How to model Drag?How to model Drag?Component build up of different

types of drag:• Parasite drag

• Skin friction• Pressure drag• Interference drag

• Induced drag• Miscellaneous rag• Wave drag

• Assumed 20 counts of drag

30

Page 31: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Skin FrictionSkin FrictionAssumed turbulent flow for

conceptual design.• Schlicting Formula

31

Page 32: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Pressure DragPressure DragBody component shape dependant

32

Page 33: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Interference DragInterference DragDrag from different components

interacting with each other

Q = 1

Q = 1.2

Q = 1

Q = 1.5

33

Page 34: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Parasite Drag Build-upParasite Drag Build-up

Component Conventional Canard

Fuselage 0.00520 0.00567

Wing 0.00692 0.00739

H-Tail 0.00219 0.00171

V-Tail 0.00137 0.00268

Nacelle 0.00184 0.00161

Pylon 0.00016 0.00018

* All values are at Cruise Conditions

34

Page 35: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Benchmark EngineBenchmark Engine Rolls Royce BR700 Series First Production Run in 1994 The BR700 Series has a thrust range of 14,750 lbf -

22,000 lbf range to allow for “rubber engine” design

http://de.academic.ru/pictures/dewiki/69/Engine_BR710-1.jpg35

Page 36: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Fuel Weight PredictionFuel Weight Prediction Imported engine

data curvesCurves were scaled

based on the sea-level static thrust

Interpolated to find points not on curves

Calculated TSFC for different segments of the design mission

Fuel weight predicted for each segment

36

Page 37: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Engine SelectionEngine Selection

Unducted Propfan Modeled Off of Previous Data and N+2 Goals, as Stated Before

Geared Turbofan Stated to Start Production Between Now and 2020

http://www.flug-revue.rotor.com/FRHeft/FRHeft07/FRH0702/FR0702c1.JPGhttp://bryanandhannah.net/assets/

clip_image002.jpg

37

Page 38: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Geared TurbofanGeared Turbofan

Uses a gear to decouple the fan from the low pressure turbine, thus allowing a large fan to spin slowly and a small turbine to spin quickly increasing efficiency

http://www.profeng.com/NR/rdonlyres/B0A36366-BDBD-49EF-8C87-ACA1E3630B03/0/211300212.jpg

38

Page 39: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Pratt & Whitney PurePower Pratt & Whitney PurePower PW1000PW1000

First ultra-high bypass ratio turbofan engine

Light-weight, low pressure fan design20 dB Quieter than current enginesProven Efficiency with No life-limited

partsReduce NOx emissions (50% margin to

CAEP/6)13,000-17,000 lbf Thrust for 1215G or

21,000-24,000 lbf Thrust for 1524G15% Reduction in Fuel Burn

http://www.purepowerengine.com.html 39

Page 40: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

UDF UDF PurePowerPurePowerPros

Very Efficient N+2 goals likely

met Light Weight

(direct drive)Cons

Noise Technology Still in

Devlopment Large Diameter

Pros Reasonably Efficient Quiet In Production by

2016 Low Emissions

Cons Large Diameter

Casing (70in) Not a lot of Data Heavy (gearing)

40

Page 41: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Static Margin(SM)Static Margin(SM)Conventional

• CG = 51% of fuselage length• SM = 37% of Cmac

Canard• CG = 74% of fuselage length• SM = 29% of Cmac

41

Page 42: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Requirements Compliance MatrixRequirements Compliance MatrixPerformance

CharacteristicsTarget Threshold Current

Range (60 kt headwind)

7100 nm 6960 nm 7100 nm

MTOW Balanced T/O Field Length

(Takeoff Ground Roll)

6000 ft(4000 ft)

7000 ft(5000 ft)

6000* ft(3500 ft Concept 1)( 3400 ft Concept 2)

Max. Passengers 17 8 16

Volume per Passenger per Hour (Design)

13.3 ft3/(pax⋅hr) 2.28 ft3/(pax⋅hr) 13.3 ft3/(pax⋅hr)

Cruise Mach 0.85 0.8 0.85

Initial Cruise Altitude 42000 ft 40000 ft 42000 ft

Cabin Noise 60 dB 70 dB65 dB*

(will differ among concepts)

LTO NOx Emissions CAEP 6-75% CAEP 6-60% CAEP 6-70%*

Cumulative Certification Noise Limits

232 dB 274 dB 274 dB*

Cruise Specific Range 0.3 nm/lb 0.26 nm/lbConcept 1: 0.29 nm/lb*Concept 2: 0.31 nm/lb*

Loading Door Sill Height 4 ft 5 ft 4 ft*

Variable Costs $4100/hr* $4300/hr $4100/hr*

* Value estimated at current stage in analysis 42

Page 43: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Summary & Next StepsSummary & Next Steps

Summary◦ Two concepts selected for detailed analysis◦ Sizing improved using component based method and

engine model◦ Early stability and control estimates developed

Next Steps◦ Select final engine classification (GTF or UDF)◦ Detailed aerodynamic analysis (airfoil selection, etc)◦ Detailed stability analysis◦ Refine sizing code

43

Page 44: Team 2 AAE451 System Definition Review Chad CarmackAaron MartinRyan MayerJake SchaeferAbhi MurtyShane MooneyBen GoldmanRussell HammerDonnie GoepperPhil.

Questions and CommentsQuestions and Comments

44