Task 3: Core Instrumentation Planning and...

12
MIT NUCLEAR REACTOR LABORATORY an MIT Interdepartmental Center Task 3: Core Instrumentation Planning and Benchmarking Lin-wen Hu, David Carpenter, Kaichao Sun 5/2016 – TREAT IRP Biannual Meeting, University of Michigan

Transcript of Task 3: Core Instrumentation Planning and...

Page 1: Task 3: Core Instrumentation Planning and Benchmarkingresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation Planning and Benchmarking Lin-wen Hu, David

MIT NUCLEAR REACTOR LABORATORYan MIT Interdepartmental Center

Task 3: Core Instrumentation Planning and BenchmarkingLin-wen Hu, David Carpenter, Kaichao Sun

5/2016 – TREAT IRP Biannual Meeting, University of Michigan

Page 2: Task 3: Core Instrumentation Planning and Benchmarkingresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation Planning and Benchmarking Lin-wen Hu, David

Task 3 Overview

2

Instrumentation Plano Identify TREAT core monitoring needso Select sensors and requirementso Develop instrumentation plan

Benchmarkingo Design and testing of in-reactor instrumentation o Modeling (performance and safety)o Validation experiments

—Steady-state and transient testso Analyze data and develop instrumentation report

Page 3: Task 3: Core Instrumentation Planning and Benchmarkingresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation Planning and Benchmarking Lin-wen Hu, David

Lead-out Experiments in the MITRCommon framework

available for instrumented in-core facility with multiple sensor types

Streaming protection, EM noise reduction, and high-speed data acquisition

Motorized or manually-actuated sensor packet positioning for axial scanning

Multi‐sensor capsule

Instrumentation support below reactor top shield

Data acquisition and analysis during reactor operation

Page 4: Task 3: Core Instrumentation Planning and Benchmarkingresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation Planning and Benchmarking Lin-wen Hu, David

TREAT Instrumentation

4

During normal operation, used ion chambers and proportional counters located in radial instrumentation ports

o Outside of permanent graphite reflector

Six types of thermocouple-instrumented assemblies for various locations

o Reflector graphiteo Element surfaceo Mid-fuelo Normal and fast-response

14 6” Radial Instrumentation 

Ports

INL/EXT‐15‐35372

Page 5: Task 3: Core Instrumentation Planning and Benchmarkingresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation Planning and Benchmarking Lin-wen Hu, David

Startup Testing and Calibration

5

During TREAT physics testing fission chambers were positioned within the core (coolant channels and element centers)

Fission chambers, activation foils, and thermocouples moved to various radial and axial positions

o Drive system mounted on reactor top shield to move detectors and foils

o Core configuration dependent

Measurement of vital parameters

o Temp and flux profileo Reactivity coefficientso Detector power calibrationo Neutron spectrumo Transient response

ANL‐6173

INL/EXT‐15‐35372

Page 6: Task 3: Core Instrumentation Planning and Benchmarkingresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation Planning and Benchmarking Lin-wen Hu, David

In-Core Experiment Instrumentation

6

Previously used sensorso Thermocoupleso LVDTo SPDs

New options for local flux and temperature measurement

o Miniature SPDso Miniature fission chambero Fiber optico MPFD o Pyrometer (IR)o Gamma thermometry

Working with INL to identify most promising sensor technologies, incorporate UW IRP findings

o MPFDo Diode detector Photonis

INL/EXT‐12‐27274

Critical parameterso Sensitivityo Response timeo Hysteresiso Thermal stability

INL MPFD

Commercial FC

Page 7: Task 3: Core Instrumentation Planning and Benchmarkingresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation Planning and Benchmarking Lin-wen Hu, David

7

Neutron Flux Range – TREAT / MITR

Unit: n/cm2/sThermalFlux 

(< 1 eV)

FastFlux 

(> 0.1 MeV)

Total Flux

MITR at 100 kW 6.17E+11 2.22E+12 4.63E+12

MITR at 6 MW 3.70E+13 1.33E+14 2.78E+14

TREAT at 100 kW 5.79E+11 2.72E+11 1.45E+12

TREAT peaks at 18,000 MW 1.04E+17 4.90E+16 2.61E+17

The TREAT neutron spectrum is notably more thermalized comparing to that of the MITR in‐core position and of the typical PWR.

The thermal neutron flux (< 1eV) are comparable between the MITR and the TREAT, when operate at 100 kW power level. 

At < 100 kW, the MITR can operate with top lid open and natural circulation mode.

Slow power ramp transient will be performed at MITR and fast power ramp transient will be performed at OSU with same instrumentation and setup.  

Page 8: Task 3: Core Instrumentation Planning and Benchmarkingresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation Planning and Benchmarking Lin-wen Hu, David

8

Past MITR Transient Measurements

Fission Chamber Placement

Data Acquisition

Static Measurement(Constant Power at 50 kW)

“Slow Positive” Transient (One Shim Blade Withdrawal)

“Fast Negative” Transient (One Shim Blade Dropped, Followed by Reactor Scram)

Jeffrey C. Hughes, An Experimental Evaluation of the Instrumented Flux Synthesis Method. MIT PhD Thesis, 1995.

Page 9: Task 3: Core Instrumentation Planning and Benchmarkingresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation Planning and Benchmarking Lin-wen Hu, David

9

Planned Instrument Tests at MITR

1. Potential Locations: 2 A‐ring (innermost ring) positions

1 B‐ring (middle ring) position

Other ex‐core positions

2. Static Measurements: The MITR operates at steady power of 

60 kW (LSSS at 100 kW) with top lid open and natural convection mode.

Different in‐core and ex‐core positions could be used for instrument test.

3. “Slow Positive” Transient: Withdrawing Regulating Rod (~ 200 mβ worth) to 

create a positive period more than 50 s (LSSS at 7 s).

Steady power levels prior and after the transient are planned to be 600 W and 60 kW (LSSS at 100 kW).

4. “Fast Negative” Transient: Using Shim Blade Drop and Scram to create 

negative period less than 0.5 s.

Steady power levels prior the transient is planned to be 60 kW (1% of MITR nominal power).

Page 10: Task 3: Core Instrumentation Planning and Benchmarkingresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation Planning and Benchmarking Lin-wen Hu, David

Instrument Calibration

10

Pre-irradiation testingo Sealed gamma and neutron sourceso Spectrum-characterized beamlines

Neutron Activation Analysis Labo Gold, Fe, 304 foils and wires for fluenceo Cadmium ratio

Verify instrument response curvesCalibration requirements part of instrumentation plan

NAA Lab

Multi‐sensor Beamline

Existing calibrated instruments for rad work

Page 11: Task 3: Core Instrumentation Planning and Benchmarkingresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation Planning and Benchmarking Lin-wen Hu, David

Backup Slides

11

Page 12: Task 3: Core Instrumentation Planning and Benchmarkingresearch.engr.oregonstate.edu/treat-irp/sites/... · Task 3: Core Instrumentation Planning and Benchmarking Lin-wen Hu, David

Task 3: Core Instrumentation

12

3.1 Instrumentation Plano 3.1.1 Review TREAT core design and test plans MITo 3.1.2 Identify core parameter monitoring needs MITo 3.1.3 Determine applicable flux/measurement range MITo 3.1.4 Select TREAT core instrumentation MITo 3.1.5 Identify instrumentation calibration requirements MITo 3.1.6 Develop TREAT core instrumentation plan MIT

3.2 Initial Benchmark Evaluationo 3.2.1 Develop Benchmark experimental plan using the MITR MITo 3.2.2 Select test instrumentation MITo 3.2.3 Design test assembly for OSTR and MITR MITo 3.2.4 Conduct experiment safety review and approval MITo 3.2.5 Perform core analysis with MCODE MITo 3.2.6 Assemble and test data acquisition systems MITo 3.2.7 Perform steady-state experiments at MITR MITo 3.2.8 Perform steady-state experiments at OSTR OSUo 3.2.9 Perform transient experiments at MITR MITo 3.2.10 Perform transient experiments at OSTR OSUo 3.2.11 Analyze experimental data MITo 3.2.12 Evaluate core analysis and instrumentation measurement uncertainties MIT